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Abstract: The method for surface modelling of land cover scenarios (SMLCS) has been im-
proved to simulate the scenarios of land cover in Eurasia. On the basis of the observation 
monthly climatic data observed from 2127 weather stations in Eurasia during 1981–2010, the 
climatic scenarios data of RCP26, RCP45 and RCP85 scenarios released by CMIP5, and the 
land cover current data of Eurasia in 2010, the land cover scenarios of Eurasia were respec-
tively simulated. The results show that most land cover types would generally have similar 
changing trends in the future, but with some difference in different periods under the three 
scenarios of RCP26, RCP45 and RCP85. Deciduous needleleaf forest, mixed forest, shrub 
land, wetlands and snow and ice would generally decrease in Eurasia during 2010–2100. 
Snow and ice would have the fastest decreasing rate that would decrease by 37.42% on 
average. Shrub land would have the slowest decreasing rate that would decrease by 5.65% 
on average. Water bodies would have the fastest increasing rate that would increase by 
28.78% on average. Barren or sparsely vegetated land would have the slowest increasing 
rate that would increase by 0.76%. Moreover, the simulated results show that climate change 
would directly impact on land cover change in Eurasia. 
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1  Introduction 
Land cover change, as a fundamental variable of earth surface, directly affects biogeo-
chemical cycle, hydrological cycle, soil erosion and biological diversity (Chapin et al., 2000; 
Foley et al., 2005; Sala et al., 2000; Bolliger et al., 2011; Fan et al., 2013, 2015), and cli-
mate change also directly drives land cover change (Fu, 2003; Yue et al., 2007; Fan et al., 
2015). Since the International Geosphere-Biosphere Program (IGBP) and International Hu-
man Dimensions Programme (IHDP) on global environmental change jointly proposed the 
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research program of Land Use and Land Cover Change (LUCC) in 1995, many models have 
been developed for simulating land cover scenarios.  

The IIASA land-use change model was developed to simulate the future scenarios of land 
use/cover by considering the socio-economic factor, biogeophysical driving force, and food 
policies (Fischer et al., 1996). Economic models were introduced to analyze land cover 
change on a regional scale (Ichinose and Otsubo, 2003). The Integrated Model to Assess the 
Greenhouse Effect (IMAGE), as a global integrated system model, was developed for simu-
lating agricultural ecology process (Alcamo et al., 1994). The Conversion of Land Use and 
its Effects (CLUE) was developed within a framework of conversion of land use and its ef-
fects under assumptions (Verbrug et al., 1999, 2002, 2004). The Cellular Automata (CA) 
model was involved to simulate the urban land use scenarios (Clarke et al., 1997; Wu and 
Webster, 1998; Wu, 2002), and improved to downscale cultivated land and built-up land of 
the global land use datasets (Li et al., 2016). The Surface Modeling of Land Cover Scenarios 
(SMLCS) to simulate the change of land cover scenarios in China (Yue et al., 2007).  

However, there are some limitations in these models. The IIASA land-use change model 
and economic models focus on addressing the question what is the change rate of land cover, 
but don’t answers the questions where is the location of land cover changes. IMAGE land 
cover model focuses on the demand of agricultural land and ignores the effect of climate 
change on future land cover. CA land cover model is mainly used to simulate the land cover 
scenarios at an urban or river basin scale. At a large scale, CA land cover model only has 
been improved to downscale the agricultural land and built-up land of global land cover data. 
The early versions of the SMLCS model only can be used to simulate the land cover scenar-
ios at a country scale (Fan et al., 2015). So, this paper aims to improved SMLCS model to 
simulate the land cover scenarios in Eurasia.  

2  Data and Methods 

2.1  Datasets 

The basic datasets include the observation climatic data, climatic scenarios data and land cover 
data. The observation monthly climatic data has been collected from 2127 weather observation 
stations in Eurasia during 1981–2010 (Figure 1). The climatic scenario data of CMIP5 RCP26, 
RCP45 and RCP85 scenarios has been got from IPCC website during 2011–2100, and the land 
cover current data of Eurasia in 2010 has been downloaded from ftp://vct.geog.umd.edu/ST/ 
(Zhang et al., 2016). The mean annual biotemperature, average total annual precipitation and 
potential evapotranspiration ratio at a spatial resolution of 0.125  0.125 were respectively 
obtained by operating a high accuracy and speed method of surfacing modeling (HASM) (Yue, 
2010, Yue et al., 2016) during all the four periods 1981 to 2010 (T0), 2011 to 2040 (T1), 2041 
to 2070 (T2), and 2071 to 2100 (T3).  

