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Abstract
In this paper, a generalized (3 + 1)-dimensional variable-coefficient nonlinear-wave equation
is studied in liquid with gas bubbles. Based on the Hirota’s bilinear form and symbolic
computation, lump and interaction solutions between lump and solitary wave are obtained,
which include a periodic-shape lump solution, a parabolic-shape lump solution, a cubic-shape
lump solution, interaction solutions between lump and one solitary wave, and between lump and
two solitary waves. The spatial structures called the bright lump wave and the bright-dark lump
wave are discussed. Interaction behaviors of two bright-dark lump waves and a periodic-shape
bright lump wave are also presented. Their interactions are shown in some 3D plots.

Keywords: solitary wave, lump wave, variable-coefficient nonlinear-wave equation, interaction
behaviors

(Some figures may appear in colour only in the online journal)

1. Introduction

In some branches of science and engineering such as fluid
mechanics, quantum mechanics, particle physics, mass
transfer, plasma physics, nano liquids and biological mathe-
matics [1–5], nonlinear partial differential equations (NPDES)
are used to describe many nonlinear phenomena and wave
propagation characteristics. As the lump solutions of the
NPDES are the special, powerful destructive ocean wave in
the real world, it is important to search for the lump solutions
of the NPDES, especially the constant-coefficient NPDES
that have attracted the attention of many scholars [6–10].

Recently, a generalized (3 + 1)-dimensional nonlinear-
wave equation has been presented as [11]

+ + - + + =u uu u u u u4 4 4 3 0, 1t x xxx x x yy zz[ ] ( ) ( )

which describes a liquid with gas bubbles in the three-
dimensional case.

However, the variable-coefficient NPDES provide us
with more real phenomena in the inhomogeneities of media
and non-uniformities of boundaries than corresponding con-
stant-coefficient counterparts in some physical cases [12–15].
In this paper, a generalized (3 + 1)-dimensional variable-
coefficient nonlinear-wave equation is investigated [16, 17]
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where u=u(x, y, z, t) is the wave-amplitude function. The
bilinear form, Bäcklund transformation, Lax pair, infinitely-many
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conservation laws, multi-soliton solutions, traveling-wave solu-
tions and one-periodic wave solutions are presented by virtue of
the binary Bell polynomials, the Hirota method, the polynomial
expansion method and the Hirota-Riemann method [18]. How-
ever, lump and interaction solutions between the lump and
solitary wave of equation (2) have not been obtained yet, which
will make the main work of our paper.

This paper will be organized as follows: section 2 obtains
the lump solutions of equation (2) with the aid of the Hirota’s
bilinear form [19–24] and demonstrates their physical struc-
tures by some 3D plots; section 3 presents the interaction
solutions between lump and one solitary wave; section 4
derives the interaction solutions between lump and two soli-
tary waves; and section 5 gives the conclusion.

2. Lump solutions of equation (2)

Setting x=u x y z t12 ln , , , xx[ ( )] and α(t)=β(t), and using
the multi-dimensional Bell polynomials, the bilinear form of
equation (2) can be introduced as (see [18])

b g d x x+ + + + = 3t t t tD D D D D D 0.x t x x y z
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In order to seek the lump solutions of equation (2), we suppose
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where α1, α2, α3, α5, α6 and α7 are unknown constants. α4(t),
α8(t) and α9(t) are undefined real functions. Substituting
equation (5) into equation (4) through Mathematica software,
we get

with a ¹ 01 , a ¹ 05 . Substituting equations (5) and (6) into
the transformation x=u x y z t12 ln , , , xx[ ( )] , we have the
following lump solution of equation (2)
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where α4(t) is arbitrary function, η1 and η2 are integral
constants.

