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Abstract
In this paper, four optical filter topologies based on metal–insulator–metal waveguides are
proposed and the designed structures are investigated numerically using finite-difference time-
domain method. Triangular-shaped adjunctions have been added to the filter structures to
improve their transmission spectrum. These improved structures consist of air as the insulator
and silver as the metal. The relative permittivity of metal has been described via the Drude,
Drude–Lorentz, and Palik models. The first filter’s transmission spectrum shows an acceptable
transmittance. In the second optimized filter, the transmission spectrum has been improved. The
transmittance spectrum can be tuned through adjusting the edge of the triangle in these four
optimized filters. As a result, the bandwidths of resonance spectra can be adjusted. The theory of
such tapered structures will be investigated by the tapered transmission line and will be solved
with the transfer matrix method. This method shows a better performance and higher
transmission efficiency in comparison with the basic structures. On the other hand, the final filter
has been chosen as the best one because of its hexagonal resonator. The main reason for having a
better result is due to a longer interaction length in comparison with the circular resonator. This
in turn creates much better energy coupling and results in higher transmission.

Keywords: plasmonics, surface plasmon polariton (SPP), optical filter, metal–insulator–metal
(MIM) waveguide, Drude model

(Some figures may appear in colour only in the online journal)

1. Introduction

Plasmons are charge oscillations in the interface of metals and
dielectrics. They were discussed firstly in the visible region of
the spectrum of electromagnetic fields. Thereafter, they were
studied in other parts of the spectrum such as infrared (IR) and
terahertz bands. When the plasmons accumulate around
metallic nanoparticles, the local field increases and also, they
have the ability to propagate along the metal-dielectric
boundary. This is known as surface plasmon polariton (SPP).
The characteristics of surface plasmons has led to the formation
of the Plasmonics. Among the first studies in this topic we may

point to light propagations through the subwavelength aperture
reported in 1988 [1], thereafter the topic grew rapidly.

SPPs have the most interesting applications in integrated
optical circuits and devices [2, 3], such as subwavelength
waveguides [4, 5], switches [6–9], sensors [10–13], biosensors
[14], graphene plasmonic meta-surfaces [15], U-shaped wave-
guides [16], waveguide couplers [17–19], metal-dielectric-metal
waveguides [20–23], plasmonic metal–insulator-semiconductor
waveguides [24], metal–insulator-semiconductor-metal wave-
guides [25] detectors [26, 27], plasmonic amplifiers [28, 29],
signal amplifiers [30], solar cells [31], resonators [32–34] and
demultiplexers [35–37].
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Two types of filters are discussed by researchers: band
pass filters BPF and band stop filters. BPFs are usually rea-
lized using a cavity which is coupled to two waveguides.
When the resonance frequency of the cavity matches the
frequency of the guiding mode, the mode can propagate
through the filter, otherwise light cannot pass through the
filter. The study on plasmonic filters has been expanded in
recent years [38–41]. One of the benefits of plasmonic devi-
ces is requiring less area than similar photonic crystal devices
[42–56]. It is necessary to use finite-difference-time-domain
(FDTD) method, in order to investigate plasmonic filters.

We can design single mode [57] or multi-mode filters
[58] using plasmonic structures. In this paper, four dual-mode
filters with different resonator shapes (circle, square, rhom-
bus, and hexagon) have been presented. In order to improve
the filter’s performance, two triangular-shaped adjunctions
have been added to the input and output waveguides. As will
be seen, each of proposed structures has a better transmission
than the previous structures. That means a higher peak of
transmittance is obtained. By changing the parameters of the
structures in these filters, different resonant wavelengths can
be obtained. Our new designs demonstrate the better fre-
quency response while having smaller dimensions. The pro-
posed structures have been simulated by using FDTD method.

2. Basic filter topologies

In this section, we first concentrate on a simple narrow band
pass filter in which there is a metal–insulator–metal (MIM)
waveguide consisting of a nanodisk resonator in the middle of
the structure. The characteristics of the filter can be tuned by
changing the dimensions. The wavelengths of the resonant
modes are calculated by resonant theory and verified by FDTD
method [59]. The structure will be theoretically investigated in

sections 3 and 4. The result of FDTD exactly matches with the
theory results. The structure of initial plasmonic band pass filter
is shown in figure 1(a). It consists of two slits (two semi-
infinite waveguides at the right and left) and a nanodisk reso-
nator as a cavity between them. We have also introduced other
filters with different resonator shapes such as figures 1(b)–(d).