The spatial data of biome types at a spatial resolution of 0.125º × 0.125º in T0, T1, T2 and 
T3 were respectively generated by running the improved Holdridge life zone model, in terms 
of the spatial data of mean annual biotemperature (MAB), average total annual precipitation 
(TAP), and potential evapotranspiration ratio (PER) simulated by HASM (Yue et al., 2011; 
Fan et al., 2015). The HLZ model (Holdridge 1947, 1967, 1971) is a scheme which utilizes 
the three bioclimatic variables to formulate the biome distribution (Zhang, 1993; Yue et al., 
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Figure 1  Location of the weather observation stations in Eurasia 
 

2005, 2006). The HLZ types in Eurasia include Polar/Nival area, Subpolar/Alpine dry tundra, 
Subpolar/Alpine moist tundra, Subpolar/Alpine wet tundra, Subpolar/Alpine rain tundra, 
Cold temperate dry scrub, Cold temperate moist forest, Cold temperate wet forest, Cold 
temperate rain forest, Cool temperate scrub, Cool temperate steppe, Cool temperate moist 
forest, Cool temperate wet forest, Cool temperate rain forest, Warm temperate desert scrub, 
Warm temperate thorn steppe, Warm temperate dry forest, Warm temperate moist forest, 
Warm temperate wet forest, Subtropical desert scrub, Subtropical thorn woodland, Sub-
tropical dry forest, Subtropical moist forest, Subtropical wet forest, Subtropical rain forest, 
Tropical desert scrub, Tropical thorn woodland, Tropical very dry forest, Tropical dry forest, 
Tropical moist forest, Tropical wet forest, Tropical rain forest, and Desert (Table 1). 

The land cover data of Eurasia have been separated from the land cover data at a spatial 
resolution of 0.125 × 0.125 of the global rest in 2010. The land cover types were classified 
into 13 types by combining the land cover classification systems of FAO and UNEP 
(Gregorio and Jansen, 2001), IGBP, USGS, ESA GlobCover, and UMD, which include Ev-
ergreen broadleaf forest, Deciduous broadleaf forest, Evergreen needleleaf forest, Deciduous 
needleleaf forest, Mixed forest, Shrub land, Grasslands, Wetlands, Croplands, Water bodies, 
Snow and Ice, Built-up land, Barren or sparsely vegetated land (Table 1). 

2.2  Surface modeling of land cover scenarios 

Land cover change is a complex process driven by natural factors, climate conditions, and 
human factors. If the impact of various factors is to be considered in the process of simu-
lated predictive analysis, the entire study will become extremely complicated and it is im-
possible to start. Climate conditions such as mean annual biotemperature, average total an-
nual precipitation and potential evapotranspiration ratio have directly impact on the natural 
course of land cover (Lauenroth et al., 1993). After comparing the corresponding relation-
ship of the spatial distribution between biome types and land cover types, the distribution of 
HLZ types and land cover types are very similar on spatial pattern (Fan et al., 2005; Yue et 
al., 2007, 2011) (Figure 2). Therefore, SMLCS, as a grid-oriented, spatial explicit land cover 
scenarios model, has been improved to simulate land cover changes of Eurasia in 2040, 2070 
and 2100. 

In this paper, the land cover types has been replaced by the relative cover of each land 
cover type in every cell, e.g. a grid cell includes three land cover types which respectively 
contain 60% cropland, 25% forest land and 15% grassland, then the land cover data would  
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Figure 2  The distribution of HLZ types during 1981–2010 on an average (a) and land cover (b) of Eurasia  
in 2010 
 
consist of three probability data belonging to three different kinds of land cover types. That 
is to say, the new transition probability matrix can quantitatively describe the land cover 
spatial distribution characteristics within each HLZ type (Fan et al., 2015). Therefore, land 
cover type at a grid during next period would tend to the direction that the HLZ type ap-
peared at the grid during next period, e.g. at grid (x, y), if probability of land cover type k 
corresponding to HLZ type occurred in t + 1 period is more than that corresponding to HLZ 
type occurred in t period, the cover probability of land cover type k at the grid would in-
crease. Thus, when we create new probability formulation which indicates the probability of 
a grid cell to be covered by a certain land cover type, we have to take account the probability 
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change of each land cover type corresponding to HLZ type between the former and next pe-
riod. The new probability formulation and decision rules can be formulated as:   
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where x, y is the coordinate of grid cell; k is the type code of land cover; t is the variable of 
time; ,( , )k tHLZP x y  represents the transition probability between land cover type k and the 

HLZ type appeared at grid (x, y) in t year. ,( , )k tLP x y  is the percentage of land cover type k 

contained in grid (x, y) which should satisfy the formula 
22

,1
( , ) 1;k tk

LP x y


 , 1( , )k tLP x y   

is the transition probability of land cover type k in t+1 period; 1( , )tLC x y   is the type value 
of land cover at grid (x, y) in t+1 period. 

The major steps of the improved SMLCS include: 1) simulating the MAB, TAP and PER 
data in Eurasia by operating the HASM and simulating the HLZ types distribution by run-
ning the HLZ model; 2) establishing the transition probability matrix (Table 1) between 
HLZ types and land cover types by combining the HLZ type data during 1981–2010 on an 
average (Figure 2a) and the land cover data in 2010 (Figure 2b); 3) recognizing whether the 
HLZ type at grid cell (x, y) will change or not from t period to t+1 period; 4) assigning the 
grid cell (x, y) at t+1 period on the basis of the max value of transition probability; and 5) 
repeating step 3 and step 4 until all the grid cells of land cover type have been allocated at 
t+1 period. 

3  Results and analyses 

3.1  Spatial distribution change of land cover 

The simulation results of land cover (Figures 3–5) under the RCP26, RCP45 and RCP85 
scenarios show that the spatial distribution of land cover scenario would have a very similar 
regional change characteristic on the spatial pattern in Eurasia during 2010–2100. There 
would be a great difference in spatial distribution of forest and shrub because of the compli-
cated terrain characteristics and heterogeneous climate change in Eurasia. Evergreen broad-
leaf forest would be mostly distributed in Southeast Asia. Evergreen needleleaf forest would 
mainly be distributed in Nordic Europe, East European Plain, Western Siberian Plain, Japan, 
South Korea, and hilly areas in South China. Deciduous needleleaf forest would be mainly 
distributed in Central Siberian Highlands and Eastern Siberia, which would cover about half 
of Russia’s area. Shrub land would be mainly distributed in the north and east of Russia, 
southwest China, northeast Laos, the border zone between India and Myanmar and the bor-
der zone between India and Pakistan, the north of United Kingdom, the south of Greece, 
most of Turkey, east of Georgia, and central Azerbaijan. 
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Figure 3  RCP26 scenario of land cover change in Eurasia 
 

 
 

Figure 4  RCP45 scenario of land cover change in Eurasia 
 

Grasslands would mainly be distributed in Tianshan Mountains, Tibetan Plateau, Inner 
Mongolian Plateau, Loess Plateau, Altai Mountains and areas around Tarim Basin of China, 
North Siberian Plain, Norway, the northwest of Iran, the north of Kazakhstan and the middle 
of Mongolia.  

Croplands would mainly be distributed in the East European and Central European Plains. 
Croplands would mainly be distributed in Northeast China Plain, North China Plain, middle 
and lower reaches of the Yangtze River, Sichuan Basin and Guanzhong Basin of China. Hexi 
Corridor and the river alluvial sectors of Tianshan Mountains in China also would have rela-
tively concentrated cultivated land. The centre of South Asia is one of the greatest alluvial 
plains in the world, which is formed by Indus, Ganges and Brahmaputra rivers, with dense 
river networks, numerous irrigation channels, and developed agriculture, such as India. In addi- 
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Figure 5  RCP85 scenario of land cover change in Eurasia 
 

tion, croplands would be mainly distributed in Thailand, Myanmar, Vietnam in IndoChinese 
Peninsula, the coastal area of Malay Archipelago. 

Barren or sparsely vegetated land would mainly be distributed in Uzbekistan, Turkmeni-
stan and southern Kazakhstan of Central Asia, and Iran, Saudi Arabia, Yemen of Western 
Asia. Moreover, barren or sparsely vegetated land would be distributed in southern Mongo-
lia and Northwest China. In China, barren or sparsely vegetated land would mainly be dis-
tributed in the arid and desert areas in the northwest, namely Gurbantunggut Desert in 
Junggar Basin, Taklimakan Desert in Tarim Basin, the center of Qaidam Basin, and Tengger 
Desert, Alax Plateau. 

Water bodies include rivers and lakes. The main water body area is river area, which in-
clude Volga River, Yenisei, Ob River, Ural River, Syr Darya, Tigris River, Euphrates River, 
Po, and Mekong. Lakes would mainly be distributed in Finland, named Country of Thou-
sand Lakes that mainly include Baikal, and Aral Sea. In China, the river system mainly ori-
ginates from Qilian and Hengduan mountains in the east of the Qinghai-Tibet Plateau, the 
mountainous areas around the Sichuan Basin, the Changbai Mountains in the northeast, the 
Greater Xinggan Mountains, and the hilly regions in South China. The distribution of water 
bodies would be more dispersed than other land cover types. Wetlands would mainly be dis-
tributed in Western Siberian Plain. 

Snow and ice would mainly be distributed in the Himalayas, the high latitude zone in 
Nordic Europe and North Asia. Built-up land would mainly be distributed in areas that 
would be close to rivers, sufficient water resources, convenient to transport, fertile land and 
rich products, due to the formation and development factors of urban and the land use char-
acteristics of artificial land. 

3.2  Area changes of land cover types 

During 2010–2100, the area of evergreen broadleaf forest, grasslands, croplands, water bod-
ies and built-up land would increase while the areas of deciduous needleleaf forest and snow 
and ice would decrease under all three scenarios of RCP26, RCP45 and RCP85 (Tables 2–4) 
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in all the three periods. The area of deciduous broadleaf forest would increase in all the three 
periods under all the scenarios except a decrease during 2010–2040 under the RCP26 sce-
nario. The area of mixed forest and shrub land would decrease in all the three periods under 
the RCP26 scenario, which would increase during 2070–2100 under the two scenarios of 
RCP45 and RCP 85. Compared with 2010, the area of deciduous broadleaf forest, mixed 
forest, shrub land and wetlands would decrease in 2100 under all three scenarios. The area 
of wetlands would increase during 2010–2040 and then decrease during 2040–2100 under 
the two scenarios of RCP45 and RCP85, but which would increase from 2010 to 2070 and 
then decrease from 2070 to 2100 under the RCP26 scenario. The area of evergreen nee-
dleleaf forest would decrease during 2010–2070 and increase during 2070–2100 under the 
two scenarios of RCP26 and RCP45. But under the RCP85 scenario, the area of evergreen 
needleleaf forest would decrease during 2010–2040 and then increase during 2040–2100.  

The area of barren or sparsely vegetated land would decrease during 2010–2040 and then 
increase during 2040–2100 under the two scenarios of RCP45 and RCP85, but it would de-
crease during 2010–2070 and then increase during 2070–2100 under the RCP 26 scenario.  

In terms of the simulated results of land cover under the three scenarios of RCP26, 
RCP45 and RCP85 (Tables 27), most land cover types would generally have similar 
changing trends in the future, but which have some difference in different periods. 

During 2010–2040: shrub land would have the greatest decrease area, down respectively 
by 187,409 km2 and 146,044 km2 under the two scenarios of RCP26 and RCP45, and ever-
green needleleaf forest would have the greatest decrease area, down by 154,486 km2 under 
the scenario RCP85; snow and ice would have the largest decrease rate, down respectively 
by 7.55% and 7.65% under the two scenarios of RCP26 and RCP45, and mixed forest would 
have the largest decrease rate, down by 9.50% under the scenario of RCP85; croplands 
would all have the greatest increase area, up by 318,257 km2, 282,168 km2 and 261,486 km2, 
respectively, and wetlands would all have the largest increase rate, up by 6.56%, 6.98% and 
7.31% under the three scenarios of RCP26, RCP45 and RCP85, respectively. 

 

Table 2  Area of land cover type based on RCP26 (km2) 

Land cover type 2010 2040 2070 2100 Area change Change rate (%) 

Evergreen broadleaf forest 2363080 2482321 2549012 2635963 272882 11.55 

Deciduous broadleaf forest 3268045 3256437 3354152 3400582 132537 4.06 

Evergreen needleleaf forest 4677409 4537064 4478604 4527778 –149632 –3.20 

Deciduous needleleaf forest 4796439 4715819 4564922 4298793 –497646 –10.38 

Mixed forest 1576935 1484708 1399023 1376441 –200494 –12.71 

Shrub land 4265659 4078250 4023800 3973782 –291876 –6.84 

Grasslands 8752493 8785628 8857383 8962695 210202 2.40 

Wetlands 907075 966590 969967 892091 –14984 –1.65 

Croplands 12226519 12544776 12692297 12748647 522127 4.27 

Water bodies 862333 892091 930923 986850 124517 14.44 

Snow and Ice 416393 384948 344849 311926 –104468 –25.09 

Built-up land 222231 225397 228141 230040 7809 3.51 

Barren or sparsely vegetated land 9747152 9727736 9688693 9736178 –10974 –0.11 
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Table 3  Area of land cover type based on RCP45 (km2) 

Land cover type 2010 2040 2070 2100 Area change Change rate (%) 

Evergreen broadleaf forest 2363080 2453619 2572016 2685347 322267 13.64 

Deciduous broadleaf forest 3268045 3280286 3365759 3487322 219277 6.71 

Evergreen needleleaf forest 4677409 4537486 4523135 4777445 100036 2.14 

Deciduous needleleaf forest 4796439 4770058 4511738 3635687 –1160752 –24.20 

Mixed forest 1576935 1478165 1363145 1405776 –171158 –10.85 

Shrub land 4265659 4119615 3995520 4024644 –241014 –5.65 

Grasslands 8752493 8774231 8879543 9153058 400565 4.58 

Wetlands 907075 970389 954982 725154 –181922 –20.06 

Croplands 12226519 12508687 12679001 12772284 545765 4.46 

Water bodies 862333 888925 954138 1106302 243969 28.29 

Snow and Ice 416393 384526 343583 254732 –161661 –38.82 

Built-up land 222231 225608 228563 232150 9919 4.46 

Barren or sparsely vegetated land 9747152 9690170 9710642 9821863 74710 0.77 

 
Table 4  Area of land cover type based on RCP85 (km2) 

Land cover type 2010 2040 2070 2100 Area change Change rate (%) 

Evergreen broadleaf forest 2363080 2451298 2603673 2746340 383259 16.22 

Deciduous broadleaf forest 3268045 3294215 3463473 3503994 235949 7.22 

Evergreen needleleaf forest 4677409 4522924 4554158 4895208 217799 4.66 

Deciduous needleleaf forest 4796439 4783565 4405371 3232589 –1563850 –32.60 

Mixed forest 1576935 1427092 1263320 1275772 –301162 –19.10 

Shrub land 4265659 4136499 3979058 4133755 –131904 –3.09 

Grasslands 8752493 8763679 8958474 9317041 564548 6.45 

Wetlands 907075 973343 856002 636725 –270350 –29.80 

Croplands 12226519 12488005 12645656 12802252 575733 4.71 

Water bodies 862333 897789 1002046 1190721 328387 38.08 

Snow and Ice 416393 386425 310237 227296 –189097 –45.41 

Built-up land 222231 226874 231306 232995 10763 4.84 

Barren or sparsely vegetated land 9747152 9730058 9808989 9887076 139923 1.44 

 
During 2040–2070: deciduous needleleaf forest would all have the greatest decrease area, 

down respectively by 150,898 km2, 258,320 km2 and 378,194 km2, snow and ice would all 
have the largest decrease rate, down respectively by 10.42%, 10.65% and 19.72%, and water 
bodies would all have the largest increase rate, up by 4.35%, 7.34% and 11.61% under the 
three scenarios of RCP26, RCP45 and RCP85, respectively; croplands would have the 
greatest increase area, up by 147,521 km2 and 170,314 km2 under the two scenarios of 
RCP26 and RCP45, respectively; grasslands would have the greatest increase area that 
would be 194,795 km2 un der the scenario RCP85. 

During 2070–2080: under the three scenarios of RCP26, RCP45 and RCP85, deciduous 
needleleaf forest would all have the greatest decrease area, down respectively by 266,129 km2, 
876,051 km2 and 1,172,782 km2; snow and ice would all have the largest decrease rate, down 
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Table 5  Scenario of land cover change based on RCP26 (km2) 

From 2011 to 2040 From 2041 to 2070 From 2071 to 2100 
Land cover type 

Area Change rate (%) Area Change rate (%) Area Change rate (%) 

Evergreen broadleaf forest 119241 5.05 66690 2.69 86951 3.41 

Deciduous broadleaf forest –11608 –0.36 97714 3.00 46430 1.38 

Evergreen needleleaf forest –140345 –3.00 –58460 –1.29 49174 1.10 

Deciduous needleleaf forest –80620 –1.68 –15089
8 –3.20 –26612

9 –5.83 

Mixed forest –92227 –5.85 –85685 –5.77 –22582 –1.61 

Shrub land –187409 –4.39 –54450 –1.34 –50018 –1.24 

Grasslands 33134 0.38 71756 0.82 105312 1.19 

Wetlands 59515 6.56 3377 0.35 –77876 –8.03 

Croplands 318257 2.60 147521 1.18 56349 0.44 

Water bodies 29757 3.45 38832 4.35 55927 6.01 

Snow and Ice –31446 –7.55 –40099 –10.42 –32923 –9.55 

Built-up land 3166 1.42 2744 1.22 1899 0.83 

Barren or sparsely vegetated land –19416 –0.20 –39043 –0.40 47485 0.49 

 
Table 6  Scenario of land cover change based on RCP45 (km2) 

From 2011 to 2040 From 2041 to 2070 From 2071 to 2100 
Land cover type 

Area Change rate (%) Area Change rate (%) Area Change rate (%) 

Evergreen broadleaf forest 90539 3.83 118397 4.83 113332 4.41 

Deciduous broadleaf forest 12241 0.37 85474 2.61 121562 3.61 

Evergreen needleleaf forest –139923 –2.99 –14351 –0.32 254310 5.62 

Deciduous needleleaf forest –26381 –0.55 –258320 –5.42 –876051 –19.42 

Mixed forest –98769 –6.26 –115020 –7.78 42631 3.13 

Shrub land –146044 –3.42 –124095 –3.01 29124 0.73 

Grasslands 21738 0.25 105312 1.20 273515 3.08 

Wetlands 63314 6.98 –15406 –1.59 –229829 –24.07 

Croplands 282168 2.31 170314 1.36 93282 0.74 

Water bodies 26592 3.08 65213 7.34 152164 15.95 

Snow and Ice –31868 –7.65 –40943 –10.65 –88850 –25.86 

Built-up land 3377 1.52 2955 1.31 3588 1.57 

Barren or sparsely vegetated land –56982 –0.58 20471 0.21 111221 1.15 
 

respectively by 9.55%, 25.86% and 26.73%; grasslands would all have the greatest increase 
area, up respectively by 105,312 km2, 273,515 km2 and 358,567 km2; water bodies would all 
have the largest increase rate, up respectively by 6.01%, 15.95% and 18.83%.  

During 2010–2100, deciduous needleleaf forest would all have the greatest decrease area, 
down by 497,646 km2, 1,160,752 km2 and 1,563,850 km2, respectively. Snow and ice would 
all have the largest decrease rate, being 25.09%, 38.82% and 45.51%, respectively. Crop-
lands would all have the greatest increase area, up by 522,127 km2, 545,765 km2 and 
575,733 km2, respectively. Water bodies would all have the largest increase rate, being 
14.44%, 28.29% and 38.08%, respectively. 
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Table 7  Scenario of land cover change based on RCP85 (km2) 

From 2011 to 2040 From 2041 to 2070 From 2071 to 2100 
Land cover type 

Area Change rate 
(%) Area Change rate 

(%) Area Change rate  
(%) 

Evergreen broadleaf forest 88217 3.73 152375 6.22 142667 5.48 

Deciduous broadleaf forest 26170 0.80 169259 5.14 40521 1.17 

Evergreen needleleaf forest –154486 –3.30 31235 0.69 341050 7.49 

Deciduous needleleaf forest –12874 –0.27 –378194 –7.91 –1172782 –26.62 

Mixed forest –149843 –9.50 –163772 –11.48 12452 0.99 

Shrub land –129160 –3.03 –157440 –3.81 154697 3.89 

Grasslands 11185 0.13 194795 2.22 358567 4.00 

Wetlands 66268 7.31 –117341 –12.06 –219277 –25.62 

Croplands 261486 2.14 157651 1.26 156596 1.24 

Water bodies 35456 4.11 104257 11.61 188675 18.83 

Snow and Ice –29969 –7.20 –76188 –19.72 –82941 –26.73 

Built-up land 4643 2.09 4432 1.95 1688 0.73 

Barren or sparsely vegetated land –17095 –0.18 78931 0.81 78087 0.80 
 

4  Conclusions and discussion 

4.1  Conclusions 

The simulated results of land cover under the three scenarios RCP26, RCP45 and RCP85 
indicate that deciduous needleleaf forest, mixed forest, shrub land, wetlands and snow and 
ice would generally decrease in Eurasia during 2010–2100. Snow and ice would have the 
fastest decreasing rate that would decrease by 36.44% on average. Shrub land would have 
the slowest decreasing rate that would decrease by 5.19% on average. Water bodies would 
have the fastest increasing rate that would increase by 26.94% on average. Barren or 
sparsely vegetated land would have the slowest increasing rate that would increase by 0.70%. 
Further more, the simulation results show that there would generally appear a similar change 
pattern of land cover driven by different levels of climate change scenarios in Eurasia. Land 
cover under the RCP85 scenario would generally have the fastest change rate, especially that 
the reducing trend of snow and ice would be much faster than that of scenarios of RC26 and 
RC45. There would have the lowest change rate of land cover in the scenario RCP26. The 
simulated results can approve proofs that climate change would directly impact on land 
cover change in Eurasia. For instance, the RCP85 is a highly energy-intensive scenario as a 
result of high population growth, a lower rate of technology development and non-climate 
policy, which represent a high scenario in climate change. Under the RC85 scenario, the 
temperature and precipitation would have the faster increase rate than other two scenarios of 
RCP26 and RCP45, so that there would have the largest change rate of land cover simulated 
by using the climatic data of the scenario RCP85. With the rapid increase of temperature and 
precipitation, the snow and ice would have a fast melting trend, the grasslands would also 
show an increasing trend, and the succession would occur between different forest types. 
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4.2  Discussion 

HLZ model can simulate long-term biome types, so SMLCS can also be used to simulate 
land cover types at long-term scale (Fan et al., 2013, 2015). In this paper, the aim of im-
proved SMLCS is that can be used to simulate land cover change from the perspective of 
climate change because there is not enough socioeconomic data and human activities data in 
Eurasia. However, with the advance of the Belt and Road initiative, we believe that lots of 
socioeconomic data and human activities data would can be collected from more data 
sources, so in our future work, more parameter data will be considered into the next im-
proved SMLCS which would include the agricultural pattern, population density, road con-
struction, and government policy, etc. That is to say, we will focus on analyzing and dis-
cussing what is the coupling effect of climate change and human activities on land cover 
change, and then further improve the SMLCS.  

Moreover, with the driving force and influence of climate change and human activities, 
the spatiotemporal distribution pattern of land cover in Eurasia has obviously changed since 
the beginning of the 21st century. How to understand and explain the land cover change is 
an important issue in the implementation of the Belt and Road Initiative. The current simu-
lation results can reflect the land cover change scenarios driven by climate change, and can 
also provide the land cover data for the study of hydrological cycle, soil erosion and bio-
logical diversity in the context of climate change in Eurasia. We believed that further simu-
lated results by operating the future improved SMLCS combined with human activities and 
policy factors will approve the more important data for supporting a series of major projects 
about the Belt and Road Initiative. 
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