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Flattening is flattering: The revolutionizing 2D electronic systems∗
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Two-dimensional (2D) crystals are known to have no bulk but only surfaces and edges, thus leading to unprecedented
properties thanks to the quantum confinements. For half a century, the compression of z-dimension has been attempted
through ultra-thin films by such as molecular beam epitaxy. However, the revisiting of thin films becomes popular again, in
another fashion of the isolation of freestanding 2D layers out of van der Waals (vdW) bulk compounds. To date, nearly two
decades after the nativity of the great graphene venture, researchers are still fascinated about flattening, into the atomic limit,
all kinds of crystals, whether or not they are vdW. In this introductive review, we will summarize some recent experimental
progresses on 2D electronic systems, and briefly discuss their revolutionizing capabilities for the implementation of future
nanostructures and nanoelectronics.
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1. Introduction
Flattening crystals into the atomic limit is a way to study

model systems of such as superconducting quantum phase
transitions in two dimensions (2D),[1,2] 2D quantum well and
related physics,[3–6] the modification of critical behaviors in
functional materials in 2D limit,[7–11] and the modern nano-
electronics based on multilayered thin films.[12–16] It is known
that, to obtain those thin 2D films, techniques such as molecu-
lar beam epitaxy have been fostered in the community of sur-
face sciences for decades,[17] with the grown atomically thin
films often bound to the epitaxial substrates.

In early 2000s, researchers discovered that graphene, a
free-standing single layer of graphite, can be obtained through
a couple of rather simple methods including Scotch tape
exfoliation[18] and chemical vapor deposition,[19] thus liber-
ating the degrees of freedom of lattice-matching as well as
the harsh growth conditions required in conventional epitaxial
methods. After the big bang of mechanical exfoliation of van
der Waals (vdW) crystals, single layer crystals with all kinds
of compositions are routinely isolated from their bulk forms,
thanks to the bountiful library of more than 5000 layered com-
pounds on earth.[20]

When looking back to the above history, a question comes
up naturally: what is the definition of a real 2D? To some ex-
tent, 2D physics thrives based on thin films (including vdW
atomic layers), yet 2D systems are often disputable because of
a lack of pure two dimensions that can be strictly achieved

experimentally. It seems that a thin film will always have
a certain thickness, even at the atomic level. Indeed, theo-
ries used to predict the non-existence of any ideal 2D crys-
tals at finite temperatures.[21–23] However, in reality, nano-
corrugations may take places that overcomes the thermody-
namic limitations in theory.[24] Even though they are not ide-
ally flat, laws of 2D physics prevail, as phenomena such
as quantum Hall effect and Berezinski–Kosterlitz–Thouless
phase transition can be observed in many x–y systems with
a finite z-value.

A simplified view to describe the dimension crossover
from 3D to 2D system is a slab model as given in Fig. 1. Car-
riers are free to move in the xy plane of the slab, but con-
fined to a potential well along the z direction. The quasi-
two-dimensional carriers in a well of size d will have dis-
crete energy bands, for example, as shown in Fig. 1(b), at
kx = ky = 0 the eigenvalues are given by En = h̄2

π2n2

2md2 , with
n as the elevated quantum number and m as the effective
mass. Using the conventional quadratic dispersion relation
for the free in-plane motion of carriers, the total density of
states (DOS) is simply the sum over all the constant values
of DOS from each sub-band, namely, g(E) = ∑

n
n=1

m
π h̄2 , as

shown in Fig. 1(c). It does not take a genius to see that,
when the carrier is thermally excited to a high energy level
n, g(E) = m

π h̄2 n = m
π h̄2

d
π

√
2mE
h̄2 , carrier DOS takes a parabolic

function, showing a behavior crossover from 2D to 3D. There-
fore, to achieve two-dimensional behavior, it is reasonable to
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keep the energy separation ∆En (= En − En−1) between the
neighboring discrete levels well above the thermal energy (i.e.,
∆En > kBT ), by controlling the well width d, temperature, or

effective mass. The criterion is d <
√

h̄2
π2(2n−1)
2mkBT , n = 1,2, . . .,

for example, for carriers with effective mass me at room tem-
perature behaving like 2D, the thickness d for the confinement
has to be no more than 3.8 nm. We have to emphasize that
the simple criteria formula for determining 2D has to be used
by caution in terms of the followings: the formulas above are
from solving the Schrödinger equation for non-relativistic par-
ticles with non-zero mass, and basically not suitable for the
relativistic particles such as the Dirac fermions in graphene.
For the latter case, which should be treated by solving rela-
tivistic Dirac equation in certain conditions, the criterion takes
a form like d <

√
h̄πc

4kBT .[25] But we have to be cautious again
since multilayered graphene may lose its characters as Dirac
fermions due to interlayer interaction.
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Fig. 1. (a) Schematic 2D structure with z direction confinement.
(b) The z-direction confinement spectrum of one-dimensional quantum
well model. (c) Band structure and density of states for quasi-two-
dimensional electron gas.

(a)

(b)

(c)

Fig. 2. (a) The QHE measured in a 6-nm-thick graphite flake at 0.25 K. (b) Schematic illustrations of electron trajectories under different
conditions, (c) Energy gaps for the so-called 2.5D QHE as a function of thickness.[26] Reproduced with permission from Ref. [26].
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Recent experiment showed that, in as thick as 100 nm
graphite samples (usually considered as 3D bulk), clear sig-
natures of quantum Hall (a scenario that is supposed to hap-
pen only in 2D systems) can still be observed,[26] as shown in
Fig. 2(a). This striking observation can be attributed to the fact
that, at the ultra-quantum regime (when only the lowest few
Landau bands cross the Fermi level), quasi-one-dimensional
electron motions are allowed only in the direction parallel to
magnetic field B (Fig. 2(b)). As a result, the z-dimension is
effectively reduced (defined as a 2.5D system, in between 2D
and 3D) by introducing the standing wave within the top and
bottom surfaces of the sample, where the parity of number
of layers, Zeeman splitting, as well as the Landau cyclotron
gap interplay and determine the observed 2.5D QHE behav-
ior (Fig. 2(c)). It is noteworthy that although charge carri-
ers induced by gate voltages are mainly distributed near the
surface because of electrostatic screening, they mix with the
bulk states since the 0 and 1 Landau bands of graphite cross
the Fermi level, making the two graphite surfaces correlated
(For sufficiently high doping, higher Landau bands can also
become occupied at the surface, which results in charge lo-
calization near the surfaces, giving rise to surface states decay
exponentially into the bulk).

The QHE behavior is also reported in other 3D systems
such as bulk topological semimetal Cd3As2 where the conven-
tional 1D chiral Landau cyclotron orbits at the QHE regime
can be re-constructed via connected anti-symmetric Fermi-
arcs on opposite surfaces of the sample,[27] and bulk (100-µm-
thick) ZeTe5 where the transversal conductivity is quantized
with respect to a product of the conductance quantum and a
fraction of the electron Fermi wavelength, defined as a new
type of 3D QHE.[28] All these recent experimental progresses
suggest that dimensionality is dominated by the correspond-
ing law of physics rather than the actual thickness of a sam-
ple. Therefore, the mindset that only monolayer can be called
2D is incorrect for nanoelectronics. Nevertheless, it is noticed
that electronic band structures can be sensitive to the number
of layers, such as in the graphene case. Monolayer graphene
has a linear dispersion, whilst bilayer graphene has a parabolic
one.[18,29]

With a clear definition of 2D in mind, one can sum-
marize the revolutionizing nature of a freestanding 2D crys-
tal (or, more specifically, 2D vdW layers), as illustrated in
Fig. 3. Taking the 2D electronic system as an example, free
electrons (Fig. 3(a)) are confined in a flat playground, which
behavior as 2D gases or liquid depending on the strength of
e–e interaction.[30] The state-of-art manipulation techniques
allow us to stack freely those vdW 2D layers, and to study
physics of inter-layer interactions when properly spaced by
insulating vdW layers (Fig. 3(b)).[3,10,31,32] Because many of
the vdW crystals are isolated from correlated electronic bulks,

and they retain fascinating physical properties such as 2D
superconductivity[12,33–36] and 2D ferroic ordering,[10,37–42] as
shown in Fig. 3(c). Furthermore, thanks to the open-surfaces
of 2D vdW crystals, they can be piled up with a certain, con-
trollable, rotation angle with respect to each other, illustrated
in Fig. 3(d). This is technically direct engineering of novel
crystals in real space, which could lead to a modification of
electronic band structure in reciprocal space – a property that
belongs only to two dimensions.[43] In this review article, we
will mainly go through recent experimental progresses accord-
ing to the above several categorizations. The summarized sys-
tems belong mainly to vdW crystals, but not limited within the
library of vdW family. They can be expanded into a broader
conception of flattened crystals, as long as the physics is at
play.

(a) (b)

(c) (d)

θ

Fig. 3. Schematic illustrations of (a) free 2D electrons, (b) interlayer-
interacted 2D electrons, (c) correlated 2D electrons, and (d) twisted 2D elec-
tronic systems.

2. New matters created when confined in 2D
Apparently, one of the noticeable achievements, in the

great hunting of 2D crystals, is the discovery of a total
new category of matters that exist in 2D, with distinct crys-
tallographic arrangement and physical properties as com-
pared to their forms in any other dimensionality. For ex-
ample, the 2D form of group 14 elemental materials, sil-
icene, germanene, and stanene, were proved to have distin-
guishing structural and electronic properties from their bulk
ones.[44–51] Unlike their diamond-like semiconducting bulk
structures, the metallic buckled honeycomb 2D forms were
reported to be massless Dirac fermions holders.[47–49,51–53]

Mechanically exfoliation method is not appliable to get their
2D forms, since their bulks structures are not van der Waals
layered ones like graphite, while the specialized “bottom-up”
(eg., MBE, CVD)[45–47,49,51–57] and “top-down” (eg., chemical
exfoliation)[58,59] methods were broadly explored. Non planer
but buckled 2D structures were found with sp3+sp2 mixed hy-
bridizations forming the hexagonal symmetry lattice. And the
massless Dirac fermions were predicted to be existed in them,
while the linear energy–momentum dispersion coupled with
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a large graphene-liked Fermi velocity ∼ 106 m/s[47] was re-
vealed in the low-buckled epitaxial silicene sheet on the silver
(111) substrate. Due to the stronger spin–orbit coupling ef-
fect compared with graphene, significant quantum spin hall
effect was predicted to be existed in an accessible tempera-
ture regime.[49,60–63] Superconductivity, which is absent in the
bulk α-tin, was also reported in the few layered stanene grown
on the PbTe substrate.[64,65] Enhanced in-plane upper critical
magnetic field (that can be diverged at low temperature) was
found in few-layered stanene, which achieves a type-II Ising
pairing superconductivity even without the participation of in-
version symmetry breaking.[65]

As 2D crystals have two surfaces, their top and bottom
surfaces can actually be of different chemical compositions. It
is thus forming the famed 2D Janus material – a new matter
that is believed to hold great promise for such as ferroelec-
tricity thanks to the very low lattice symmetry.[66–72] So far,
experimental progresses of 2D Janus materials are way be-
hind the corresponding theoretical studies,[68,70,71] the physi-
cal properties of 2D Janus crystals remain largely unexplored.

3. Flattening functional materials into the 2D
limit
Graphene and few-layered transitional metal dichalco-

genides are two examples of the 2D crystals widely studied in
the community since more than a decade ago.[18,31,34,73,74] Re-
cently, 2D vdW functional materials, such as those with ferroic
orderings, have attracted much attention because of emerging
new physics and related potential applications.[8,10,37–41] For
example, spin valves,[75] magnetic tunnel junctions,[10,11,76–84]

intrinsic magnetic semiconducting transistors,[10,39,40] as well
as other prototype spintronic devices have been demonstrated
in the 2D limit using vdW materials as a platform.[85–89] On
the other hand, ferroelectricity as a collective property of ma-
terials is at play in in many materials in the 2D limit. 2D vdW
ferroelectric (FE) materials with dangling-bond-free surfaces
and weak interlayer interactions have been reported in sys-
tems including MBE grown unit cell thin films,[7,90] insulating
and semiconducting vdW 2D layers,[7,91–97] and even in those
vdW 2D crystals such as MoTe2 and WTe2 whose bulk coun-
terparts are not ferroelectric.[98,99] As vdW materials are of-
ten compatible with mass production processes such as CVD
methods,[100–104] and can even be exfoliated into millimeter
size.[105,106] The layer-stackable and -rotatable assemblies of
those flexible vdW ferroic (or multi-ferroic) electronic devices
can be revolutionizing in the very near future.[107,108]

Correlated two-dimensional electrons can also lead to
quantum states such as 2D superconductors. As depicted
by the 2D XY model, when cooled below the superconduct-
ing critical temperature, the 2D superconducting system will

first go into a BKT dissipating phase in usually rather wide
temperature range, before reaching a zero resistance ground
state where vortices and anti-vortices are paired.[36,65,109] In
early literatures, superconducting thin films were widely used
to study the 2D superconducting to insulating (or to metal)
quantum phase transitions at the vicinity of quantum criti-
cal point. For example, the quantum Griffiths singularity of
superconducting-to-metal transition was reported in quite a
few systems.[110] In the meantime, hybrid materials such as
decorated graphene and related Josephson junctions brought
the proximity effect into the 2D superconductivity, whilst
keeping micron-meter-sized coherence length and gate tunable
Fermi levels of the normal channel.[111–113]

Later on, thanks to the h-BN encapsulation in inert at-
mosphere, few layers with low air-stability isolated from in-
trinsic superconducting vdW materials were able to be assem-
bled into nano-devices and go through the nano-fabrication
process.[116,117] For example, NbSe2 was found to be a
Bose metal when thinned down to the 2D limit.[118] How-
ever, those bosonic metallic states are yet under debate be-
cause of the improper filtering may exist in many cryogenic
setups.[119] It is noticed that when heavily doped, many of
transition metal dichalcogenides (TMDCs) can turn into super-
conducting as well.[36] Some of the 2D crystals were reported
to have spin–orbit locking, leading to the so-called Ising
superconductivity.[34,65] 2D superconducting layers are also
expected to exhibit topological behavior such as 1D Majorana
edge mode when dressed with ferromagnetic 2D islands.[120]

Recent growth method was reported to yield air-stable NbSe2

monolayers in a mass production manner,[121] thus enabling
possible batch fabrication of 2D superconducting devices from
atomic vdW layers. Again, it can be compatible for foldable
superconducting electronics because of the flexible nature of
vdW 2D films.

Interestingly, the influence of underlying substrates can
as well be a strong factor to affect the properties of 2D func-
tional materials. For example, single layer FeSe film grown
on SrTiO3 (001) substrate exhibits a superconducting tran-
sition temperature of ∼ 110 K (Figs. 4(a) and 4(b)), which
is one order of magnitude higher than its bulk value.[114]

FeSe has a very complicated phase diagram, the origin of
enhanced superconducting Tc in monolayer tetragonal FeSe
is attribute to the interfacial strain induced by the sub-
strate underneath. Notice that as SrTiO3 substrate under-
goes a ferroelectric transition at low temperature, the re-
sulted ultra-high dielectric constant can lead to a suppression
of Coulomb scattering, thus giving rise to a robust quantum
spin Hall state in graphene at modest magnetic field and rela-
tive rather high temperature.[122] By substrate engineering, p–
n junctions,[123] mobility enhancement,[124] and non-volatile
opto-electronics[125] can be achieved.
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Fig. 4. (a), (b) FeSe monolayer epitaxially grown on SrTiO3(001) substrate, showing superconducting transition temperature above
100 K.[114] (c) Schematic picture of transfer process of isolated freestanding SrTiO3 layers.[115] (d), (e) Characterizations of the SrTiO3
few unit cells.[115] (f)–(h) Superconducting behavior of monolayered BSCCO.[9] Reproduced with permission from Refs. [9,114,115].

As discussed in the introduction part of this review, to
be 2D or not, it does not really depend on whether the crys-
tal is monolayer – it is rather a physical limit to pursue, even
for non-vdW crystals. Indeed, to demonstrate the freestand-
ing unit cell limit of the non-vdW perovskite crystal SrTiO3 or
BiFeO3, a water soluble sacrificial buffer layer Sr3Al2O6 was
introduced to finish the removal of substrate via the assistant
of a polymer stamp (Figs. 4(c) and 4(d)).[115] It was found that
the ferroelectricity of BiFeO3 sustains down to 4 unit cells, as
shown in Fig. 4(e).

In many cases, flattening of a vdW crystal requires special
effort as sometimes it is extremely difficult to tackle with be-
cause of both air-instability and quite strong inter-layer vdW
bonding. For example, the cuperates high temperature super-
conductors, such as Bi2Sr2CaCu2O8+δ (BSCCO), are known
to be of vdW type. However, their thin layers degrade in air

rapidly due to moisture and the loss of oxygen, and they are not
easily-exfoliated. A dedicated Al2O3-assisted method was in-
vented to overcome the later problem,[39] while the former can
be mitigated by minimizing the exposure to air before elec-
trical tests.[9] Strikingly, monolayered BSCCO shows almost
the same superconducting transition temperature as that of its
bulk, as shown in Fig. 4(f). The monolayer BSCCO is immune
to Coulomb screening, and therefore allows one to study dop-
ing effect via ozone annealing, giving rise to a tunable critical
temperature, as shown in Figs. 4(g) and 4(h).

Recently, MnBi2Te4 was found to be a co-host topo-
logical insulator and anti-ferromagnetic inter-layer coupling.
When thinned down to the 2D limit with an odd number
of layers, the system behaves as an Ising-type ferromagnetic
topological insulator (MTI). The spontaneously broken time-
reversal symmetry opens a gap at the gapless Dirac point,
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leading to the observation of a quantum anomalous Hall ef-
fect with chiral edge channels from both top and bottom sur-
faces at moderate magnetic fields close to the gap (Fig. 5(a)),
as well as the observation of the conventional quantum Hall
effects at higher magnetic fields and higher doping levels
(Fig. 5(b)).[126] An MTI phase was also suggested in Sb-
doped Mn(SbxBi(1−x))2Te4 phase (Figs. 5(c)–5(f)).[127] More
recently, high-Chern-number QHE, in which quantization is
believed not of a Landau-level origin, was reported up to 60 K

in seven-layered MnBi2Te4.[128]

Apparently, magnetic topological insulators or magnetic

Weyl semimetals have become outstanding platforms to inves-

tigate exotic quantum states in the 2D limit.[129] Future exper-

iments with broader range of carrier density via such as ionic

gating or elemental doping, and at even higher magnetic fields,

will be of interests to reveal more complicated transport fea-

tures in such systems.

(a)

(c)

(d) (e)

(b)

(f)

Fig. 5. Magnetic hysteresis loops measured in a 5-layered MnBi2Te4, with Hall resistance Rxy quantization indicated by dashed lines in (a)
and color map of Rxx in (b).[126] (c)–(e) Morphology of a Sb-doped MnBi2Te4device with 8 monolayers.[127] (f) Phase diagram of Sb-doped
MnBi2Te4 in the parameter space of gap energy, doping ratio, and chemical potential.[127] Reproduced with permission from Refs. [126,127].

4. Inter-layer interactions of 2D crystals

Inter-layer coupling in 2D vertical stacks is another

widely studied phenomenon. For example, in TMDs, the op-

tical response is dominated by intra-layer excitons, which are

electron–hole paired quasi-particles due to the Coulomb inter-

action. When interfaced together, two pieces of TMDCs with
different intrinsic doping levels give rise to a strong out-of-
plane electric field, which results in a larger binding energy
and longer lifetime for the interlayer excitons.[130,131] The in-
terfacial coupling will take into account the lattice mismatch
of each layer as well as their own physical properties, reveal-
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ing unprecedented optical phenomenon, including moiré in-
terlayer excitons[132–136] and exciton condensations probed by
photoluminescence.[137,138]

Electronically speaking, separated double layer 2D elec-
trons are also expected to yield exotic physics, due to long
range Coulomb interactions when the spacing between them
is small enough. In addition, the absence of interlayer tunnel-
ing significantly enhances the exciton lifetime. Typical exper-
iment can be described in Fig. 6(a), in which two layers of 2D
electrons are separated by a thin vacuum of spacing d, where

current flow in one layer induces electrical signal in another,

defined as a drag system. Here, the drag can happen between

interlayer charges, spins, and other quasiparticles.[139–150] Be-

fore the flourish of graphene research, such kind of experi-

ments can only be realized in the GaAs/AlGaAs double quan-

tum wells,[151] which requires substantial efforts in sample

preparations as illustrated in Fig. 6(b). The pitfalls of large

interlayer space and non-tunable carrier types make the study

of drag phenomena limited in these quantum wells.[152]

(a) (b)

(c)

(d)

(e)

(f)

Fig. 6. (a) Schematic picture of a drag system with two separated 2D electrons. (b) Schematic picture of a GaAs/AlGaAs double quantum
well sample.[152] (c), (d) Demonstration of Coulomb drag in graphene at zero magnetic field.[147] Width of the Hall bar is about 1.5 µm. (e),
(f) Super fluid condensate realized in double bilayer graphene drag system.[142] The excitonic condensate, indicated by the red arrow, was
examined in the top drag layer in a counter flow configuration at νT = 1. (b)–(f) Reproduced with permission from Refs. [142,147,152].
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The 2D insulating hexagonal boron nitride (h-BN) can
act as an ideal spacer between the two drive-drag 2D elec-
tron layers. The thickness of h-BN can be tuned by simply
choosing an appropriate number of layers, down to the single
layer limit (0.34 nm). Furthermore, when encapsulated by h-
BN, the carrier mobility of graphene can be much boosted as
compared to that supported directly on SiO2 wafers because
of the clean and flat interface.[131,153] It therefore provides an
outstanding platform to investigate Coulomb drag in double
layer graphene with h-BN spacer using the transfer technique
recently developed.[10,39]

Indeed, as shown in Figs. 6(c) and 6(d), graphene double-
layer was found to show strong frictional drag at zero mag-
netic field, especially the drag signal became strongest at
low density near the charge neutrality.[147] Recent efforts ex-
panded this system into graphene double-layer structure in
the quantum Hall regime in the presence of a large magnetic
field.[142,154,155] As illustrated in Figs. 6(e) and 6(f), a signa-
ture of excitonic condensate was found at the filling fraction of
one on the top drag layer in a counter-flow configuration.[142]

In this scenario, due to the electron–hole paring, the bosonic
excitons became immune to the magnetic field and the Hall
voltage in the drag layer thus dropped to zero,[156] as indicate
by the red arrow in Fig. 6(e).

5. Twistronics in rotatedly assembled 2D crys-
tals
On the other hand, non-separated double layer systems

can also yield bountiful exotic physics in electronic trans-
port. When stacked together, two pieces of 2D crystal can
form a moiré superlattice. For example, at the interface of
graphene and h-BN, the moiré wavelength λ is defined as
λ= (1+δ )a√

2(1+δ )(1−cosφ)+δ 2
,[157] where a is the graphene lattice

constant, φ is the rotation angle between graphene and h-BN,
and δ is the lattice mismatch (1.8% in the case of graphene/h-
BN). Because of the moiré superlattice, a cloned miniband
with Dirac dispersion at higher energy was formed in the
band structure of graphene, giving rise to a pair of satellite
resistance peaks versus gate voltage, and the so-called Hof-
stadter butterfly fractal Landau fan at high magnetic fields,
as confirmed by transport,[158] capacitance,[159] and optical
measurements.[160,161] Further experiments showed that this
intriguing graphene–BN moiré superlattice can be constructed
via chemical vapor deposition,[162] and even controlled with
arbitrary φ in a rather high precision using mechanical manip-
ulation of a scanning-probe tip.[163–165]

Graphene continues to amaze when considering the sim-
plest case – by rotating-&-stacking two monolayered graphene
with a certain angle, the consequential graphene–graphene
(or twisted bilayer graphene TBLG) moiré superlattice
will yield counter intuitive states including insulating,[13,14]

superconducting,[12] and even magnetic behavior,[166] despite
of the fact that both of the original layers are simple Dirac
semi-metals (Fig. 7). The early pioneering theories predicted
that, provided by a so-called magic angle of about 1.05◦ be-
tween two twisted layers of monolayer graphene, the entire
lowest moiré band will be flattened (Figs. 7(a) and 7(b)).[167]

Inside this flat band, at partial fillings with a much enhanced
density of states, phenomena including superconductivity due
to strong e–e interaction are supposed to happen.[168–170]

These ground breaking results immediately triggered a world-
wide gold-mining in twisting different 2D electronic layers,
and gave birth to a new branch of condensed matter physics,
called twistronics.[171]

TBLG with 1.8◦ rotation angle was first studied in 2016,
and insulating states (corresponding to a single particle gap
opening of 50–60 meV) were found at the Γs of the mini Bril-
louin zone induced by the moiré superlattice.[14] The smok-
ing gun experiment of the superconductivity of BKT-type in
the TBLG, with a magic rotation angle of 1.1◦ ± 0.5◦, was
reported very soon by the same group using the “tear-and-
stack” method.[12,13] By defining carrier density ns with 4 elec-
trons per moiré unit cell (it is a band insulator at doping of
±ns in magic angle TBLG, shown in Fig. 7(c)), a Mott-like
insulating behavior was confirmed at the half-filling where
|n| = |ns|/2 ∼ 1.2–1.6× 1012 cm−2, projecting owing to the
many-body interaction picture. It was noticed that this kind
of Mott-like behavior can be killed by bring the TBLG to the
proximity of a monolayered WSe2, possibly due to spin–orbit
coupling reasons.[172]

Superconducting domes (with superconducting behavior
possibly close to the crossover between BCS and BEC con-
densate) can be found slightly doped away from half filling.
By examining the conductance evolution in parameter space
of carrier density n and temperature T , it is seen that the magic
angle TBLG system has a very similar phase diagram as that of
high temperature superconductors.[12] Experiment confirmed
that, by tuning interlayer spacing with hydrostatic pressure,
TBLG with rotation angle larger than the magic angle can also
exhibit a superconducting phase.[43]

Surprisingly, at 3/4 filling of the flat mini band, anoma-
lous Hall signature was observed in the TBLG system at base
temperature, with a hint of chiral edge state.[166] It is also
noticed that this ferromagnetic hysteresis loop can be acti-
vated by exerting a current instead of sweeping the B field.[166]

Higher quality magic-angled TBLG sample allows one to fully
probe in details, at each fractional filling of the moiré flat band,
the broken-symmetry states, interaction-driven insulators, or-
bital magnets, states with non-zero Chern numbers, and super-
conducting domes.[173] Further experiment demonstrated that
the anomalous Hall signature in TBLG can actually be reach-
ing the quantum anomalous Hall regime.[174]
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(a)

(c)

(d)

(b)

Fig. 7. (a) Schematic picture of a TBLG. (b) Illustration of the electronic band structure of a flat band (blue) induced by the magic angle
moiré superlattice. (c) Schematic picture of the moiré superlattice with their stacking order marked with colors. A full filling of the mini
flat band corresponds to 4 electrons in the moiré unit cell originated from the 4-fold degeneracy. (d) Summarization of state-of-the-art
experimentally observed correlated quantum states in TBLG with the rotation close to the magic angle.

To unveil the underlying physics, visualization of the lo-
cal density of states and charge distribution in magic angle
TBLG was studied via scanning tunneling microscopy and
spectroscopy (STM/STS).[175–179] Pseudogap phase with real-
space global stripe charge ordering that breaks the rotational
symmetry was observed at 4.6 K at partial filling of the flat
mini band of the moiré superlattice, which is in close resem-
blance to high temperature superconductors.[176] Lower tem-
perature (1.4–1.5 K) STS measurements show better devel-
oped dI/dV spectra,[175,178] with those pseudogaps described
using an extended Hubbard model cluster calculation,[175,178]

and a possible nematic ordering at the charge neutrality
point.[175] By checking TBLG samples with different rotation

angles under STS at 5.7 K, it is found that the ratio of the
Coulomb interaction to the bandwidth of each individual van
Hove singularities (U/W ) is maximized, which is the condi-
tion needed for Cooper pairing.[177] So far, dilution fridge tem-
perature and high magnetic field studies are yet to be done us-
ing STS, which may release more fundamental physics such as
to dig into the superconducting domes and the Chern insulator
regimes.

The above emerging correlated quantum states (summa-
rized in Fig. 7(d)), such as Chern insulator, superconducting
condensate, and ferromagnetism, are also found in the flat
band formed between a tri-layered ABC-stacking graphene
and h-BN,[180–183] or in TBLG with rotation angles lower
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than the magic one,[184] and even systems of graphene/h-
BN moiré lattice without flat band.[185] The experimen-
tal exploration of twistronics including twisted graphene is
ongoing,[186–197] and has been expanded into twisted TMDCs
and other systems.[164,198–204]

6. Conclusion and going beyond the flat crystals
As discussed above, flattened crystals have shown

tremendous opportunities for studying fundamental physics.
They also act as promising candidates for the implementa-
tion of future nanoelectronics. For example, by dual gat-
ing both top and bottom surfaces of a few-layered TMDC
channel, photoswitching logic and memory can be integrated
in a single small footprint device (Fig. 8(a)).[205] Ballistic
avalanche phenomenon in a InSe/black phosphorous (BP) het-
erostructure was found to show sensitive 4 µm wavelength
mid-infrared light detection with a sub 1 V avalanche thresh-
old (Fig. 8(b)).[206] Local probe programmed ferroelectric do-

mains were utilized to generate a TMDC homojunction, which
gives rise to outstanding photo-detecting and rectifying behav-
iors (Fig. 8(c)).[207] Furthermore, structural engineering in a
nano scale is also intriguing for developing the nanoelectronics
based on 2D crystals. For instance, recent experiments have
shown the feasibility to alter the conventional bulk semicon-
ducting fin channel of a FinFET with a monolayered TMD,
shrinking the fin-width into sub 1 nm limit (Fig. 8(d)).[208]

Noticeably, renewed efforts are being devoted to prepare
2D crystals recently, such as large scale production of high
quality 2D single crystals, direct assembly of 2D heterostruc-
tures in a mass production manner, and new routes for engi-
neering their electrical properties.[102,103,105,209–217] Moreover,
the designs and fabrications of 2D layers with/from non-vdW
materials are also thriving in the community.[218–220] Due to
the limited length of this review, we regret that there are far
more related works not included here. Nevertheless, it is be-
lieved that the plethora of 2D electronic systems will continue
revolutionizing our research fields and future applications.

(a) (b)

(c) (d)

Fig. 8. (a) Schematic picture of a double gate programmable MoS2 transistor, which is capable to integrate photoswitching logic and
memory in a single cell.[205] (b) