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The aim of this study was to investigate the feasibility of detecting potassium sorbate (PS) and sorbic acid (SA)
in agricultural products using THz time-domain spectroscopy (THz-TDS). The absorption spectra of PS and SA were
measured from 0.2 to 1.6 THz at room temperature. The main characteristic absorption peaks of PS and SA in polyethylene
and powdered agricultural products with different weight ratios were detected and analyzed. Interval partial least squares
(iPLS) combined with a particle swarm optimization and support vector classification (PSO-SVC) algorithm was proposed
in this paper. iPLS was used for frequency optimization, and the PSO-SVC algorithm was used for spectrum analysis of
the preservative content based on the optimal spectrum ranges. Optimized PSO-SVC models were obtained when the THz
spectrum from the PS/SA mixture was divided into 11 or 12 subintervals. The optimal penalty parameter c and kernel
parameter g were found to be 1.284 and 0.863 for PS (0.551–1.487 THz), 1.374 and 0.906 for SA (0.454–1.216 THz),
respectively. The preliminary results indicate that THz-TDS can be an effective nondestructive analytical tool used for the
quantitative detection of additives in agricultural products.
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1. Introduction
Consumers are concerned about food quality, especially

given the wide use of food additives like potassium sorbate
(PS) and sorbic acid (SA), which may leave residues in agri-
cultural products and food. As acidic preservatives, PS and
SA are used to inhibit the growth of mold and microorgan-
isms, however, the excessive use of preservatives in agricul-
tural products can create threats to human health.[1] There are
several technologies[2,3] used to measure PS and SA content,
such as high-performance liquid chromatography, gas chro-
matography, and mass spectroscopy. Although these tech-
nologies are sensitive and accurate, they are time-consuming,
expensive, and require sophisticated sample preparation pro-
cesses performed by specialists. Therefore, a rapid, accurate,
nondestructive, and reliable method for measuring PS and SA
residues in food is desired.

THz time-domain spectroscopy (THz-TDS) can be used
to identify different chemicals, including many nonpolar
materials,[4,5] which can be used as a spectroscopic tool for
nondestructive testing. Compared to the other spectroscopic
technologies, THz spectroscopy can be used to directly mea-

sure the absorption coefficient and refractive index of the
sample with a high signal-to-noise ratio (SNR) with pump-
probe detection and without using Kramers–Kronig relation.
Thus, THz-TDS has been used as an analytical tool in var-
ious fields,[6,7] such as chemistry, biology, and food quality
control. Moreover, a number of recent studies have focused
on using THz spectroscopy with chemometrics in agriculture
and the food industry for qualitative and quantitative analy-
sis. Nishikiori et al. qualitatively studied the THz spectra
of L-, D-, and DL-tartaric acid and quantitatively analyzed a
tartaric acid mixture using THz-TDS with PLS.[8] Hua and
Zhang qualitatively and quantitatively studied solid pesticides
using THz-TDS with other chemometric methods. The results
indicate that THz-TDS was promising for residual pesticide
detection in food.[9] Ma et al. measured the spectra of thi-
abendazole using THz-TDS and quantitatively analyzed the
content of residues with PLS, interval PLS (iPLS), backward
iPLS, and moving window PLS methods.[10] Qin et al. quan-
titatively studied the THz spectra of TCH and CCH in soil and
rice samples using PLS.[11] Those reports presented qualita-
tive and quantitative analyses of materials using THz-TDS,
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although a few studies focused on qualitative and quantita-
tive analysis of preservatives in agricultural products, espe-
cially in stored wheat. The use of an improved algorithm for
optimization support vector machine parameters by particle
swarm, which provides higher prediction accuracy of PM2.5
concentration.[12] PSO-SVC is a classification optimization al-
gorithm, which could provide high classification accuracy and
generalization ability.

In this study, two kinds of preservatives were measured
using THz-TDS, and the main absorption peaks in PS and SA
in polyethylene and wheat powder with different weight ra-
tios were detected and analyzed in this paper. PSO-SVC mod-
els were constructed based on the full spectrum and feature
frequency ranges selected by iPLS to determine preservative
contents from THz absorption spectra.