The cavity and slits are set as air with relative permit-
tivity of (e = 1d ), the radius of circular nanodisk is
r=200 nm, the width of waveguide is w=50 nm, the
coupling distance between cavity and waveguides is
d=20 nm. The three other filters (figures 1(b)–(d)) have the
same characteristics with the first filter in figure 1(a). The only
difference between them is the radius or diagonal of these
resonators. In these four structures, the area of resonators is
approximately equal to each other. These structures are sup-
posed to be uniform along z direction (z-axis), so we can
simplify them into 2D-FDTD that means =¶

¶
0

z
[60, 61].

Figure 2 shows the Lorentzian transmission spectrum of
these filters. There are two assumptions in these filters: these
structures can be designed by considering the same area of
resonators or the same distance between the waveguides. In
the primary design of filters, the radius of circle, the diagonal
of square, the radius of rhombus, and the radius of hexagon
have been set to 200 nm, 255 nm, 200 nm, and 230 nm,
respectively which the vertical edges of hexagon and square
have been placed in the same coordinate of two vertices in
rhombus as their transmittance spectra have been exhibited in
figure 2. The first and second modes of the filter 1 are at the
wavelengths of 806 and 518 nm, filter 2 is at the wavelength
of 865 nm, filter 3 and filter 4 are at the wavelength of 713
and 555 nm, and 844 and 550 nm, respectively.

Optimized geometry of the structures in figure 1 have been
proposed as called secondary design and the results have been
shown in figure 3. In the secondary design, the vertical edge of
square or hexagon in the filter 2 or filter 3 is in such a way that

(a) (b)

(c) (d)

Figure 1. Schematic diagram of plasmonic BPF: (a) with a circular resonator (filter 1), (b) with a square-shaped resonator (filter 2), (c) with a
resonator in a form of rhombus (filter 3), (d) with a hexagonal resonator (filter 4).
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its distance from the waveguides is equal to the separation in
the first simple filter. In the same way, the hexagonal resonator
in the fourth filter also has the same radius of the circle in the
first resonator. The frequency responses have been presented in
figure 3. Each of these four filters have two modes (mode 1 and
mode 2). The first and second modes of the filter 1, 2, 3, and 4
are at the wavelengths of 857 and 541 nm, 999 and 496 nm,
759 and 586 nm, and 885 and 572 nm, respectively.

3. Modeling of the filtering structures

There are several models that describe the optical response of
silver in the structures of figure 1. The models can be
expressed as follows:

3.1. Drude model

The permittivity of silver is approximated via a Drude model
as below [62]:

e w e
w

w gw
= -

+
¥

i
, 1

p
2

2
( ) ( )

where e¥ is the dielectric constant at the infinite frequency
and can be assumed as (e =¥ 3.7) in the Drude model, wp is
the plasma frequency (w = 9.1p eV), γ is the electron col-
lision frequency (γ=0.081 eV), and ω is the angular fre-
quency of incident light.

3.2. Drude–Lorentz model

In this section, the transmission of this waveguide can be
determined by a seven-pole Drude–Lorentz model which is
accurate in the wavelength range from 200 to 2000 nm [63]
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where w = 2002.6p THz is the plasma frequency of silver and
g = 11.61 THz is a damping constant. Table 1 summarizes
the other parameters.

3.3. Palik model

The last model is named the Palik model which specifies the
permittivity of silver in a wider range of wavelength.

Figure 2. Transmission spectrum of the structures of figure 1 with the primary design which is comprised of two resonance mode using the
Drude model: (a) resonator of filter 1 with the radius of r=200 nm- peak transmission (0.67, 0.81), (b) resonator of filter 2 with the diagonal
of D=510 nm or x-coordinate of vertical edge in 180 nm peak transmission (0.17), (c) resonator of filter 3 with the radius of r=200 nm-
peak (0.52, 0.56), (d) resonator of filter 4 with the radius of r=230 nm or x-coordinate of vertical edge in 200 nm- peak (0.61, 0.68).
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4. Theoretical investigation

This section consists of a study on the main theory in basic
filter topologies and a discussion of theory about the tapered
shaped structures.

