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Anomalous Josephson current in quantum anomalous Hall
insulator-based superconducting junctions
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We theoretically study the Josephson effect in a quantum anomalous Hall insulator (QAHI) nanoribbon with a domain
wall structure and covered by the superconductor. The anomalous Josephson current, the nonzero supercurrent at the zero
superconducting phase difference, appears with the nonzero magnetization and the suitable azimuth angle of the domain
wall. Dependent on the configuration of the domain wall, the anomalous current peaks in the Bloch type but disappears in
the Néel type because the y-component of magnetization is necessary to break symmetry to arouse the anomalous current.
The phase shift of the anomalous current is tunable by the magnetization, the azimuth angle, or the thickness of the domain
wall. By introducing a bare QAHI region in the middle of the junction which is not covered by the superconductor, the
anomalous Josephson effect is enhanced such that the phase shift can exceed π . Thus, a continuous change between 0 and
π junctions is realized via regulating the configuration of the domain wall or the magnetization strength. As long as an
s-wave superconductor is placed on the top of the QAHI with a domain wall structure, this proposal can be experimentally
fabricated and useful for the phase battery or superconducting quantum bit.
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1. Introduction

Since theoretically proposed and experimentally con-
firmed, Josephson junctions[1,2] serve as an indispensable de-
vice in the research area of superconducting electronics.[3,4]

Initially, the zero Josephson junction carries supercurrent I
with no bias voltage, the so-called dc Josephson current,
obeying the formula I = Ic sinϕ with ϕ the superconducting
phase difference[5] between two superconducting electrodes.
When a ferromagnetic middle layer with large exchanging
interactions is inserted between superconducting electrodes,
the π junction forms with I = Ic sin(ϕ + π).[6–11] In addi-
tion, the anomalous Josephson junction can carry supercur-
rent even if there is no superconducting phase difference be-
tween two leads, that is, I = Ic sin(ϕ + δ ), also named as the
δ junction.[12–15] This anomalous junction could not only be a
natural phase shifter or a phase battery in the superconducting
circuits but also be crucial for the superconducting quantum
computation.[16,17]

After the first proposal of the anomalous Josephson cur-
rent in the quantum wire[12,18–20] and Luttinger liquid[13] sand-
wiched between two s-wave superconducting electrodes, the-

oretical researches find the possibility of the anomalous cur-
rent in the systems of quantum dots,[21–23] quantum point
contacts,[15] two-dimensional electron gas,[24] quantum Hall
family,[25,26] as well as ferromagnets.[17,27–30] Although the
anomalous Josephson current is suggested in various systems
or devices, it is still difficult to experimentally observe the
anomalous current. Besides the external Zeeman field or the
internal exchange field of a ferromagnet, other ingredients are
necessary to break the symmetry that protects I(ϕ) =−I(−ϕ)

in the superconducting heterostructures, such as the spin–orbit
coupling,[14,15] the spin-fliper,[17] the spin-filtering barrier,[30]

or a quasiparticle injection tuned by the voltage.[29] In fact, the
anomalous Josephson junction is realized merely in nanowire
quantum dots[16] and topological insulators[31] in contact with
normal s-wave superconducting electrodes. More experi-
ments, simple and easy to perform, are still lacking.

Topological insulators have aroused huge interests with
extraordinary properties due to the non-trivial topology com-
ing from the strong spin–orbit coupling.[32] Combining topol-
ogy and magnetism leads to the formation of magnetic topo-
logical insulators.[33–36] Since the magnetic doping breaks the
time-reversal symmetry, lots of novel phenomena emerge, in-
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cluding the quantum anomalous Hall effect,[37,38] the topo-
logical magnetoelectric effect,[39] and the topological ax-
ion state.[40,41] In experiments, quantum anomalous Hall in-
sulators (QAHIs) are successfully fabricated in Cr-doped
(Bi,Sb)2Te3 films,[37,38,42] V-doped (Bi,Sb)2Te3 films,[43,44]

and the intrinsic MnBi2Te4 films.[45–47] Without the exter-
nal magnetic field, the precise quantized Hall conductance
plateaus are observed, which confirms the chiral edge state
classified by the Chern number 𝒞 = 1 and paves way for the
dissipationless spintronic devices.

Magnetic domain walls are the continuous transition re-
gion between magnetized domains with different magneti-
zation directions.[48–51] Configurations of magnetic domain
walls are the result of the competition of the exchange inter-
action, magnetic anisotropy, and dipolar interaction to mini-
mize the total energy.[52] The Néel type and the Bloch type
are two kinds of energy favorable walls, of which magnetiza-
tion direction rotates perpendicularly or in parallel to domain
walls.[53,54] In 2017, Yasuda et al.[55] successfully fabricated a
magnetic domain wall in the QAHI with the tip of the magnetic
force microscope and proved the transport properties of chiral
edge conduction. Recall that QAHIs can be turned into super-
conductors due to the proximity effect with different supercon-
ducting phases marked by Chern number 𝒩 = 0, 𝒩 = 1, and
𝒩 = 2.[56–60] Based on this precursory experiment, we pro-
pose that if an s-wave superconductor is placed on the top of
the QAHI with domain walls, a QAHI-based Josephson junc-
tion forms, as shown in Fig. 1(a). Fulfilled with the super-
conducting pairing, the spin–orbit coupling, as well as the fer-
romagnetic exchanging interaction, this junction should be a
good candidate for the anomalous Josephson current.

In this paper, we construct a QAHI-based Josephson junc-
tion with a domain wall structure as shown in Fig. 1(a). The
magnetization direction in the domain wall gradually changes
from +z-direction to −z-direction along x-direction and the
configuration of this domain wall is labeled by an azimuth an-
gle. We are interested in the anomalous Josephson effect in
these aspects: (i) whether the anomalous Josephson current
exists in the setup device; (ii) where the anomalous current
origins and how the configuration of a domain wall structure
takes effect; (iii) how to regulate the phase shift of the anoma-
lous Josephson current and how to realize the continuous tran-
sition from the 0 junction to the π junction.