2. Experimental methods and material
2.1. Experimental setup

The THz spectra of preservatives and mixtures were mea-
sured using a terahertz spectroscopy system (Zomega Tera-
hertz Corporation, USA) in collimated geometry. The NIR
laser (FemtoFiber Pro), which provided 100 fs pulses at a
wavelength of 780 nm and a repeating frequency of 80 MHz,
was used as a pump source. A low temperature-grown GaAs
photoconductive antenna was used for THz generation and a
ZnTe electro-optic (EO) crystal was used for THz detection.
This system was used to acquire time-domain data by measur-
ing the time delay between generated and detected pulses. The
spectral range of the system was 0 to 3.5 THz with 0.03 THz
resolution, and its SNR was 5000 : 1. 10 references (without
sample) and the sample spectra were collected and averaged
to reduce the random error. All measurements were gathered
at room temperature at approximately 1% relative humidity.
A more detailed description of the system configuration and
analysis method can be found in the literature.[13]

The signal transmitted from the sample holder (with-
out a sample) was used as the reference signal. The time-
domain pulse is transformed to the frequency domain with a
fast Fourier transform (FFT)[14]

Ẽ(ω) = A(ω)e−iφ(ω) =
∫

dtE(t)e−iωt
φ(ω), (1)

where A(ω) and φ(ω) are the amplitude and phase of the elec-
tric field, respectively, and E(t) is the time-domain waveform.

The absorption coefficient α(ω) and refractive index
n(ω) of a sample can be extracted from the following
equations:[15,16]

n(ω) =
ϕ(ω)

ωd
c+1, (2)

a(ω) =
2
d

ln
[

4n(ω)

ρ(ω)(n(ω)+1)2

]
, (3)

where c is the speed of light, ω is the wave frequency, ρ(ω)

and φ(ω) are the amplitude ratio and phase difference between
the reference and sample, respectively, and d is the sample
thickness.

2.2. Sample preparation

Crystalline PS and SA used in our experiment were pur-
chased from Tianjin Dongda chemical Co., Ltd with 99% pu-
rity. The chemical formulas for PS and SA are C6H7O2K and
C6H8O2, respectively. High-density polyethylene (HDPE)
powder was purchased from Sigma-Aldrich (St. Louis, USA).
Stored wheat was supplied from Henan university of technol-
ogy (Zhengzhou, China). All materials were used without fur-
ther purification.

The PS and SA powder samples were crushed into small
particles with a mortar and pestle, and the wheat samples were
milled into a fine powder and sieved by filtering through 200-
eye sieves to reduce the baseline offsets at higher frequencies.
These particles were then mixed with HDPE and sieved the
wheat powder in different concentrations, ranging from 0% to
50% by weight. The components in each mixture are shown
in Table 1. 20 samples of each mixture were selected, and
the water content in these samples was < 12%. The mix-
ture was compressed into 13 mm diameter pellets at 10 MPa
for 5 min with a tablet press. The resulting sample thickness
ranged from 1 mm to 2 mm, which provides a sufficient path
length to eliminate the effect of multiple reflections between
the two sample surfaces.[17] All sample preparation processes
were performed at room temperature and labeled according to
their properties.

Table 1. Component of mixture.

No. PS/SA/mg PE/wheat/mg Concentration/%

1 0 200 0

2 5 195 2.5

3 10 190 5

4 20 180 10

5 30 170 15

6 40 160 20

7 60 140 30

8 80 120 40

9 100 100 50

10 200 0 100

2.3. Chemometric methods

Chemometrics methods, including PCR, SVM, and PLS,
have been used to analyze features in THz spectra and in-
vestigate the correlation between spectral features and sample
characteristics.[18–21] In this study, Matlab and Origin software
(Origin Lab, Northampton, MA, USA) were used for spectral
processing and multivariate analysis.
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2.3.1. Interval PLS

Interval partial least squares (iPLS) is a variable selection
technique used for identifying the important spectral regions
and for removing interference between different regions.[22]

iPLS was used to optimize the models and develop calibration
models based on spectral subintervals of equal width, which
can then be used to determine preservative contents in differ-
ent mixtures.

The model performance was evaluated in terms of the cor-
relation coefficient between the reference and predicted value
(R), root-mean-square error of cross-validation (RMSECV)
values, root-mean-square error (RMSE) of the calibration set
(RMSEC), and root mean square error of the prediction set
(RMSEP).[23] A more accurate model provides higher R and
lower RMSECV values. These parameters are defined as fol-
lows:

R =

n
∑

i=1
(yi

r − yr)(yi
p − yp)√

n
∑

i=1
(yi

r − yr)2
n
∑

i=1
(yi

p − yp)2
, (4)

RMSECV =

√
1
n

n

∑
i=1

(yi
r − yi

p)
2, (5)

where n is the number of measurements in the calibration sam-
ple set, yi

r is the reference value of the i-th sample, yi
p is the pre-

dicted value of the i-th sample, yr is the average of the sample
reference values, and yp is the average of the predicted values
of samples.

2.3.2. PSO-SVC

Support vector classification (SVC) can be used for multi-
class classification.[24] Particle swarm optimization (PSO) is
inspired by the behavior of social organisms in groups, such
as ant colonies, and schools of birds and fish. This heuristic
algorithm randomly moves a solution population within the
solution space.[25] In order to build an optimal SVC model,
the RBF was used as the kernel function, and the PSO was
used for optimizing the parameters in the SVC.

The specific steps for optimization of an SVC model with
PSO are as follows:

(1) Determine training, test sets for the SVC and define a
search interval for the penalty parameter c and kernel parame-
ter g;

(2) Determine the value of the objective function, suppose
there are N particles in the D-dimensional, initialize the posi-
tion and speed of particle i as: Xi = (Xi1, Xi2, . . . , XiD) and
Vi = (vi1, vi2, . . . , viD);

(3) Calculate the fitness function f (Xi), find the best posi-
tion experienced by the particle i: pbesti = (pi1, pi2, . . . , piD)

and the best position experienced by the population: gbesti =
(g1, g2, . . . , gD);

Usually, the position and speed of d-th dimension are
range within [Xmin,d , Xmax,d ] and [−Vmax,d , Vmax,d ] respec-
tively; if Vid and Xid exceeds the boundary value, then the Vid

and Xid are defined as the maximum speed and then boundary
position respectively;

(4) Update the d-th dimension speed and position of par-
ticle i:

V k
id = WV k−1

id + c1r1(pbestid −Xk−1
id )

+c2r2(gbestd −Xk−1
id

), (6)

Xk
id
= Xk−1

id +V k−1
id , (7)

where k represents the number of iterations; c1, c2 represent
the acceleration constant, which adjust the maximum learning
steps; r1, r2 are two random functions used to increase search
randomness; W is an inertial weight used to adjust the search
range of the solution.

(5) When reached the maximum number of iterations or
the global best position met the minimum limit, go to step (5),
otherwise, return to step (3);

(6) Output the optimal parameters c and g, then SVC clas-
sification using the optimal parameters c and g.

3. Results and analysis
3.1. THz spectra from pure compounds

THz time-domain spectra of PS and BA are shown in
Fig. 1, and the absorption coefficients and refractive indices
are shown in Fig. 2. Each spectrum is presented as an aver-
age of 5 individual spectra, and the reference was measured
between every two samples. Frequencies below 0.2 THz or
above 1.6 THz had very low signal-to-noise ratio (SNR) and
would not be considered effective data, and it is clear that the
useful measurement range is 0.2 to 1.6 THz.
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Fig. 1. THz time-domain spectra of the PS and SA.

As shown in Fig. 2, the two preservatives exhibit their
own distinctive THz absorption characteristics. The obvious
absorption peak is located at 0.97 THz for PS, and at 0.88 THz
for SA, while the other absorption peaks are relatively weak;
the average refractive indices of the two preservatives are 1.81
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and 1.69, respectively. Because THz is sensitive to the inter-
or intramolecular vibrational states of the preservatives, these
unique absorption peaks in PS and SA could be used as finger-
print features for quick qualitative analysis of preservatives.
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Fig. 2. Absorption coefficients and refractive indices of the (a) PS and
(b) SA.

3.2. THz spectroscopic analysis of preservative mixtures

Twenty samples were examined at each concentration
listed in Table 1, and a total of 200 samples THz spectra were
randomly divided into a calibration set (120 bands) and a pre-
diction set (80 bands). Five absorption spectra were gath-
ered from each sample and averaged to calculate the stabil-
ity of the system and the robustness of the model. A Fourier
transform was used to convert the time-domain spectra to
frequency-domain spectra. The absorption coefficients of dif-
ferent concentrations of PS/polyethylene/wheat mixtures and
SA/polyethylene/wheat mixtures were calculated, as shown in
Figs. 3 and 4 respectively.