4.1. Main discussion on the theory

Firstly, the circular resonator has been investigated. The
nanocavity resonance condition for disk-shaped resonator can
be given through the bellow equations which include the
incident, scattered and transmitted fields by use of subscripts

i, s, and t, respectively [64]

+ =a K J K r a K H K r a K J K r , 3n
i

d n d n
s

d n d n
t

m n m
1( ) ( ) ( ) ( )( )

h h

h

¢ + ¢

= ¢
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K a J K r , 4
d d n

i
n d d d n
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n d

d m n
t

n m

1( ) ( )
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( )

where e=K Km m
1
2( ) and e=K Kd d

1
2( ) are the wave vectors

in metal and dielectric, K is the wave vector, em and ed denote
the relative permittivity of metal and dielectric respectively,
and r is the radius of nanocavity. Jn and ¢Jn are the first kind
Bessel function and its derivation and the index of n repre-
sents the order of this function. Hn

1( ) and ¢Hn
1( ) are the first

kind Hankel functions with the order n and its derivation. a ,n
i

a ,n
s and an

t show the amplitudes of the incident, scattered and
transmitted field, respectively. The resonance condition can
be obtained by applying the boundary conditions for magnetic
and electric fields and by solving the equations (3) and (4) as
shown below:
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=
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Figure 3. Transmission spectrum of the structures of figure 1 which is comprised of two resonance mode of the maximum possible
transmission in the structure in terms of dimension (secondary design): (a) resonator of filter 1 with the radius of r=210 nm- peak (0.85,
0.897), (b) resonator of filter 2 with the diagonal of D=594 nm or x-coordinate of vertical edge in 210 nm- peak (0.73, 0.53), (c) resonator
of filter 3 with the radius of r=210 nm- peak (0.78, 0.80), (d) resonator of filter 4 with the radius of r=240 nm or x-coordinate of vertical
edge in 210 nm- peak (0.77, 0.83).

Table 1. Parameters of Drude–Lorentz model for silver.

n w THzn ( ) g THzn ( ) fn

1 197.3 939.62 7.9247
2 1083.5 109.29 0.5013
3 1979.1 15.71 0.0133
4 4392.5 221.49 0.8266
5 9812.1 584.91 1.1133
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The transmission of this type of filter (T) can be descri-
bed by the coupled-mode theory [65–68]. The radius and the
refractive index can specify the resonant wavelength.

Assuming δ to be the normalized frequency w, which is
defined by d = w w

w
- ,0

0
whereas ω represents the frequency of

the incident light, and w0 presents the resonant frequency. The
transfer function (t) at the transmitted port of the filter can be
determined according to the following equation:

d
=

+ +
t

j2
, 6

Q

Q Q

1

1 1
w

i w

( )

where = w tQi 2
i0 and = w tQw 2

w0 are quality factors of cavity
which are related to intrinsic loss and waveguide coupling
loss.

t
1

i
stands for the decay rate of the electromagnetic filed

due to internal loss in the nanodisk resonator and
tw

1 is the

decay rate of power escape through the waveguides. As a
result, the transmission spectrum around the resonant modes
shows Lorentzian profiles. The transmission can be calculated
as:
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4.2. Theoretical investigation of tapered transmission
line (TTL)

A main MIM filter structure has been investigated which
includes a cavity connected to two waveguides by transmis-
sion line model [8]. The structure will be modeled with
transmission line (TL) as shown in figure 4. The two wave-
guides at left and right side of the MIM structure have
been assumed to be identical in length and width
( = =l l w wand 21 2 1 ). The width and length of the cavity are
l wand ,c c respectively. The characteristic impedance of Zi

( =i 1, 2) has been considered as a model of waveguides in
TL in order to achieve transmission function by employing
transfer matrix. The transfer matrix will be obtained from the
corresponding scattering matrix which has a relation between
input and output ports. Thus, the transfer matrix will be

defined as:
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The elements of the scattering matrix will also be as:
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and the scattering matrix of a direct junc-

tion and a straight waveguide of length L are can be specified
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respectively. The relationship between input and output vol-
tages with the subscripts (1) and (2) is expressed by:
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Finally, the transfer function of the equivalent TL model
can be attained as:

=T T l T T l T T l , 12c1 1 jun1 2 jun2 1 1( ) ( ) ( ) ( )
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The theory can be extended to more cascaded junctions

and transmission can be calculated as =
+

+T .V

V

2
2

1

The theory of TTL can be discussed in the structures with
variation of characteristic impedance from Z1 to Z2 [69, 70].
The schematic view of a TTL has been demonstrated in
figure 5. The impedance Z(z) is a function of z and has a step
change of zd :