We take up the nonequilibrium Green’s function to calcu-
late the current-phase relation and find the anomalous Joseph-
son current in the case of the nonzero magnetization as well
as the nonzero azimuth angle. Based on symmetry analysis,
when the My component of the magnetization in domain wall
is zero, the QAHI-based Josephson junction system is pro-
tected by the σyRy𝒯 symmetry with Ry spatial inversion op-
eration, σy spin rotation operation, and 𝒯 time-reversal opera-

tion, leading to a normal Josephson current. On the other hand,
the nonzero My component for the domain wall configuration
with a nonzero azimuth angle breaks the σyRy𝒯 symmetry and
results in the anomalous Josephson current. We figure out the
phase shift via a Fourier transform of the current-phase rela-
tion and find that the phase shift shows a standard sinusoidal
relation to the azimuth angle. We also analyze the effect of
system parameters on the phase shift as well as the amplitude
of supercurrent. When the azimuth angle is equal to π/2 (i.e.
for the Bloch-type domain wall), the phase shift reaches its
maximum value. Increasing the magnetization and thickness
of the domain wall can strengthen the phase shift. The growth
of junction width hardly affects the phase shift but clearly en-
larges the amount of supercurrent. In addition, the anomalous
Josephson current has similar behavior for the 𝒩 = 0, 𝒩 = 1
and 𝒩 = 2 superconducting phases. Moreover, we consider
another structure of the Josephson junction containing a bare
QAHI region in the center of two superconductors. Bring-
ing in the QAHI layers means decreasing the direct tunneling
of the Cooper pair, and then increasing the effective magne-
tization and facilitating the phase shift, so the phase shift can
continuously be tuned from zero to π via increasing the mag-
netization.

The rest of this paper is organized as follows. Section 2
describes the device consisting of the QAHI-based Josephson
junction with a domain wall, the Hamiltonian, and the trans-
port method adopted to calculate the Josephson supercurrent.
Section 3 shows the appearance of the anomalous current and
how the azimuth angle of the domain wall affects. Section
4 gives the symmetry analysis to explain why the anomalous
current occurs. The effect of system parameters on the phase
shift of the anomalous current is studied in Section 5. Section
6 studies the QAHI-based Josephson junction with inserted
QAHI layers. Finally, conclusion is presented in Section 7.

2. Model and method
To describe the device consisting of the QAHI-based

Josephson junction with a domain wall as shown in Fig. 1(a),
we take up an eight-band Hamiltonian evolving from a four-
band QAHI Hamiltonian,[37] which includes the spin–orbit
interaction together with the exchanging interaction induced
by magnetic doping. Explicitly, we write down the Hamilto-
nian of the QAHI nanoribbon with a domain wall, HQAHI =

∑𝑝Ψ †
𝑝 HQAHI(𝑝)Ψ𝑝, with[37]

HQAHI(𝑝) = νF pyτzσx −νF pxτzσy +m(𝑝)τxσ0 +𝑀 ·𝜎, (1)

where the momentum operator 𝑝 = (px, py) =

(−i∂/∂x,−i∂/∂y) and Ψ𝑝 = [ψ𝑝,t↑,ψ𝑝,t↓,ψ𝑝,b↑,ψ𝑝,b↓]
T with

the annihilation operators ψ𝑝,t↑/↓ and ψ𝑝,b↑/↓ for the top and
bottom layers and the up and down spins. Here σx,y,z and
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τx,y,z are Pauli matrices in the basis of spins (up and down)
and layers (top and bottom), respectively, and σ0 is a 2× 2
identity matrix. The term m(𝑝) = m0 −m1(p2

x + p2
y) describes

the coupling between the top and bottom layers, and from now
on, we set m0 =−0.1 < 0 such that this Hamiltonian presents
the QAH phase rather than the normal insulating phase.[61]
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Fig. 1. (a) Schematic diagram for the QAHI-based Josephson junction:
the bottom base is a QAHI nanoribbon with a domain wall structure
and the top is an s-wave superconductor. The domain wall centers at
the x = 0. The magnetization directions point to the +z (−z) direction
while the x ≪ 0 (x ≫ 0), but it gradually rotates from the +z-direction
to the −z-direction near x = 0. The magnetic orientation is homoge-
neous along the y direction. Note: the illustration is not drawn to scale;
in practice, the thickness of a domain wall Ldw is much smaller than
the size of junction. (b) Phase diagram of superconductors with uni-
form magnetization as functions of the induced superconducting gap
and magnetization. In our calculation, since m0 = −0.1 and ∆ = 0.2,
increasing magnetization from M = 0.05 to M = 0.2 to M = 0.35 tran-
sits the phase from 𝒩 = 0 to 𝒩 = 1 to 𝒩 = 2.

The structure of the domain wall introduced inside junc-
tions is denoted by the magnetic term in Eq. (1), 𝑀 ·
𝜎 = Mxσx + Myσy + Mzσz, and the magnetization 𝑀 =

(Mx,My,Mz) = M(sinθ sinϕaz,sinθ cosϕaz,cosθ).[62] M is
the magnitude of magnetization; θ and ϕaz are the polar and
azimuth angles, describing the orientation of the magnetic mo-
ment in the spherical polar coordinate; x is the direction of
transport with the origin set in the center of the domain wall,
see Fig. 1(a). The magnetization 𝑀 is homogeneous along
the y-direction and points to the +z (−z) direction at the x < 0
(x > 0) side away from the domain wall. Inside the domain
wall near x = 0, it gradually rotates along the Bloch sphere
from the +z-direction to the −z-direction, holding on the same

amplitude M. Thus, the polar angle θ is dependent on the x
coordinate as cosθ(x) = − tanh x

Ldw
, where Ldw describes the

thickness of the domain wall.[62] The azimuth angle ϕaz of the
magnetization is independent of the x coordinate and it de-
scribes the configuration of the domain wall. Here, domain
walls with ϕaz = 0 and ϕaz = π/2 correspond to the classical
Néel-type and Bloch-type configurations, respectively.

To discretize the Hamiltonian in Eq. (1) in a square lat-
tice, we obtain[63]

HQAHI = ∑
𝑖

(Ψ †
𝑖 T0Ψ𝑖+Ψ

†
𝑖 TxΨ𝑖+δ𝑥+Ψ

†
𝑖 TyΨ𝑖+δ𝑦 +H.c.), (2)

where 𝑖= (ix, iy) is the site index. Here iy = 1,2,3, . . . ,W with
Wa the width of the QAHI nanoribbon (a the lattice constant)
and ix = n+1/2 with n the integer. The 4×4 matrices T0/x/y

are

T0 =

(
m0 −4

m1

a2

)
τxσ0 +𝑀 ·𝜎, (3)

Tx =
m1

a2 τxσ0 +
ivF

2a
τzσy, (4)

Ty =
m1

a2 τxσ0 −
ivF

2a
τzσx. (5)

In the following calculation, we set the lattice constant a =

0.75, the Fermi velocity vF = 1, and the parabolic term m1 =

1.[61]

The targeted QAHI-based Josephson junction is ob-
tained by placing an s-wave superconductor on the QAHI
with a continuous domain wall. In the Bogoliubov–
de Gennes (BdG) representation, the Hamiltonian of
the QAHI-based Josephson junction can be written as
follows:[56] HBdG = 1

2 ∑𝑝 Φ†
𝑝HBdG(𝑝)Φ𝑝 with Φ𝑝 =

[(ψ𝑝,t↑,ψ𝑝,t↓,ψ𝑝,b↑,ψ𝑝,b↓),(ψ
†
−p,t↑,ψ

†
−p,t↓,ψ

†
−p,b↑,ψ

†
−p,b↓)]

T

and

HBdG(𝑝) =

(
HQAHI(𝑝) ∆

∆ † −H*
QAHI(−p)

)
, (6)

where

∆ =

(
i e iϕL(R)∆ tσy 0

0 i e iϕL(R)∆ bσy

)
. (7)

Here ∆ t and ∆ b denote the superconducting pairing poten-
tial of the top and bottom layers, which are different due
to the damping of proximity effect. Set ∆ t = ∆ and ∆ b =

0. The chemical potential of superconductors is set to be
zero. To clarify the topological number of the superconduc-
tors with uniform magnetization, we plot the superconducting
phase diagram with the boundaries: ∓∆M+M2 = m2

0,[56] see
Fig. 1(b). Increasing the induced gap drives the hybrid sys-
tem going through the phase transition from 𝒩 = 0 or 𝒩 = 2
to 𝒩 = 1, where Chern number 𝒩 denotes the number of
edge states in the Majorana basis.[64] The 𝒩 = 0 phase is
the trivial superconducting phase without the Majorana edge

097401-3



Chin. Phys. B Vol. 29, No. 9 (2020) 097401

modes. However, the 𝒩 = 1 phase is the topological super-
conductor and carries one chiral Majorana edge mode along
the sample edge, and the 𝒩 = 2 phase has two chiral Majo-
rana edge modes and is topologically equivalent to the QAHI
phase. Moreover, with a certain induced gap, increasing the
magnetization from zero can also lead to the phase transition
from 𝒩 = 0 to 𝒩 = 1 and eventually to 𝒩 = 2, as shown in
Fig. 1(b).

In the following, we set ∆ t = ∆ = 0.2 and ∆ b = 0 and
the superconducting pairing potential in the left and right parts
picks the same amplitude. Here ϕL and ϕR are the supercon-
ducting phases in the left and right sides of the junction with
x < 0 and x > 0, and the superconducting phase difference
ϕ = ϕL −ϕR. Then to discretize the BdG Hamiltonian in a
square lattice, HBdG changes to

HBdG = HQAHI +∑𝑖Ψ
†
𝑖 ∆Ψ

†
𝑖 +∑𝑖Ψ𝑖∆

†Ψ𝑖, (8)

with the superconducting phase being ϕL and ϕR for ix ≤−1/2
and ix ≥ 1/2, respectively.

Here we first consider that the s-wave superconductor
fully covers the entire QAHI nanoribbon with a domain wall
structure, which results in the superconducting gap ∆ being
equal everywhere, i.e. ∆ being independent of the site in-
dex i. In Section 6, we will study the case that the central
region of the QAHI nanoribbon is not covered by the super-
conductor. Although the inducing superconducting gap ∆ is
equal everywhere when the QAHI nanoribbon is fully covered
by the superconductor, the QAHI-based Josephson junction is
not translational invariant along the x-direction due to the do-
main wall at x = 0. Therefore it is suitable to be regarded as a
Josephson junction, and the present system is similar to the S–
S′–S Josephson junction in Refs. [65–68]. Due to the full cov-
erage of the superconductor, the supercurrent can flow through
both the conventional s-wave superconductor on the top and
the induced superconductor in the QAHI nanoribbon. How-
ever, the current flowing through the top is normal Joseph-
son current and the anomalous Josephson current only derives
from the QAHI-based superconducting junction. In addition,
the present model can also describe the system that the QAHI
junction is covered by two separate superconductors but with
the slit being narrow, e.g. in the width of several nanometers.
Then the induced superconducting pairing potential exists ev-
erywhere in the junction and its amplitude ∆ is almost inde-
pendent of the site index i. In this case, the current can only
flow through the QAHI-based Josephson junction.

To calculate the current through the QAHI-based Joseph-
son junction at the zero bias, we divide the junction into the left
(L) and right (R) parts at x = 0 such that the total Hamiltonian
is expressed as HBdG = HL +HR +HT. Here HL (HR) is the
Hamiltonian of the left (right) region with the index ix ≤−1/2

(ix ≥ 1/2), and HT denotes the coupling between the left re-
gion and the right region, HT = ∑iy Ψ

†
(−1/2,iy)

TxΨ(1/2,iy)+H.c.
Given the current conservation law, we derive the current for-
mula at the interface of the left and right regions. With the
particle number operator of the left part denoted as N̂L =

∑ix<0,iy Ψ
†
(ix,iy)

Ψ(ix,iy), the current flowing from left to right is

expressed as the time evolution of N̂L,[69–71]

I = e
〈

dN̂L(t)
dt

〉
=− ie

h̄

〈[
N̂L(t),HBdG(t)

]〉
= − e

h̄ ∑
iy

Tr
(

Tx i
〈

Ψ
†
(−1/2,iy)

(t)⊗Ψ(1/2,iy)(t)
〉
+H.c.

)
. (9)

Here the operation ⊗ denotes the Kronecker prod-
uct, and to be specific,

(
Ψ

†
(−1/2,iy)

(t)⊗Ψ(1/2,iy)(t)
)

pq
=(

(Ψ †
(−1/2,iy)

(t)
)

q

(
Ψ(1/2,iy)(t)

)
p
. The averaged quantity

i
〈

Ψ
†
(−1/2,iy)

(t)⊗Ψ(1/2,iy)(t)
〉

can be expressed in terms of the

nonequilibrium Keldysh Green’s functions G<
RL,11(t, t; iy, iy).

For the superconducting state, it is convenient to introduce the
BdG representation in which 𝐺<

RL adopts the form[72]

𝐺<
RL
(
t, t ′; iy, i′y

)
= i

〈(
Ψ

†
(−1/2,i′y)

(t ′) Ψ T
(−1/2,i′y)

(t ′)
)
⊗

(
Ψ(1/2,iy)(t)
Ψ

†T
(1/2,iy)

(t)

)〉
. (10)

Then in terms of 𝐺<
RL, the current is given by

I = − e
h̄ ∑

iy

Tr(TLR𝐺
<
RL (t, t; iy, iy)

−𝐺<
LR (t, t; iy, iy)TRL), (11)

where TLR =

(
1 0
0 0

)
⊗Tx and TRL =

(
1 0
0 0

)
⊗T †

x .

As to the determination of these nonequilibrium Green’s
functions 𝐺<, they can be obtained from the retarded and
advanced Green’s functions. When Fourier transformed,
𝐺<

LR(ε) = 𝐺r
LL(ε)T̂x𝑔

<
RR(ε) +𝐺<

LL(ε)T̂x𝑔
a
RR(ε), where T̂x =(

Tx 0
0 −T *

x

)
. The retarded and advanced Green’s functions are

defined as 𝑔r
LL(ε) = [𝑔a

LL(ε)]
† = [ε𝐼−HL + iη ]−1. Here η

is a small energy relaxation rate which takes into account the
damping of quasiparticle states due to the inelastic process in-
side the electrodes.[73] 𝐺r

LL(ε) =
[
[gr

LL]
−1 − T̂x𝑔

r
RRT̂ †

x
]−1 and

𝐺a
LL(ε)= [𝐺r

LL(ε)]
†. Since there is no bias voltage, 𝑔<RR (ε)=

− f (ε)[𝑔r
RR (ε)− 𝑔a

RR (ε)] and 𝐺<
LL (ε) = − f (ε)[𝐺r

LL (ε)−
𝐺a

LL (ε)] according to the fluctuation-dissipation theorem,
where f (ε) is the Fermi distribution function at energy ε and
at zero temperature. Also, 𝐺<

RL(ε) can be derived in the sim-
ilar procedure, just by interchanging the subscripts L and R.
Eventually, the supercurrent in QAHI-based junction, denoted
as I, is

I =− e
h

∫
dεTr

[
TLR𝐺

<
RL (ε)−𝐺<

LR (ε)TRL
]
. (12)
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3. Occurrence of anomalous current

We find that the anomalous current appears in the QAHI-
based Josephson junction in Fig. 1. The current-phase rela-
tions calculated in Fig. 2 directly show that the non-zero su-
percurrent may occur with zero superconducting phase differ-
ence. Two key factors of domain walls play roles: the magneti-
zation amplitude M and the configuration depending on the az-
imuth angle ϕaz. The nonzero magnetization of domain walls
is a necessary condition and positively impacts the value of the
anomalous current by comparing Figs. 2(a)–2(d). The stan-
dard sinusoidal curve with M = 0 in Fig. 2(a) refers to the nor-
mal Josephson junction without domain walls. Since the mag-
netization M = 0.05, M = 0.2, and M = 0.35 in Figs. 2(b), 2(c),

and 2(d) correspond to the 𝒩 = 0, 𝒩 = 1, and 𝒩 = 2 super-
conducting phases [see Fig. 1(b)], the anomalous Josephson
current appears for all the three superconducting phases, indi-
cating that the anomalous Josephson current is independent
of the superconducting phase. The QAHI-based Josephson
junction with Bloch-type domain wall (ϕaz = π/2) presents
the most significant anomalous Josephson effect whereas the
Néel-type one (ϕaz = 0) shows no anomalous current. With the
increase of the azimuth angle ϕaz from 0 to π/2, the anoma-
lous supercurrent (i.e. the current I at the phase difference
ϕ = 0) increases and the current-phase relation holds a sinu-
soidal function in the period of 2π [see Figs. 2(b)–2(d)]. Thus,
the properties of the domain wall (M and ϕaz) are of vital im-
portance to produce the anomalous current.
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Fig. 2. Current–phase relations, i.e., the current I versus the superconducting phase difference ϕ with the magnetization M = 0 (a), 0.05 (b),
0.2 (c), and 0.35 (d). Different curves correspond to different azimuth angles ϕaz = 0, π/5, and π/2. The vertical dashed lines mark ϕ = π/5
and π/2. The inset in (b) amplifies the current around ϕ = 0 to highlight the anomalous current. Other parameters are the nanoribbon width
W = 80 and thickness of the domain wall Ldw = 3.

Let us study the dependence of the anomalous current on
the azimuth angle ϕaz at the zero phase difference. Figure 3(a)
shows the anomalous current exists if ϕaz ̸= 0 and ϕaz ̸= π .
When ϕaz ∈ (0,π), the anomalous current I is positive, indicat-
ing a positive phase shift of the current-phase relation. How-
ever, when ϕaz ∈ (π,2π), both the anomalous current I and
the phase shift are negative. In addition, the larger the magne-
tization M is, the greater the anomalous current I is. Here the
supercurrent I(ϕ = 0,ϕaz) oscillates sinusoidally in 2π period
and it is an odd function of ϕaz, satisfying

I(ϕ = 0,ϕaz) =−I(ϕ = 0,−ϕaz). (13)

The azimuth angle ϕaz also influences the supercurrent I
of QAHI-based Josephson junctions at nonzero phase differ-
ence ϕ = π/5, π/2, π , and 3π/2 shown in Figs. 3(b)–3(e).
When the magnetization M = 0, the current is independent of

ϕaz. When M ̸= 0, the azimuth angle arouses the oscillation of
the supercurrent I(ϕ,ϕaz) at a certain phase difference. With
the increase of M, the oscillating amplitude of the current ver-
sus ϕaz increases. When ϕ near 0, the oscillating period of
the current versus ϕaz is 2π as shown in Fig. 3(b). However,
when ϕ = π/2 or near π/2, the oscillating period seems to be
π [see Fig. 3(c)]. Here the curves in Fig. 3 are in accord with
those in Fig. 2, e.g., see the curves in Fig. 3(b) [Fig. 3(c)] at
M = 0.2 (colored purple) and the currents along the vertical
dashed lines at ϕ = π/5 [π/2] in Fig. 2(c). In addition, the
behaviors of the current for the 𝒩 = 0, 𝒩 = 1, and 𝒩 = 2
superconducting phases are not essentially different. Further-
more, from numerical results [e.g. by comparing Fig. 3(a) with
3(d) and Fig. 3(c) with 3(e)], the supercurrent has the exact re-
lations

I(ϕ,ϕaz) =−I(−ϕ,−ϕaz), (14)
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I(ϕ,ϕaz) = I(ϕ +2π,ϕaz), (15)

I(ϕ,ϕaz) = I(ϕ,ϕaz +2π). (16)

We briefly conclude that the anomalous current of QAHI-
based Josephson junctions will occur if the domain wall struc-
ture satisfies M ̸= 0 and ϕaz ̸= 0 and π . The requirement of

nonzero M is reasonable, otherwise the device reverts to a nor-

mal Josephson junction. It should be noticed that why the

Néel-type domain wall does not contribute to the anomalous

current and where the relation in Eq. (14) roots remain further

discussions.
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Fig. 3. Supercurrent I versus the azimuth angle ϕaz, corresponding to ϕ = 0 (a), π/5 (b), π/2 (c), π (d), and 3π/2 (e). Curves in different
colors represent different values of magnetization M = 0, 0.05, 0.2, and 0.35. All parameters unmentioned are the same as those in Fig. 2.

4. Analysis of symmetry
In this section, we figure out the broken symmetry needed

for the anomalous current by applying symmetry analysis to
the Hamiltonian of the QAHI-based Josephson junction. Be-
sides the non-equilibrium Green’s method in Eq. (12), the su-
percurrent through the QAHI-based Josephson junction could
also be theoretically obtained via the thermodynamic relation

I(ϕ) =
2e
h̄

∂F
∂ϕ

, (17)

where F denotes the free energy of the junction, F =

−T lnTr[e−HBdG(ϕ)/T ] with the temperature T .
In order to obtain the anomalous current, I(ϕ = 0) ̸=

0, the free energy is requested to be not symmetric under
the transformation of superconducting phase ϕ → −ϕ . If
F(−ϕ) = F(ϕ), then I(−ϕ) = −I(ϕ) will come and no
anomalous current will exit. Therefore, once finding out a uni-
tary transformation U such that

UHBdG(ϕ)U† = HBdG(−ϕ), (18)

the anomalous current is zero, then we can determine the nec-
essary condition for the appearance of the anomalous current.

In two-dimensional systems, there are three kinds of sym-
metry operations:[74] (i) spatial inversion operations Rx, Ry,
and Rz act on the coordinates of Hamiltonians, that is, Rx trans-
forms x to −x; (ii) spin rotation operations σx, σy, and σz act in
the spin space, e.g., σx transforms σx → σx, σy →−σy, σz →
−σz; (iii) the time-reversal operation, denoted as 𝒯 = iσy𝒦,
where 𝒦 is the complex conjugate operator. These symmetry
operations and their composition serve as the candidates for
U .

We first analyze how the U transforms the QAHI-based
Josephson junction with an abrupt domain wall. The Hamil-
tonian HBdG can be rewritten as HBdG(ϕ) = HQAHI +H∆ (ϕ),
where the magnetic term of HQAHI is described by 𝑀 ·𝜎 =

M[Θ(−x)−Θ(x)]τ0σz, with Θ being the Heaviside function.
Rewrite the superconducting pairing potential in Eq. (6) in
the direct product space of the particle-hole, layer, and spin
spaces,

H∆ (ϕ) =

(
0 ∆

∆ † 0

)
= Θ(−x)(−cos

ϕ

2
ζy + sin

ϕ

2
ζx)

⊗1
2
[(∆t +∆b)τ0 +(∆t −∆b)τz)]⊗σy

+Θ(x)
(
− cos

ϕ

2
ζy − sin

ϕ

2
ζx

)
⊗1

2
[(∆t +∆b)τ0 +(∆t −∆b)τz)]⊗σy, (19)

where ζx,y,z is the Pauli matrix acting on the particle-hole
space, and the superconducting phases of the left and right
parts are chosen as ϕL =−ϕ

2 and ϕR = ϕ

2 without loss of gen-
erality. After testing the symmetry operations in all possible
arrangements like Rx, σyRy, σxRz𝒯 , etc., the unitary trans-
formation U = σyRy𝒯 satisfies Eq. (18). Thus, there is no
anomalous current in the QAHI-based junction with an abrupt
domain wall.

Next we discuss the QAHI-based Josephson junction with
a continuous domain wall structure. The Hamiltonian is ex-
plicitly composed of pyσx, pyσx, m(𝑝)σ0, the magnetic term
𝑀 ·𝜎 = Mx(x)σx +My(x)σy +Mz(x)σz, and the pairing term
H∆ (ϕ). Table 1 summarizes how each part of the Hamil-
tonian transforms when we apply the unitary transformation
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U = σyRy𝒯 . Here the terms (pxσy and m(𝑝)σ0), which are not
listed in Table 1, remain unchanged under the unitary trans-
formation σy, Ry and 𝒯 . Although magnetic terms Mxσx and
Mzσz break the isolated symmetry σy or Ry, they preserve the
combined symmetry σyRy𝒯 . It is the y-component of mag-
netization that breaks σyRy𝒯 : My →−My under U = σyRy𝒯 ,
that is,

σyRy𝒯 HBdG(ϕ,ϕaz)[σyRy𝒯 ]† = HBdG(−ϕ,−ϕaz). (20)

Therefore, the anomalous current has the property I(ϕ,ϕaz) =

−I(−ϕ,−ϕaz) as shown in Eq. (14).

Table 1. Symmetry operations on Hamiltonian. Here we take “–” to
represent that the Hamiltonian term remains unchanged under the cor-
responding symmetry operation.

U = σyRy𝒯
𝒯 Ry σy

H∆ (ϕ) H∆ (−ϕ) – –

pyσx – −pyσx −pyσx

Mz(x)σz −Mz(x)σz – −Mz(x)σz

Mx(x)σx −Mx(x)σx – −Mx(x)σx

My(x)σy −My(x)σx – –

Recalling that ϕaz = 0 and π correspond to Mx ̸= 0 and
My = 0, it is unsurprising that there will be no anomalous
current protected by symmetry U = σyRy𝒯 in the Néel-type
domain wall even if the magnetization amplitude is nonzero.
Thus, the My component of a domain wall is indispensable to
the occurrence of the anomalous current.

5. Manipulation of the phase shift
As before, we display the existence and the origin of

the anomalous Josephson current together with the observable
phase shift. In this section, we quantify how the anomalous
Josephson effect is affected by systematic parameters: the az-
imuth angle ϕaz, the amplitude of magnetization M, the thick-
ness of a domain wall Ldw, and the width of the QAHI-based
junction W .

From now on, we precisely calculate the phase shift δ

of the supercurrent from current-phase relations as shown in
Fig. 2 via Fourier transformation. After taking the Fourier
transformation, the supercurrent can be expressed as

I(ϕ) =
∞

∑
n=1

An sin(nϕ +δn),

where the amplitude and the phase shift can be obtained from
An =

√
a2

n +b2
n and δn = arctan(bn/an), with

an =
1
π

∫ 2π

0
I(ϕ)(sinn)ϕ dϕ, (21)

bn =
1
π

∫ 2π

0
I(ϕ)(cosn)ϕ dϕ. (22)

Hereafter we focus on the first-order frequency component,
the amplitude A1 and the phase shift δ = δ1. The high-order
frequency components are ignored since the 2nd-order fre-
quency component contributes less than one percent to the su-
percurrent.

We first find that the azimuth angle ϕaz of a domain
wall periodically modulates the phase shift δ and the ampli-
tude A1 of the supercurrent. The phase shift oscillates versus
the azimuth angle in the period of 2π and is an odd func-
tion, i.e. δ (−ϕaz) = −δ (ϕaz), as shown in Figs. 4(a) and
4(c). The sinusoidal oscillation of δ versus ϕaz is rooted in
the varying magnetic components, My = M sinθ sinϕaz and
Mx = M sinθ cosϕaz. Roughly to say, the phase shift δ is
proportional to My component of the magnetization. Since
My ∼ sinϕaz, the phase shift δ ∼ sinϕaz. Similarly, the am-
plitude A1 also oscillates versus the azimuth angle. However,
the period is π rather than 2π and A1 is an even function
of ϕaz, as shown in Figs. 4(b) and 4(d). Based on the anti-
symmetry of supercurrent in Eq. (14) combined with Eqs. (21)
and (22), we can straightforwardly obtain the odd-even rela-
tion A1(−ϕaz) = A1(ϕaz) and δ (−ϕaz) =−δ (ϕaz).

Figure 4 also shows that varying the magnetization M and
the junction width W can preserve the periodic and odd-even
properties of δ (ϕaz) and A1(ϕaz) but influence the oscillating
amplitude. With non-zero magnetization, the phase shift al-
ways peaks at ϕaz = π/2, confirming that the Bloch-type do-
main wall is preferable for the anomalous Josephson effect.
Thus, we define the maximum values of phase shift and su-
percurrent amplitude as δmax = δ (ϕaz = π/2) and the corre-
sponding supercurrent amplitude is Am = A1(ϕaz = π/2). In
the following, we study to which extent δmax and Am could be
tuned by other parameters of the QAHI-based junction with a
Bloch-type domain wall.
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Fig. 4. Phase shift δ and amplitude A1 versus the azimuth angle ϕaz
in QAHI-based Josephson junction, calculated from Eqs. (21) and (22).
[(a), (b)] Curves with different magnetization M = 0, 0.05, 0.2, 0.35 and
other parameters Ldw = 3 and W = 80. [(c), (d)] Curves with different
widths W = 20, 40, 60, 80 and other parameters Ldw = 3 and M = 0.2.

Overall, the increasing magnetization M strengthens the
maximum phase shift δmax but weakens the supercurrent am-
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plitude Am, as shown in Figs. 5 and 6. The maximum phase
shift δmax is nearly proportional to the magnetization M. When
M increases, the component My increases and effectively de-
votes to the anomalous Josephson current. Also, curves of
δmax(M) are continuous and smooth without abrupt change
points [see Figs. 5(a) and 6(a)] even if the superconducting
state varies from the 𝒩 = 0 phase through 𝒩 = 1 phase to
𝒩 = 2 phase, i.e., the bulk gap closes and opens twice, when
M increases from 0 to 0.5. Actually, in the superconducting
junction, what mainly carries the current is neither edge states
nor bulk states. In the two superconducting leads with x ≪ 0
or x ≫ 0, the dominant carrier is Cooper pairs leading to the
non-dissipative supercurrent. The edge states can also give
rise to current but not so much. The bulk states above the gap
correspond to the quasiparticles being scattered, not leading to
supercurrent. Around the central region with a domain wall,
the current comes from the Andreev bound states.[75] Due to
the supercurrent carried by the Cooper pairs in the supercon-
ducting leads and by the Andreev bound states in the junction
region, this leads to a large Josephson current in the 𝒩 = 0
phase and the smooth curves of δmax(M) for the superconduct-
ing state varying from the 𝒩 = 0 phase through 𝒩 = 1 phase
to the 𝒩 = 2 phase. In addition, with the increase of the mag-
netization, the supercurrent amplitude Am slightly decreases
but still keeps a large value as shown in Figs. 5(b) and 6(b).
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Fig. 5. The maximum phase shift δmax (a) and supercurrent ampli-
tude Am (b) versus magnetization M in the Bloch-type domain wall
(ϕaz = π/2). Different curves label different thicknesses of a domain
wall Ldw = 10−5, 0.5, 1, 2, 3, and 4. All parameters unmentioned are
the same as those in Fig. 2.

Figures 5(a) and 5(b) show the maximum phase shift δmax

and the supercurrent amplitude Am for the different thickness
Ldw of the domain wall. The maximum phase shift is strongly

affected by the thickness Ldw. Explicitly, Ldw → 0 describes
an abrupt domain wall where 𝑀 = (0,0,M[Θ(−x)−Θ(x)]).
In such a case, even if M ̸= 0, no anomalous current can ex-
ist and δmax = 0, as depicted by the horizontal straight line in
Fig. 5(a), that is, at Ldw → 0, I(ϕ = 0,ϕaz) = 0 for any azimuth
angle ϕaz. When Ldw ̸= 0, the magnetization in the domain
wall gradually changes from +z-direction to −z-direction, im-
plying the nonzero My in the Bloch-type configuration. Thus,
the maximum phase shift δmax appears. The larger the thick-
ness Ldw is, the greater the δmax grows [see Fig. 5(a)], because
the

∫
My(x)dx has a larger value corresponding to a larger Ldw.

Here both the magnetization M and the thickness Ldw are posi-
tively correlated with the quantity

∫
My(x)dx, which is the key

factor to cause the anomalous current in QAHI-based Joseph-
son junctions. On the other hand, the thickness Ldw shows tiny
effects on the supercurrent amplitude [see Fig. 5(b)]. With the
increase of the thickness Ldw, the amplitude Am slightly de-
creases only.

The width of a QAHI-based Josephson junction has mi-
nor influence in the maximum phase shift δmax but significant
influence in the supercurrent amplitude Am. The maximum
phase shift δmax is not sensitive to the width W [see Fig. 6(a)].
Except for the very small width W = 20, the curves of δmax

versus the magnetization M for the width W = 40, 60 and 80
are almost overlapped together. On the other hand, the increas-
ing width W boosts the supercurrent amplitude Am as shown in
Fig. 6(b). Here Am is approximately proportional to the width
W . The wider the nanoribbon is, the more supercurrent it can
carry, which benefits the experimental detection of the anoma-
lous Josephson effect.
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Fig. 6. The maximum phase shift δmax (a) and amplitude of su-
percurrent Am (b) versus magnetization M in the Bloch-type domain
wall (ϕaz = π/2). Different curves label different widths of junction
W = 20, 40, 60, and 80. All parameters unmentioned are the same as
those in Fig. 2.
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To demonstrate the important effect of the component My

of magnetization rather than the component Mz on the amount
of the anomalous current, we propose other paths depicting
how the magnetization from +z-direction on the left side tran-
sits into −z-direction on the right side. Here the azimuth
angle is set to be ϕaz = π/2 to study the maximum phase
shift δmax in the Bloch-type domain wall. The magnetiza-
tion is set 𝑀 =(0,αM sinθ ,M cosθ) with My =αM sinθ and
cosθ(x) =− tanh x

Ldw
. The projection of magnetization in the

y–z plane is a semi-ellipse as shown in the inset of Fig. 7(b).
The coefficient α changes the My but keeps Mz. When α = 1,
the absolute value of magnetization 𝑀 is constant inside the
domain wall as discussed above. Figure 7(a) shows that the
maximum phase shift δmax strongly depends on the coefficient
α: (i) for α = 0, δmax is zero regardless of the magnetization
M, because of My = 0; (ii) for α < 1, δmax is less than the for-
mer case with α = 1; (iii) for α > 1, δmax is larger than that
of α = 1. Approximately, the maximum phase shift δmax is
proportional to the α , i.e., My. It is confirmed that the com-
ponent My of the magnetization is the key factor to lead to the
anomalous current again. On the other hand, the amplitude of
supercurrent Am weakly relies on α [see Fig. 7(b)]. With the
growth of α (My), the supercurrent amplitude slightly reduces,
but Am still has a large value.
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Fig. 7. The maximum phase shift δmax (a) and amplitude of super-
current Am (b) versus magnetization M in the Bloch-type domain wall
(ϕaz = π/2). Different curves label different paths with coefficients
α = 0.6, 0.8, 1, 1.2, and 1.4. The inset in (b) shows the projection of
magnetization in the y–z plane. All parameters unmentioned are the
same as those in Fig. 2.

Thus, we briefly claim that the azimuth angle, which de-
termines the configuration of the domain wall, periodically
regulates the anomalous current in both the phase shift and the
current amplitude. In the Bloch-type domain wall, the maxi-

mum phase shift could be enlarged by increasing the magneti-
zation or thickening the domain wall; the supercurrent ampli-
tude could be boosted by widening the junction.

6. QAHI-based anomalous Josephson junction
with bare QAHI layers and 0–π junction tran-
sition
So far, we have discussed the Josephson junction where

the superconductor covers the entire QAHI nanoribbon with
a domain wall structure. In this case, the supercurrent can
directly flow through the superconductor and it is very large.
In order to further enhance the phase shift, in this section we
consider a QAHI-based Josephson junction with bare layers,
i.e., the central region of the QAHI nanoribbon is not covered
by superconductor, as shown in Fig. 8(a). That is to say, we
consider a long Josephson junction.[11,65,76] The Hamiltonian
is the same as Eq. (8) except that the superconducting pair-
ing potentials ∆ are 0 when (−LQ + 1/2) ≤ ix ≤ (LQ − 1/2).
Here 2LQ denotes the number of bare QAHI layers. We cal-
culate the supercurrent by Eq. (12), the maximum phase shift
δmax by Eq. (21), and the amplitude Am by Eq. (22).

In addition, the supercurrent can also be obtained from
the energy spectrum as a function of the superconducting
phase difference ϕ , in which the Andreev bound states appear
in the bulk gap of the left and right superconducting leads. The
supercurrent flowing through the Josephson junction is mainly
carried by the Andreev bound states. For the Néel-type domain
wall with the azimuth angle ϕaz = 0, the energy spectrum ex-
hibits symmetry versus the phase difference ϕ , which results
in the supercurrent being 0 at ϕ = 0. That is, the anomalous
Josephson current disappears for the Néel-type domain wall.
On the other hand, while the azimuth angle ϕaz ̸= 0 (e.g. the
Bloch-type domain wall with ϕaz = π/2), the aforementioned
symmetry is broken via the non-zero component My of mag-
netization, and the energy spectrum at −ϕ is not equal to that
at ϕ as usual. This leads to the anomalous Josephson current.