Figure 3 shows a distinct absorption peak at 0.97 THz,
which coincides with the characteristic absorption peak from
pure PS, as shown in Fig. 2(a). The absorption peaks at 1.44
and 0.7 THz are not obvious and can only be discerned at high
PS content (greater than 5 %). Figure 4 shows a distinct ab-
sorption peak at 0.88 THz, which coincides with the absorp-
tion peak in pure SA, as shown in Fig. 2(b). The absorption
peaks at 1.6 and 0.64 THz are not obvious and can only be
discerned at high SA content (higher greater than 5%).
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Fig. 3. THz absorption spectrum of PS and wheat/polyethylene mixture.
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Fig. 4. THz absorption spectrum in SA and wheat/polyethylene mix-
tures.

As shown in Figs. 3(a) and 4(a), due to strong absorp-
tion and scattering of high-frequency THz radiation by PS/SA
and polyethylene/wheat mixtures, the absorption spectra of
these mixtures oscillated above 1.6 THz. As expected, sim-
ilar trends were observed between 0.2 THz and 1.6 THz. As
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shown in Fig. 3(a), near the characteristic absorption peaks,
the absorption intensities and absorption coefficients of the
PS/polyethylene/wheat mixtures increased as the PS concen-
tration increased, while the trends of other parts are opposite.
As shown in Fig. 4(a), the absorption intensities and coeffi-
cients from 0.2 THz to 0.88 THz in the SA/polyethylene/wheat
mixtures increased as the SA concentration increased, while
the opposite trend was observed from 0.88 to 1.6 THz. In ad-
dition, the absorption spectrum of PS/SA and wheat powder
mixtures increases approximately linearly as the frequency in-
creased.

3.3. Quantitative analysis of preservative mixtures

As shown in Fig. 2, the absorption peaks of PS appeared
at 0.7 THz, 0.97 THz, and 1.44 THz. Then the feature fre-
quency ranges should be selected as 0.5–1.6 THz. As for other
frequency ranges, the spectral curve is flat and no absorption
peaks were observed. The iPLS algorithm can be used to ob-
tain the proper feature frequency ranges. The full spectrum
can be divided into 10 to 16 subintervals in turn, and a PLS
regression model was established in each interval. Figure 5
shows a spectrum divided into 12 subintervals. The black
dashed line shows the RMSECV value for PLS based on the
full-spectrum model, which is called the threshold for inter-
val selection. The columns show the RMSECV value in each
subinterval. The RMSECV values in the 3rd through 10th in-
tervals are significantly lower than the threshold. The iPLS
wave screening results for 12 subintervals as shown in Ta-
ble 2. From Table 2, we can see that the feature frequency
range could be set to 0.551–1.487 THz.
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Fig. 5. iPLS results for 12 subintervals in the absorption spectrum from PS.

The iPLS wave screening results of different subinter-
vals was shown in the Table 3. The model performance is
evaluated using the average RMSECV and average correla-
tion coefficient R. As shown in Table 3, the model with a PS
spectrum divided 12 subintervals produced the lowest average
RMSECV (0.7521) and the highest average R (0.9637) val-
ues. Meanwhile, the model with an SA spectrum divided into
11 subintervals produced RMSECV and R values of 0.7631

and 0.9614, respectively, when the selected feature frequency
range was 0.454 THz to 1.216 THz.

Table 2. iPLS wave screening results for 12 subintervals of the absorp-
tion spectrum from PS.

No. Frequency range/THz RMSECV R
Full spectrum 0.2–1.6 1.0198 0.932

The 1st subinterval 0.2–0.317 1.2135 0.898
The 2nd subinterval 0.317–0.434 1.0832 0.942
The 3rd subinterval 0.434–0.551 1.0863 0.991
The 4th subinterval 0.551–0.668 0.6882 0.989
The 5th subinterval 0.668–0.785 0.3754 0.996
The 6th subinterval 0.785–0.902 0.2319 0.998
The 7th subinterval 0.902–1.019 0.4073 0.997
The 8th subinterval 1.019–1.136 0.4621 0.996
The 9th subinterval 1.136–1.253 0.9003 0.935

The 10th subinterval 1.253–1.37 0.7712 0.990
The 11th subinterval 1.37–1.487 1.0214 0.936
The 12th subinterval 1.487–1.6 1.2465 0.896

Table 3. iPLS wave screening results for different subintervals of the
PS spectra.

No. of Feature
Average RMSECV Average R

subintervals frequency ranges/THz
10 0.48–1.46 0.8653 0.9513
11 0.454–1.47 0.8464 0.9598
12 0.551–1.487 0.7521 0.9637
13 0.546–1.496 0.7907 0.9621
14 0.5–1.5 0.8763 0.9465
15 0.479–1.502 0.8583 0.95587
16 0.552–1.52 0.8906 0.9476
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Fig. 6. PSO fitness function for (a) PS and wheat mixtures, and (b) SA
and wheat mixtures.

Features at frequencies ranging from 0.551 THz to
1.487 THz for PS and 0.454 THz to 1.216 THz for SA were se-
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lected as the input of the PSO-SVC model for quantitative de-
tection of PS/SA mixtures. Figures 6(a) and 6(b) show the fit-
ness curves with optimized parameters determined using PSO,
where the population number is 30. As shown in Fig. 6, the
PSO fitness function tends to flatten when the iteration times
are over 100. Meanwhile, the prediction accuracy with the
PSO-SVC model for PS/SA and wheat mixtures is 97.765%
and 98.32%, respectively. The optimal penalty parameter is
c = 1.284 and 1.374, and the kernel parameter is g = 0.863
and 0.906 for PS and SA mixtures with wheat, respectively.

Figure 7 shows a comparison of the actual values and
those predicted with the PSO-SVC from 0.551 THz to
1.487 THz and 0.454 THz to 1.216 THz, respectively. The
red straight line has a slope of 1, meaning the actual value is
equal to the predicted value. Figure 7 shows that the predicted
value of the PS/SA and PE mixtures is more accurate than the
predicted value for the PS/SA and wheat mixtures. The rea-
son is that there are less scattering and absorption in the PE
mixture than these in the wheat powder mixture.

PSO-SVC models were also constructed from the full
PS/SA absorption spectrum, which were divided into 12 and
11 subintervals, respectively, in order to verify the reliability
of the model. The prediction results with different models are
shown in Table 4. Compared to the prediction results based
on the full spectrum, the optimized PSO-SVC model provides

higher prediction accuracy for PS/SA mixtures. The results
indicate that the model provides higher prediction accuracy
when the optimal spectral region is selected by iPLS.
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Fig. 7. Scatter plots of the predicted vs. actual value in (a) PS and
wheat/PE mixture, and (b) SA and wheat/PE mixture with the PSO-
SVC model.

Table 4. Prediction results with different PSO-SVC models.

Sample Frequency range/THz c g
Prediction

Correction set/% Prediction set/%

PS + wheat
0.2–1.6 2.163 1.032 96.653 93.672

0.551–1.487 1.284 0.863 97.765 95.356

PS + PE
0.2–1.6 2.026 0.965 97.356 95.685

0.551–1.487 1.206 0.843 98.65 96.657

SA + wheat
0.2–1.6 1.982 1.103 97.473 95.890

0.454–1.216 1.374 0.906 98.32 97.242

SA + PE
0.2–1.6 1.865 1.214 98.656 97.356

0.454–1.216 1.179 0.867 99.01 98.013

These results indicate the preservative content in stored
grain can be measured with THz-TDS combined with a
chemometric method. The iPLS algorithm reduces the ac-
quisition of redundant information of spectral data, simpli-
fies the training model with fewer wavelength points, and im-
proves the efficiency and reliability of the model. PSO-SVC
combined with the iPLS method obtains higher prediction
accuracy than that of full-frequency modeling without pre-
processing of denoising and dimensionality reduction. Gen-
eralization, it reduces overfitting and improves the generaliza-
tion ability of the model.

There still are certain prediction errors during detection,
especially when the preservative content is low. In order to
increase the quantitative prediction accuracy and further de-

crease the detection limit, including the choice of classifica-
tion models and feature spectra, more samples number, and
varieties should be used in further research. Meanwhile, the
system and background noise should be considered, and more
complex situations, such as the existence of more than two
components in the mixture samples, should be taken into ac-
count for the quality control of stored grain and agriculture
products.

4. Conclusions
In this paper, we present a new classification method for

the quantitative determination of preservative content in stored
grain. First, two kinds of preservatives (potassium sorbate and
sorbic acid) were measured and analyzed. An iPLS algorithm
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was used for spectral optimization and regression analysis, and
the PSO-SVC algorithm was used to measure the preserva-
tive content based on both the full spectrum and feature fre-
quency range. Combined with iPLS, the PSO-SVC algorithm
produces higher accuracy when the feature frequency range
is used for classification than when the full spectrum is used
for classification. The experimental results demonstrate the
feasibility of using iPLS and the PSO-SVC algorithm to deter-
mine preservative content from THz-TDS data. The method
presented here is also suitable for THz spectrum analysis and
identification of other additives in agricultural products.
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