G = b-

z

Z

Z
zd

1

2
e

d

d
ln d . 14z2i
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⎝⎜
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⎠⎟

Figure 4. (a) Schematic view of MIM junction, (b) equivalent transmission line model.
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Each reflection coefficient in the small section of length
zd will be achieved as a function of frequency, so the total
reflection coefficient will be attained by summing up the
partial reflections Gd over the length L. Each partial section
has its own suitable phase shift that the phase changes con-
tinuously during the length. The total reflection coefficient
can be defined as follows where qm represents the total phase
shift:

ò q
qG =

q
q- Z

Z
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2
e
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ln d . 15
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2i
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m
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The d ln Z
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( ) is considered as a triangular function, so we

can derive the following equations:
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A higher transmission and a wider bandwidth will be
obtained with TTL. To achieve higher bandwidth, a multi-
section transformer is required therefore the impedance var-
iation of TL will lead to having TTL transformer. By chan-
ging the geometry of the structure, the impedance transit will
be attained. The results of higher transmission will be shown
in section 5.

5. The proposed structures and their better results

In this section, four optimized optical band pass filters have
been proposed. Each of these filters have two propagating
SPP modes which have higher transmission peaks corresp-
onding to the resonance wavelength. To achieve a multiband
filter with better transmission, two triangular-shaped adjunc-
tions are added to both waveguides at the left and right as was
conceptually investigated in section 4. The schematic of the
proposed structures is shown in figure 6. When the optical
waves propagate through the waveguide structure, some fre-
quencies of light are permitted to transmit and incident light

can pass through the structure. Furthermore, certain fre-
quencies are prohibited from propagating for which the
transmission is zero in the spectrum. As seen in section 1, the
filters different topologies have been investigated. In this
section, the configurations of filters are investigated with tri-
angular-shaped adjunctions in order to have optimized optical
filters. They are shown in figures 6(a)–(d).

Figures 6(a)–(d) shows four proposed filters. These
configurations are used to increase the maximum transmission
peaks of the transmittance spectrums. The increment of
transmission will be obtained not only by the design of the
shape of resonator cavity such as circle, square, rhombus, or
hexagon, but by using the two triangular-shaped adjunctions
and adjusting the edges of the two triangles in the right and
left waveguides. The transmission spectrums of these struc-
tures have been calculated and the results have been presented
for circular, square and hexagonal resonators with the trian-
gular-shaped adjunctions in figures 7(a)–(d) and 8(a)–(d). The
transmission spectrums have been shown in figures 7(a) and
8(a) for the primary and secondary design of the structure,
respectively. It can be seen that transmission at the wave-
length of mode 2 has a higher peak than the other mode. It is
because the decay rate of the field induced by internal loss is
larger in mode 2. The filter based on a hexagonal optical
resonator has the highest transmission peak. Focusing on the
secondary design with better frequency response, the reso-
nance modes of the circular resonator are at the wavelengths
of 515 nm and 808 nm and the maximum transmissions of
these two modes are 90% and 89% respectively which are
higher than the similar filter without triangular-shaped junc-
tions. The resonance modes of quadratic resonator are at the
wavelength of 482 nm and 999 nm and the maximum trans-
missions of these two modes are 67% and 83% and the
maximum transmissions of filter 7 are 79% and 78%,
respectively. And for the hexagonal resonator, the resonance
modes are at the wavelength of 568 nm and 885 nm and the
maximum transmissions of these two modes are 86% and
85% respectively. As a result, by focusing among the polygon
shapes, the hexagonal resonator with triangular-shaped
adjunctions in the waveguides has the higher peak transmis-
sion in both of the resonance modes. Figures 8(a)–(d) has
been presented for the secondary design of structures.

For each topology, the magnitude of Hz∣ ∣ has been
depicted at the resonance wavelengths (λ1 and λ2) in figure 9.
The ‘a’ and ‘b’ parts correspond to the respective resonance
modes. The ‘c’ parts correspond to non-resonance wave-
lengths. As can be seen in the field profile, these two modes
can be transmitted to the output in the filter. But the trans-
mission is prohibited at the non-resonance wavelengths like
650 (nm) (see figure 9(c)).

Figure 9 exhibits the field distribution of Hz∣ ∣ correspond
to the second and first resonances in figure 6. As observed in
figure 8(d), the resonance which occurs at the longer wave-
length of 885 nm has the lower peak of transmission than the
first one. Referring to figure 7, the wavelength of the second
mode has more power density than the other one which can be
coupled into the middle resonator by more power [71]. The
none-resonance wavelength has been chosen at 700 (nm). For

Figure 5. Schematic view of equivalent tapered transmission
line (TTL).
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Figure 6. Schematic diagram of the proposed filters with triangular-shaped adjunctions in the: (a) first proposed filter with circular resonator
(filter 5), (b) second proposed filter with quadratic resonator (filter 6), (c) Third proposed filter with a resonator in a form of rhombus (filter 7),
(d) Fourth proposed filter with hexagonal resonator (filter 8).

Figure 7. Transmission spectrum of the structures of figure 6 with the primary design of structures mentioned in section 1 with the resonator
of: (a) filter 5 with the radius of r=200 nm- peak transmission (0.76, 0.83), (b) filter 6 with the diagonal of D=510 nm or x-coordinate of
vertical edge in 180 nm- peak transmission (0.17), (c) filter 7 with the radius of r=200 nm- peak (0.56, 0.55), (d) filter 8 with the radius of
r=230 nm or x-coordinate of vertical edge in 200 nm- peak (0.77, 0.74).
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this case, the light is prohibited to transmit through the
structure.

6. Parametric study on proposed filters

6.1. Effects of the size of resonators

Figure 10 shows the influence of different parameters on the
resonance wavelengths and response of these proposed filters.
The transmission peaks in the spectrum will be increased by
increasing the radius of the resonator in the first filter as seen
in figures 10(a) and (b). It is obvious that, the wavelength of
the mentioned filter would be gradually increased. The other
benefit of this filter is the increment of response by adding the
triangular-shaped adjunctions as shown in figure 6(b). In the
second optimized filter (filter 6), the transmission peaks will
be increased by changing the diagonal of the square or
rhombus as shown in figures 10(c)–(f). In this way the
resonance mode can be certainly tuned by changing the size
of the structures, especially with the parameters of resonator
and adjunctions in waveguides. Another proposed filter has a
hexagonal resonator as seen in figure 6(d). The response of
the filter has been investigated in figures 10(g) and (h).

As observed, the transmission peak will be increased by
increasing the value of radius in hexagon. So, the resonance
wavelength of these proposed filters can be tuned by changing
the structural parameters.

It can be seen that two resonance peaks also appear in the
spectra of each proposed filters. As can be observed, the
resonance wavelengths λ1 and λ2 can be controlled by
adjusting the size parameters of the structures. Comparing the
geometries of circular and hexagonal resonators, the shape of
hexagon has better result than the other one. The resonance
wavelength of the second mode of the filters (or hexagonal
resonator) is longer than that of the other polygon-shaped
resonator of the same dimensions.

6.2. Variation of the size of triangular-shaped adjunctions in
waveguides

Another way of controlling the transmission peak or resonant
wavelengths is the variation of the length of the triangle
which is used in waveguides. Meanwhile, changing the length
of the triangle may not cause a shift in resonance wavelength
but leads to change the peaks of transmission. The parameters
of proposed structure listed in table 2 and the transmission
spectrum for different values of ‘x’ and ‘y’ is presented in

Figure 8. Transmission spectrum of the structures of figure 6 with the secondary design of structures mentioned in section 1 with the
resonator of: (a) filter 5 with the radius of r=210 nm- peak transmission (0.89, 0.9), (b) filter 6 with the diagonal of D=594 nm or x-
coordinate of vertical edge in 210 nm- peak transmission (0.83, 0.67), (c) filter 7 with the radius of r=210 nm- peak (0.79, 0.78), (d) filter 8
with the radius of r=240 nm or x-coordinate of vertical edge in 210 nm- peak(0.85, 0.86).
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figure 10. ‘x’ and ‘y’ are the edges of the triangle that are
assumed to be equal to each other in the proposed structure.
The transmission peak will be increased by changing the
triangle’s edges and the resonance mode can be tuned.

Figure 11 illustrates the transmittance spectra for the
proposed structure, i.e. circular resonator, with different
values of ‘x’ using the FDTD method. The results obtained by
consuming the same length of triangle (x=y). As can be
seen clearly, the values of ‘x’ and ‘y’ have been changed
simultaneously and the transmission peak gradually increases
by changing the triangle’s edges. The goal of this paper is to
have a higher peak of transmission. Therefore, the resonance
mode can be tuned. The parameter ‘x’ has been set 45 nm.