Similar to the superconducting full coverage case, the
phase shift δ of the anomalous current shows a sinusoidal re-
lation to the azimuth angle ϕaz, and δ reaches the maximum
value in the Bloch-type domain wall with ϕaz = π/2. Fig-
ures 8(b) and 8(c) show the maximum phase shift and the su-
percurrent amplitude at ϕaz = π/2 with the existence of bare
QAHI layers. For comparison, we also plot the curve with no
bare QAHI layers, marked by LQ = 0, which has been studied
in the above section.

The supercurrent amplitude Am is insensitive to the
change of magnetization M. As M increases, Am slightly
reduces: Am at M = 0.45 is about 70% of that at M = 0.
With the increase of the number of bare layers, the super-
current amplitude Am strongly reduces, which is similar to
the previous results in the long Josephson junction.[11,65,76]
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Nonetheless, even for LQ = 4 (i.e. with 8 bare QAHI layers),
the supercurrent amplitude Am still maintains the value about
0.04Am(LQ = 0), which is measurable in experiments. In ad-
dition, the increase of junction width can significantly enlarge
the amplitude of supercurrent but keep the amount of the phase
shift.
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Fig. 8. (a) Schematic diagram for the QAHI-based Josephson junction with
bare QAHI layers. The domain wall structure is gradually rotating along the x
direction, plotted by vectors pointing the orientation of magnetization. Note:
the illustration is not drawn to scale; in practice, the thickness of a domain
wall Ldw is much smaller than the size of junction. The maximum phase shift
δmax (b) and amplitude of supercurrent Am (c) versus magnetization M in
the Bloch-type domain wall (ϕaz = π/2). Different curves label the different
numbers of the bare QAHI layer LQ. All parameters unmentioned are the
same as those in Fig. 2.

The maximum phase shift δmax monotonically increases
still as the magnetization M increases, and δmax is positively
correlated with M, see Fig. 8(b). Notably, the existence of
bare QAHI layers (LQ ̸= 0) dramatically enhances the maxi-
mum phase shift δmax. Since the direct tunneling of Cooper
pairs from the left side to the right side strongly reduces, the
component of anomalous current obviously rises. The more
the LQ increases, the larger the δmax becomes. With the mag-
netization M = 0.45, the maximum phase shift exceeds π for
LQ = 3 and 4. This allows us to achieve a continuous regula-
tion between the 0 junction and the π junction via tuning the
magnetization or the azimuth angle.

In order to clearly show the continuous transition between
0 and π Josephson junctions, Fig. 9 shows the current-phase
relation, I–ϕ , for the different magnetization M at ϕaz = π/2.
When M = 0, the supercurrent equals I = Ic sinϕ and presents
a normal Josephson junction (or 0 junction) with δ = 0. When
M increases, the phase shift δ rises from 0, the curve of I–
ϕ gradually shifts to the left, and the current-phase relation
is I = Ic sin(ϕ + δ ), denoted as the anomalous junction, see
curves with M = 0.17 and 0.27 in Fig. 9(a) and M = 0.07 and
0.2 in Fig. 9(b). When M further increases to a certain value,
the supercurrent equals I = Ic sin(ϕ + π) and presents a π

Josephson junction with δ = π , see the curves with M = 0.37
in Fig. 9(a) and M = 0.32 in Fig. 9(b). Therefore, by tuning
the magnetization M, we can continuously change between the
0 and π junction. Moreover, since the maximum phase shift at
ϕaz = π/2 could reach or exceed π , it is also possible to con-
tinuously achieve the 0–π transition of Josephson junction via
regulating the azimuth angle ϕaz of the domain wall.
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Fig. 9. Continuous transition from 0 junction to π junction in QAHI-based
Josephson junction with bare QAHI layers. The supercurrent I versus the
phase difference ϕ with (a) LQ = 3 and (b) LQ = 4 in the Bloch-type do-
main wall (ϕaz = π/2). Different curves correspond to different magnetization
M = 0,0.17,0.27,0.37 in (a) and M = 0,0.07,0.2,0.32 in (b). All parameters
unmentioned are the same as those in Fig. 2.

7. Discussion and conclusion
In summary, we have studied the Josephson effect in the

system consisting of the quantum anomalous Hall insulator
nanoribbon with a domain wall structure covered by the super-
conductor. The current–phase relation shows the occurrence
of the anomalous Josephson current under the condition that
the magnetization is nonzero and the azimuth angle of the do-
main wall is neither 0 nor π . Through the symmetry analysis
of Hamiltonians, the y-direction component My of the magne-
tization is the key factor to cause the anomalous current. In the
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absence of My, the system has the symmetry σyRy𝒯 , leading to
the disappearance of the anomalous current. Thus the anoma-
lous current disappears for the Néel-type domain wall, and it
reaches the maximum value for the Bloch-type domain wall.
Also, the phase shift of anomalous Josephson junction oscil-
lates in a sinusoidal relation to the azimuth angle ϕaz, where
the maximum value locates at ϕaz = π/2. Several factors af-
fecting the maximum phase shift as well as the amplitude of
supercurrent are studied in detail.

For experiments, the QAHI-based anomalous Josephson
junction can be connected with a normal 0 junction to con-
struct a superconducting quantum interference ring. Varying
the magnetic flux through the superconducting ring derives the
current-phase relation presenting the existence of anomalous
Josephson effect. For more significant effect, experimentalists
can increase the magnetization, thicken the domain wall, and
widen the junction. Also, by introducing a bare QAHI region,
the phase shift could reach and exceed π , so it is possible to
continuously drive the 0 junction into the π junction by chang-
ing the configuration of the domain wall or the magnetization
strength. Consequently, this experimentally friendly anoma-
lous Josephson junction could pave ways for realizing the po-
tential phase battery as well as the superconducting quantum
computation.
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