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Abstract

This study investigates the (3+1)-dimensional soliton equation via the Hirota bilinear approach
and symbolic computations. We successfully construct some new lump, lump-kink, breather
wave, lump periodic, and some other new interaction solutions. All the reported solutions are
verified by inserting them into the original equation with the help of the Wolfram Mathematica
package. The solution’s visual characteristics are graphically represented in order to shed more

light on the results obtained. The findings obtained are useful in understanding the basic
nonlinear fluid dynamic scenarios as well as the dynamics of computational physics and
engineering sciences in the related nonlinear higher dimensional wave fields.
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1. Introduction

The lump soliton solutions have been commonly used in many
natural sciences such as chemistry, biology, etc. In particular, in
almost all branches of physics, engineering such as fluid
dynamics, plasma physics, optics, etc [1-3] the lump soliton
solutions play an important role. While some researchers used
numerical simulation or analytical methods to investigate the
performance of such structures, further study of the theoretical
analysis of such systems is required [4—6]. Rogue waves (RW)
are expansive and instinctive ocean waves that have drawn
growing focus on both theoretical and experimental observa-
tions [7]. The RW for nonlinear Schrodinger equation in its
simplest form has been proposed in [8]. It can be seen that there
are huge wave phenomena in different fields such as plasmas,
nonlinear optics, Bose-Finstein condensates, biophysics and
even finance. [9-11]. In terms of a new combination of variable
functions using the Hirota bilinear model, some researchers are
working out some new solutions from the lump solution family
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and some groups of interaction solutions. We are reviewing
some literature on the phenomena of lump solutions and their
interaction. To this aim, there have been series of presentation
of lump solutions from different perspectives, for instant,
Zakharov [12], pump wave solution [13], lump solution through
Hirota bilinear method [3, 14-16]. Through important proper-
ties of lump solutions it can be understood that amplitudes,
shapes, speeds of solitons will be preserved after collision with
another soliton and this is the elastic property of collision.
Moreover, interaction between rouge wave and kink solitary
wave solution have been established in [17]. Several other types
of solution can also be found in [18-22].

In this study, we utilise the Hirota bilinear approach to
construct some novel lump-type and interaction solutions for
the (3+1)-dimensional soliton equation [18] given by

3 = X F X — 2XX)y + 20007 = 0. (1)
The (3+1)-dimensional integrable equation (1) was first
introduced in [23] in the study of the algebraic-geometrical
solutions. The physical behaviour of the obtained solutions
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(b)
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Figure 1. The 3D profiles of (a) imaginary part of equation (11) at ¢ = 2.95, z =t = —10 (b) real part of equation (11) at
o= —0095, z =1t = —10 (c) imaginary part of equation (14) at 0 = —2.45, z = t = 0.1 (d) real part of equation (14)

ato=—10,z=0.1,1r= -5.2.

(a)

Figure 2. The 3D and density profiles of the real part of equation (24) (a), (b) atc = —4.88,z=t=0(c),(d)atc = 8.04,z = —10,r = 1.

(b)

are also depicted in figures 1-5 in order to shed more light on
the presented solutions.

2. Lump and its interaction solutions

In part, we present the new lump and its interaction solutions to

the (3+1)-dimensional soliton equation given in equation (1).
We first transform equation (1) into its bilinear form.
Set

X = O @)
Substituting equation (2) into (1), yields
2041 + Opry — 40O — 305
— 20,0,y — 20,0, = 0. 3)
Setting
Ox, y, z, 1) = O(5),

reduces equation (4) to the following (2+1)-dimensional
soliton equation:

20‘@5@ + 0‘@&5& - 40‘@%5 - 3@5& - 40’(“)5@5& =0. (5)

§=x+ oy, “

Consider the Cole—Hopf transformation

R0nf &z

O, z, 1) = o

(6)

(c)

(d)

Substituting equation (6) into (5), gives the following bilinear
form:

3afg — 20f; fi +fQafy — )
+ /; Bf, — 40fie) + fficee = 0. @)

2.1. Lump solution

In this section, we report the lump solutions to equation (1).
Consider the positive quadratic solutions to the bilinear
equation (7)

g =01+ bz + b3t + by, h=bs{+ bez
+ byt + b, f=g* + h* + b. )

Substituting equation (8) into (7) gives a polynomial in
powers of &, z and r. Collecting the coefficients of the same
power, and equating each summation to zero, produces an
algebraic system of equations. We solve the system of
equations to obtained the values of the parameters involved.
Substituting the values of the parameters into equation (6) and
then into equation (2), gives the following lump solutions to
equation (1):
Case-1: When

2b30” b6 _ 2b70"

by = —ibs, by, = 3 3
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Figure 3. The 3D and density profiles of the (a), (b) real part of equation (31) at 0 = 1.82, z = 0.15, t = 1 (¢), (d) imaginary part of
equation (31) atc = =2,z = —10, r = 2.52.

(a) (b) ()

Figure 4. The (a) 3D and (b) density profiles of real part of equation (35) at ¢ = 0.65, z = 0.4, t = 1.25 (¢) 3D and (d) density profiles of
imaginary part of equation (35) at 0 = 0.5, z = 0.3, t = 0.5.

we have where
. 1 = 2bs(byt + bs(x + o) + 3byoz + by),
. 2
f = (_1b5§ + b3t + §b3UZ + b4) ©y) = (b7t + b5(x + oy) + %b70’Z + bg)2 + bo.
) ) Case-2: When
+|b +bt+—baz+b)+b, 9 (o —
( s&+ by 37 8 ? ©) bs = —ib,, bg = —iby, by = 1(173‘7—3172), bo = 0,
ag
2 . . 2
3(2b5(b5§ + byt + 2byoz + bs) — 2ibs(—ibsé + byt + 2bsoz + b4))
0, 2,1 = — (10)
(=ibs€ + bst + 2bsoz + by )? + (bsE + bat + 2b70z + bg)? + bo
we have
X, y, 2, 1)
2 _ 2
3(g01 — 2ibs(bst — ibs(x + ay) + 2bsoz + b4)) F(& 2 1) = (Bi€ + bat + baz + by)
= 7> +(—ibf+it(b30_3b2) _ibz+b)2
(<P2 + (st — ibs(x + oy) + 2bsoz + b4)2) (11) : o e ’(12)
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3(2b1(b1§ + bat + bz + by) — 2iby(—iby& + MBI iy 4 bg))

Oz == it(bso — 3b2) 2
(bi€ + bat + byz + by)* + (—ib1§ + M=) ipz 4 bg)
3t(bsbgo — b
X(X, y, 2, t) where ©s = b5€ _ t(bs ;a 6)

 3Q2bi(bst + bi(x + 0y) + baz + bs) — 3)?
(b3t + bi(x + 0y) + byz + by)? + @,)?

. (14)

where ;= 2b](—w + bi(x + oy) + baz + ibg),

(it(bw —3b,
o

2
o, = D= ibi(x + oY) — ibaz + by) .

2.2. Lump-kink solutions

In this section, we reveal the Iump-kink solution to
equation (1).

Consider the exponential test function as a solution to the
bilinear equation (7)

f& z, 1) = (b1€ + b3z + bat + by)?

+ (bs& + bgz + byt + bg)?

+ ebg§+b|02+b|1t+b12 + aps. (15)

Substituting equation (15) into (7), gives a polynomial in the

powers of &, z, ¢ and an exponential function. Collecting the

coefficients of the same power, and equating each summa-

tions to zero, yields an algebraic system of equations. We

solve the system of equations to obtained the values of the

parameters involved. Substituting the values of the parameters

into equation (6) and then into equation (2), yields the fol-
lowing lump-kink solution to equation (1):
Case-1: When

: 2

by = —ibs, by = —ibg, b3 = M’

20
3(bsbdo — be)

b:
! 20

bg = iby,

bio = g(b(} + 2by1)0, we have

f(& z 1) = eboftburt (b +2binoztb 4 p oo 1 (pg + @2,

(16)
O, z, 1)
3(bgeb95+b11t+%(b93+21711)02+b12 + 2b54p5 - 2ib5§06)
=— ebol+but+ (b5 +2b1)oztbry bis + 802 n <,02 , )

X, ¥, 2, 1)
S(bge(bl1f+b9(x+®’)+%(b3+2b11)Uz+b|2) + 2bsp, — 2ibspg)?

N (e(bl1T+b9(X+Uy)+%(b§+2b1I)UZ+17|2) + b3+ 903 + @5)2

3b926(b‘ 1t+b9(x+0y)+%(b3+2b1 1)Uz+b12)

e(bri+bo(+0y)+ L3 +2b1) or+bia) +bia+ i}

(18)

, 13)

+ bez + by, g = —ibs& +

_ 3t(bsbgo — be)
20

3it (bsbg o — bs)
20

bGZ + b4is Pg =
Case-2: When

— bezi + by, o7 = + bs(x + oy) +

3it(bsbd o — bg) . .
% — bs(x + oy)i — bgiz + by.

by = %(—2)1;;70, by = —ib7, bs = iby,

. 2b70’

b
773

. 1
, bg =1iby, bjp = 5(1793 + 2bi)o,

we have

f(&z 1) = ebob+bunt+5(bg+2bi)ozt+br by + @3 + ‘pfo’

(19)
O z, 1)
3(b9eb95+b11f+%(b93+2b11)UZ+b12 + 2b1509 + Zibl(plo)
- ebob+biit+§(bs+2b1)oztbi + b3 + Sﬁg + 90120 ’ 20)

X(—x7 y’ Zs t)
3(;,96(1711r+bo<x+ay>+§<b3+2bl1)az+blz) + 2bipy; + 2ibip,)?

= (e(Prit+boleton+5 (B3 +2biozbi) 4 p o o 02+ ©)?

3b92€(b1lz+h9(x+0y)+%(bg3+2b|l)rrz+h12)

e(bl1f+b9(x+l7.\’)+%(b3+2b11)UZ+blz)+bl3+99121+99122 '

2D

where @y = by& — ibst — %ibwjz + by, 0y = ib1E + byt +
2b0z7 + ibs, @y = —ibst + bi(x + 0y) — 2ibyoz + by @y =
bat + ibi(x + 0y) + b0z + ibs.

Case-3: When
by = §<3b1b92 + 2b3), by = ibs, bs = —iby,

b = —%i(3b1b§ + 2b3)o, by = —ibs,

3
by = W, we have
f&z 0
1(3b|0—bgv) )
bo&+ 107 4 bzt
— ( 9 20 1021012 + b13 + §0123 + @%4, (22)
O z, 1)
I(me—bgn) )
b, b b
o 3(b9e( T ik + 2bigyy)
1(3b10—b3o) ) ’
bot+ Fbioztb
e( ’ K ) b+ @+ Y (23)
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Figure 5. The 3D and density profiles of equations (42) and (45) atoc =5,z =1t = 0.

Xy, 2, 0)
1(3b10—bg o)

_ 3(b9€( 2

bo(x+0y)+b b
+bo(x+0oy)+broz+ 12) — 2ib1 )5 + 2b1p6)?

1(3b10-bg )

(e[ %

+b9(x+oy)+bloz+b12] 2 2
+ b13 + 9015 + 3016)2

1(3b10-b3o)

3b926( z”

Gb10-bo)
(t lga i +b9(x+tfy)+bloz+b12)
€

+b9(x+oy)+b10z+bl2]

b}

+ bis + o5 + @i

(24)

where 3 = —ibi€ — ibst — 1i(3bibd + 2b3)0z + bs, 9y, =
bi& + bst + 5(3bibg + 2b3)oz + ibs, @5 = —ibst — iby
(x + 0y) — 3iBbibg + 2b3)0z + bs, @6 = bst + bi(x +
0y) + 3(3bi1b§ + 2b3)oz + ibs.

2.3. Breather wave solutions

In this section, we construct the breather wave solutions to
equation (1).

Consider the following test function as a solution to the
bilinear equation (7):

f(& z, 1) = e nl@ozthortd)

+ nycos(qy(coz + dot + £)) + npeh@itbor+o),
(25)

Substituting equation (25) into (7), yields a polynomial in the
powers of trigonometric and exponential functions. Collecting
the coefficients of the same power, and equating each sum-
mations to zero, produces an algebraic system of equations.
We solve the system of equations to obtained the values of the
parameters involved. Substituting the values of the parameters
into equation (6) and then into equation (2), yields the fol-
lowing breather wave solutions to equation (1):
Case-1: When

. n12‘I02
4q,
_ 2 2

by = —do + 2q, — 24,

1
ny = apg = 50-(_2d0 + q02 - 3q12),

o= %(2d00 + qoz(—a) + 3q120), we have

_ nigyen v
f&z, 1= - + nycos (prg) + €71, (26)
4q,
n]2q026¢17 . _
3 — e nmggsin (pg) — qe %
9(6’ nh=- _n12q02e¢17 — ’
5— + nicos () + e ¥
4q,
27

2g2e¥20 2

nigge . _

3(— 4g Mo sin(¢;9) — g€ ‘/’20)
1

X, v, 2, 1) =

2g2e%20 2

ni-qge _

(——1 o T mcos(p) +e S”20)
4qy

2 122 -
3(—n1q0 cos (¢y9) — g e + gle 9920)
_"12‘]023“'020
4‘112

>

+ 11008 () + €72 (28)

where ¢, = g,(1(~do + 243 — 24) + So2(~2do + g — 3gD) + €),
o1 = do(52 Qo0 + g3 (=0) +3¢70) + dot + §). pi9 =
a0(32Qdoc + 45 (=) + 3¢70) + dot + x + 0V). ou =4,

(t(fdo + 2q7 — 2g7) + éaz(deo +q7 = 3q]) +x+ O'y).
Case-2: When

2
ap= 5(2%20 — dyo), by =4q; — do,

1 .
o= 5(—2)0(2%2 —dy), q,= —ig,

we have

f(& z, 1) = nae %2 4 nycos (py,) + e, (29)
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3(—inagoe#21 — mgysin (py) + igye?s1)
nye” %21 + 1y cos (p,,) + e

0¢, z, 1) =—
(30)

3(—inagpe %n — mgysin(pyy) + igye?s)?
(n2e™ %5 4 nycos (@yy) + €923)?
 3(—mgge s — mgg cos (py) + gp (=)

. b
no€” %23 4 1y cos () + e

X()C, Y, 2, t) =

&1y

where i, = igy(1(4q] — do) + 3240 — doo) + €) oy =
ao(—302245 — do) + dot + €). s = igy(1(4q5 — do) +

2:2q30 — doo) + x + oY), P = qy(—2022q¢ — do) +
dot + x + oy).

2.4. Lump-periodic solutions

In this section, we report the lump-periodic solutions to
equation (1).

Consider the test function as a solution to the bilinear
equation (7)

f(& z, 1) = g cosh (b€ + bzt + byz)

+ g, cos (bs€ + bet + bsz) + gy cosh (b7€ + bot + bg2).
(32)

Substituting equation (32) into (7), yields a polynomial in the
powers of hyperbolic and trigonometric functions. Collecting
the coefficients of the same power, and equating each sum-
mations to zero, produces an algebraic system of equations.
We solve the system of equations to obtained the values of the
parameters involved. Substituting the values of the parameters
into equation (6) and then into equation (2), yields the fol-
lowing lump-periodic solution to equation (1):
Case-1: When

by = é(bfg — 3b2bio + 2b30),

1 ib
bs = (b} + 3b7by + 2b)0, 4= =2, =0,
i
we have
ibsq, cosh (y)
J(& 2, 1) = gy c08(py5) + %’ (33)
1
3(—bsgq, sin(pys) + ibaq, sinh (9y6))
0, z,1) = — LA ib4;zc2)sh(¢ )5026 , (34)
G5 COS (Pps5) + %
3(—b4g,sin + ibyq, sinh 2
Gy 2 1) = S 5in (Py) + 1bagy Sinh (934))

ibaq, cosh (p,g)
(5]2 cos () + ub—lzs)z

_ 3(—bi g, cos (¢y) + ib1byq, cosh (¢yg))

ib4q, cosh (yg)

42008 (pyy) + —

k)

(35)

where g5 = by + bet + 3(—b} + 367Dy + 2b6)02, Py =
bi& + byt + 22(bo — 3bbyo + 2b30), 9y, = bt + bilx +
0y) + 3(=b] + 3blby + 2b6)0z, py5 = bst + by(x + oy) +

2o = 36} byo + 2b30).
Case-2: When

bs = %(_bf + 3b72b4 + 2bg)o,
1 ib

bg :_(b73 - 31742177 + 2bg)o, q, = 0, QG = ,ﬂ’
3 ba

we have
ib7q5cos (¢54)
f(& z, 1) = gzcosh(p,g) — w’ (36)
4

3(b7q; sinh (,9) + ib7q5sin (3))

O 2.1 = — Ab . G
L S (¢ 3, )
g3 O (py9) — =250
&)= 3(b7q5sinh (ip3,) + ib7¢5 sin (8031))2
> B ib7¢5 cos (5;)
(q3 cosh (p3,) — %)2
B 3(b7 g5 cosh (¢3,) + ibab7g5c0s (p5,))
ib7q; cos (¢5,) ’
q3 cosh (@32) - % (38)

where (@, = by& + bot + 5 (b7 — 3biby + 2b9)0z, 3y =
bi& + bet + (= + 3b7 by + 2b6)0z, 03y = bt + by(x +
oy) + é(fbj + 3b7by + 2b6) 0z, o3, = bot + by(x + oy) +
é(b?‘ — 3b7by + 2bg)oz.

2.5. Some new interaction solutions

In this section, some new interaction solutions to equation (1)
are reported.

Consider the following test function as a solution to the
bilinear equation (7):

f(é" Z, t) — cle(blf+bzz+b3l) + CZe—(b1§+b2Z+h3Z)

+ c3sin(by§ + bsz + bet)
+ ¢4 sinh (b7§ + bgz + bot). 39
Substituting equation (39) into equation (7), yields a poly-
nomial in the powers of trigonometric, hyperbolic and
exponential functions. Collecting the coefficients of the same
power, and equating each summations to zero, produces an
algebraic system of equations. We solve the system of
equations to obtained the values of the parameters involved.
Substituting the values of the parameters into equation (6) and
then into equation (2), yields the following interaction solu-
tions to equation (1):
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Case-1: When

by = %(bf + 3b?b; + 2b3)0,

by = L(b3 + 362y + 2bo)o, © L
s = 5 (b Tz 9)0, € 4b1261’3 ’
we have
b2 2 .0 .
FE o) =~ LA 4 et 1 oysinh(pyp),  (40)
4b1 C]
2.2.¢
O 2. 1) = ——— - ’
—T c1e¥s 4 ¢4 sinh (s35)
41)
3(b,2c1e'*’36 _ ”72644#37 + bicy Sinh(<P38))
X, y, 2, 1) = — b2cioPy ] .
_ 74;,251 + c1e¥36 + ¢4 sinh (34)
3 b72L'426P37 b @ b h 2
T + bicie%6 + bycy cosh (psg)

(— bicier + c1e¥6 + ¢4 sinh(<p38))2 (42)

4hlzcl

where @y = bi& + bst + (bf + 3b7by + 2b3)0z, 9y =
bi(—€) — bst — (b7 + 3b2by + 2b3)07, 35 = bif +
bot + %(5773 + 3b1by + 2b9)0z, s = b3t + bi(x + o) +
S(07 + 3b7by + 2b3)0z, oy = —bst + bi(—x — oY) —
S(07 + 3b7by + 2b3)0z, gy = bot + by(x + oY) + 5

(b3 4 3b2b; + 2bo)oz.
Case-2: When

bs = %(—bj + 3b7by + 2bg)o,

by =207 = 30y + 2b9)0, @ =0, =0, ¢ = L%,

4

we have

b7cy sin (@)
by

3(b7c4 cos (@yy) + brcscosh(psg))

bcqsin ()
by

f& z, 1) = + ¢4 sinh (), 43)

O, z, 1) =— , (44

+ ¢4 sinh (p39)

30 +b h 2
X, y, 2z, 1) = ( (704 cos () 7¢4 cosh (y,))

brcasin(py)) .
%441 +oey Slnh(<p42))2
_ 3(b7cysinh () — bybycysin(gy)

bycysin(pg))
by

. (45)
+ ¢4 sinh (@)
where @y, = br§ + bot + (b7 — 3bib7 + 2bo)oz, =
by& + bet + (=} + 3b7by + 2b6)0z, @y = bet + by(x +
0y) + 3(=b] + 3b7by + 2b6)0z, @y = bot + by(x + ay) +
%(b? — 3b7by + 2by)oz.

The symbol i = +/—1.

3. Conclusion

Via the Hirota bilinear approach and symbolic computation,
the (3+1)-dimensional soliton equation is investigated in
this study. Various new lump, lump-kink, breather wave,
lump periodic, and some other new interaction solutions are
successfully constructed. Using the Mathematica 12 pack-
age, all the acquired solutions are verified by inserting them
into the original equation. The physical characteristics of the
solution were graphically depicted to shed more light on the
obtained results under the choice of suitable values of the
parameters. The results obtained may be useful in under-
standing the basic nonlinear scenarios in fluid dynamics as
well as the dynamics of computational physics and engi-
neering sciences in nonlinear fields of higher dimensional
motion.
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