6.3. Fabrication tolerances

Such proposed designs are subject to a variety of geometric
tolerances. In practice, different structural parameters can be
deviated from the desirable values. In this study, the structure
has been considered fabrication tolerances of the maximum
10% to their optimum values. The effects of deviations of
the coupling distance between cavity and waveguide (d), the
width of waveguide (w), the edges of the triangle (Edge), and
the radius of resonator (r) have been investigated as illustrated
in figure 12. As clearly seen in figure 12, deviation of the
radius results in changes of transmission peaks and resonant
wavelengths. Thus, precise fabrication is required related to

the resonator. Furthermore, deviation of other parameters has
no remarkable effect on transmission of the filter.

7. Results and comparisons

Finally, we have made a comparison between previous similar
filters with our new designs. These new structures have bene-
ficial characteristics such as tunable resonant wavelengths with
sharp transmission peaks as presented in table 3. These pro-
posed structures act as plasmonic band pass filters. The different
parameters of the proposed filters and previous works with
other topologies such as the number of modes (M), resonance
wavelength (l) and its maximum transmittance (Tmax), and
quality-factor (Q-factor) have been reported in table 3. The
quality factor is another parameter which is important in the
filters. It can be estimated from the below equation:

l
l

=
D

Q , 190 ( )

where l0 and lD are the peak wavelength and the bandwidth
of the transmission spectrum, respectively. It is better to have a
narrower spectral bandwidth or higher quality factor. Changing
the geometry of the structure induces a higher peak transmission
but broader bandwidth (smaller quality factor). Therefore, there
is a tradeoff between the quality factor and the peak in
transmission. In this paper, by changing the edges in the tri-
angle, the quality factor has not been reduced significantly, but

Figure 9. Field distribution of Hz∣ ∣ for filters with triangular-shaped adjunctions mentioned proposed in figure 6 at the resonance (a), (b) and
non-resonance (c) wavelengths of: (1) circular resonator for; (a) λ2=515 nm, (b) λ1=808 nm, (c) λ=650 nm. (2) Square-shaped
resonator for; (a) λ2=482 nm, (b) λ1=999 nm, (c) λ=700 nm. (3) Rhombus-shaped resonator for; (a) λ2=582 nm, (b) λ1=789 nm,
(c) λ=650 nm. (4) Hexagonal resonator for; (a) λ2=568 nm, (b) λ1=885 nm, (c) λ=700 nm.
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the better peak transmission is important in such filters,
so that the reduction of the quality factor is ignorable. In
comparison to the responses, the optimized filters with trian-
gular-shaped adjunctions have higher transmission peaks than
the same filters without triangular waveguides. Finally, the

Figure 10. Comparison of transmission of these four proposed filters with or without triangular-shaped adjunctions by applying different parameters
in them with: 1-circular resonator (a) without triangular-shaped adjunctions, (b) with triangular-shaped adjunctions; 2-quadratic resonator (c) without
triangular-shaped adjunctions, (d) with triangular-shaped adjunctions; 3-rhombus-shaped resonator (e) without triangular-shaped adjunctions, (f) with
triangular-shaped adjunctions; 4-hexagonal resonator (e) without triangular-shaped adjunctions, (f) with triangular-shaped adjunctions.

Table 2. Parameters of the first proposed filter with triangular-shaped
adjunction.

r nm( ) d nm( ) w nm( ) x nm( ) y nm( )

200 20 50 30–75 30–75
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study on our new design focuses on peak transmission and two-
mode structures. The transmittance in our new proposed filters
can be up to 80%.

8. Conclusion

In summary, four improved band pass filters have been
designed in this paper. The triangular-shaped-adjunctions in
the proposed structures cause the increment of transmission.

By varying the edges of triangle, the transmission will be
increased. Each of these multi-mode filters have two modes
with resonance wavelengths. The main goal is to obtain
higher transmission so that the light will be passed through
the waveguide. The shape of resonators and size of triangular-
shaped adjunctions in waveguides play an important role in
filters. The structures have been simulated using FDTD
method. The optical plasmonic tunable band pass filter pro-
posed here can be used in integrated circuits because of their
small occupied area.

Figure 11. Transmission spectrum for different values of the triangle’s edges (‘x’ and ‘y’).

Figure 12. Deviation of different parameters on fabrication tolerances such as; (a) distance (b) width (c) edge (d) radius of the resonator.
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