The physical structures for u I( )( ) are described in
figure 1 by the 3D plots. Figure 1 shows the propagation
of solution u I( )( ) when γ(t), δ(t), ñ(t) and α4(t) select
different functions. When g d= = =t t t tcos( ) ( ) ( ) and
a =t tsin4 ( ) , a periodic-shape rational solution is listed
in figure 1(a). When γ (t)=δ(t)=ñ(t)=t and a =t4 ( )

tsin , a parabolic-shape rational solution is presented in
figure 1(b). When g = =t t t tcosh , exp( ) ( ) and a =t4 ( )
d =t t( ) , a cubic-shape rational solution is shown in
figure 1(c).
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with a ¹ 01 , a ¹ 05 , a ¹ 09 and a a ¹ 02 9 . Substituting
equations (5) and (8) into the transformation

x=u x y z t12 ln , , , xx[ ( )] , we have the following lump solution

of equation (2)
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where η3 and η4 are integral constants.

Figure 1. Lump solution u( I) with α1=1, α2=2, α3=−1, α5=−3, x=−5, η1=η2=y=0, when g d= = =t t t( ) ( ) ( )
a =t t tcos , sin4 ( ) in (a), g d a= = = =t t t t t t, sin4( ) ( ) ( ) ( ) in (b) and g =t tcosh( ) , = t texp( ) and α4(t)=δ(t)=t in (c).
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Then, the physical structures for u II( )( ) are shown
in figures 2–5 with some 3D plots. When g =t( )

b- = = t t1, 1( ) ( ) , the spatial structure called the bright
lump wave is seen in figure 2 at = -t 1; 0; 1, the spatial

structure called the bright-dark lump wave is shown in
figure 3 at x=−30; 0; 30. When γ (t)=−t, ñ(t)=β(t)=t,
interaction behaviors of two bright-dark lump waves are
presented in figure 4 at = -x 8; 0; 8. As the value of x

Figure 2. Lump solution (9) with α1=1, α2=2, α3=−1, α5=α9=−3, η3=η4=0, z=−10, when t=−1 in (a), t=0 in (b) and
t=1 in (c).

Figure 3. Lump solution (9) with a = -11 , α2=2, α3=−1, α5=3, α9=−3, η3=η4=z=0, when x=−30 in (a), x=0 in (b) and
x=30 in (c).

Figure 4. Lump solution (9) with α1=−1, α2=2, α3=−1, α5=3, α9=−3, η3=η4=z=0, when x=−8 in (a), x=0 in (b) and
x=8 in (c).
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changes, the two bright-dark lump waves move towards
each other, and finally merge together. When g = =t t( ) ( )
b =t tcos( ) , a periodic-shape bright lump wave is found in
figure 5 at x=−3; 0; 3.

with a a a a a- ¹ 03 5 1 7
2

9( ) , a a+ ¹ 01
2

5
2 , h5 and η6 are

integral constants. Substituting equations (5) and (10) into the
transformation x=u x y z t12 ln , , , xx[ ( )] , we derive another

Figure 5. Lump solution (9) with α1=−1, α2=2, α3=−1, α5=3, α9=−3, η3=η4=z=0, when x=−3 in (a), x=0 in (b) and
x=3 in (c).

Figure 6. Lump solution (11) with α1=α2=α3=α5=−1, α6=α7=η5=3, η6=−2, α9=2, z=0, when x=−10 in (a), x=0 in
(b) and x=10 in (c).
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lump solution of equation (2)
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where a t4 ( ), a t4 ( ) and ñ(t) satisfy constraint (10).
The physical structures for u III( )( ) are shown in figures 6–

8 with some 3d plots. When g d b= - = =t t t1, 1( ) ( ) ( ) ,
the spatial structure called the bright lump wave is seen in
figure 6 at x=−10; 0; 10. When g d= - =t t t,( ) ( )
b =t t( ) , interaction behaviors of two bright lump waves are
presented in figure 7 at y=−3; 0; 3. As the value of y
changes, the two bright lump waves move towards each other,

and finally merge together. When g d b= = =t t t( ) ( ) ( )
tcos , a periodic-shape bright lump wave is found in figure 8

at = -z 10; 0; 10 and x=0.

3. Interaction solutions between lump and one
solitary wave

In order to find the interaction solutions between lump and
one solitary wave, we add an exponential function in
equation (5) as follows
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where α10, α11 and α12 are unknown constants. α13(t) and
α14(t) are unknown real functions. Substituting equation (12)

Figure 7. Lump solution (11) with α1=α3=α5=−1, α2=1, α6=−3, α7=3, η6=η5=z=0, α9=2, z=0, when y=−3 in (a),
y=0 in (b) and y=3 in (c).

Figure 8. Lump solution (11) with α1=α2=α3=α5=−1, α6=α7=η5=3, η6=−2, α9=2, x=0, when z=−10 in (a), z=0 in
(b) and z=10 in (c).
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into equation (4) through Mathematica software, we have
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with a ¹ 02 , a ¹ 05 and a ¹ 010 . Substituting equations (5)
and (13) into the transformation x=u x y z t12 ln , , , xx[ ( )] ,
we get

where η8, η9 and η10 are integral constants. Interaction
phenomena between lump and one solitary wave in
equation (14) is shown in figures 9 and 10. Obviously, we
can see a solitary wave and a lump wave in figure 9(a). In
figure 9(b), the solitary and lump wave are slowly approach-
ing at t=0. In figure 9(c), the solitary and lump waves merge
together to propagate forward at t=1. Figure 10 displays the
effect of variable coefficient γ(t) on the interaction phenom-
ena between lump and one solitary wave.

4. Interaction solutions between lump and two
solitary waves

In order to derive the interaction solutions between lump
and two solitary waves, we add two exponential functions in

Figure 9. Interaction solution (14) with α1=η8=η9=η10=β(t)=1, α3=γ(t)=−1, α2=α10=2, α5=−3, z=0, when t=−1 in
(a), t=0 in (b) and t=1 in (c).
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+ + - + + +

- + - +

+ + - + + +

u x t t t

x t t t

y z x t t t

x t t t y z

x t t t

x t t t

x t t t

x t t t y z

x t t t

x t t t y z

12 2 exp d

exp d

3 d

3 d

2 exp d

2 3 d

2 3 d

exp d

3 d

3 d , 14
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1
2

5
2
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2
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2

1
2

5
2
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2

1 2 3 5 8 5 10
2 2

5
2

9 1 10
2

2 3
2

1 9 10 10 10 10
2

5 8 5 10
2

1
2
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2 2 1

2
5
2
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2
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2

1 2 3
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2 2

5
2

9 1 10
2

2 3
2 2

*

⎡
⎣⎢

⎡
⎣⎢
⎡⎣ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦⎤⎦

⎡
⎣⎢

⎡⎣ ⎡⎣ ⎤⎦⎤⎦
⎡⎣ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦⎤⎦

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ ⎤⎦
⎡⎣ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦

⎡⎣ ⎡⎣ ⎤⎦⎤⎦
⎡⎣ ⎤⎦⎤⎦ ⎤⎦

⎤
⎦⎥

⎡
⎣
⎢⎢
⎡
⎣⎢

⎡⎣ ⎡⎣ ⎤⎦⎤⎦
⎡⎣ ⎡⎣ ⎤⎦⎤⎦⎤⎦

⎤
⎦⎥

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦ ⎤⎦
⎤
⎦⎥

( ) [ ( ) ( )]

[ ( ) ( )]

( ) [ ( ) ( )]

[ ( ) ( )]

[ ( ) ( )]

[ ( ) ( )]

[ ( ) ( )]

[ ( ) ( )] [[ ( )

[ ( ) ( )]

[ ( ) ( )] ( )

( )
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equation (5) as follows

z a a a a
V a a a a
x z V a a a

a a a
a a a a a

= + + +
= + + +
= + + +

+ + +
+ - - - -

x y z t
x y z t

t t t
x y z
t t x y z

,
,

exp

exp , 15

1 2 3 4

5 6 7 8

2 2
9 14 13

10 11 12

15 13 10 11 12

( )
( )

( ) ( ) [ ( )
]

( ) [ ( ) ] ( )

where α15(t) are unknown real functions. Substituting
equation (15) into equation (4) through Mathematica soft-
ware, we obtain

ò
ò
ò

a
a a
a

a
a a
a

a
a h a a a a

a a a

a d a a b
a

a h a a b g

a h a a b g a a

a h a a b g

a a
h

a

=- = -

=
+ + +

+

=
- -

= - +

= - + = =

= - +

- =



t

t
t t

t t t t

t t t t

t t t t

t t
t

, ,

2
,

3
,

3 d ,

3 d , 0,

d

ln , ,

16

6
1 2

5
7

1 3

5

9
10
4

12 1
4

5
2

1
2

5
4

1
2

5
2

10
2

2
2

5
2

10
2

3
2

8 13 5 10
2

4 14 1 10
2

11 12

13 15 10 10
2

14 15
12

14

( )
( )

( ) ( ) ( )

( ) [ ( ) ( )]

( ) [ ( ) ( )]

( ) [ ( ) ( )]

( ) ( )
( )

( )

with a ¹ 03 , a ¹ 05 , a ¹t 014 ( ) , a a+ ¹ 01
2

5
2 and a ¹ 010 .

Substituting equations (5) and (16) into the transformation
x=u x y z t12 ln , , , xx[ ( )] , we get

a a a a a a

a a a
a a a a a
a a

= + + +

+ -
- + +
+ -

u t t x

t x

t t t t x
t x

12 2 2 exp

exp

exp
exp

V
1
2

5
2

10
2

14 13 10

10
2

15 10

13 9 14 13 10

15 10

[[ ( ) [ ( ) ]
( ) [

( )]] [ ( ) ( ) [ ( ) ]
( ) [

( )

a a a a a
a a a a
a a a a

a a a a a
a a a a
a a a a a a
a a a
a a a a
a a a
a a a a

- + + + +
+ + + +
- +
- - - +
* + + +
+ + + +
+ +
+ - - +
+ + +
+ + + +

t t x y z

t x y z
t t x

t x t
t x y z

t x y z t
t t x
t x t t

x y z

t x y z

exp
exp 2

2
exp
exp

, 17

13 4 1 2 3
2

8 5 6 7
2

10 14 13 10

10 15 10 13 1

4 1 2 3

5 8 5 6 7
2

9

14 13 10

15 10 13 4

1 2 3
2

8 5 6 7
2 2

( )] [ ( ) ]
( ( ) ) ]
[[ ( ) [ ( ) ]

( ) [ ( )]
[ ( ) ]

( ( ) )] ] [[ ( )
( ) [ ( ) ]
( ) [ ( )] [ ( )

]
[ ( ) ] ] ]] ( )

where η12, η13, η14 and η15 are integral constants. Interaction
phenomena between lump and two solitary waves in
equation (16) is shown in figure 11. Two solitary waves can
be found in figure 11(a). A lump wave appears in one of two
solitary waves in figure 11(b). In figures 11(c) and 11(d), the
lump wave slowly shifts to another solitary wave, until it
vanishes in figure 11(e).

5. Conclusion

In this paper, based on the Hirota’s bilinear form and Mathe-
matica software [25–35], the lump and interaction solutions
between lump and solitary wave of a generalized (3 + 1)-
dimensional variable-coefficient nonlinear-wave equation in
liquid with gas bubbles are studied. Their physical structures
are described in some 3D plots. A periodic-shape rational solu-
tion is listed in figure 1(a). A parabolic-shape rational solution is
presented in figure 1(b). A cubic-shape rational solution is shown
in figure 1(c). In lump solutions (u( II)), the spatial structure called
the bright lump wave is seen in figure 2; the spatial structure
called the bright-dark lump wave is shown in figure 3. Interaction
behaviors of two bright-dark lump waves are presented in
figure 4. A periodic-shape bright lump wave is found in figure 5.
In lump solutions u III( )( ) , the spatial structure called the bright
lump wave is seen in figure 6. Interaction behaviors of two bright
lump waves are presented in figure 7. A periodic-shape bright
lump wave is found in figure 8. Figures 9 and 10 display the

Figure 10. Interaction solution (14) with α1=η8=η9=η10=α10=β(t)=1, α3=α5=−1, α2=2, y=z=0, when γ(t)=1 in (a),
γ(t)=t in (b) and g =t tcos( ) in (c).
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interaction phenomena between lump and one solitary wave.
Figure 11 shows the interaction phenomena between lump and
two solitary waves.
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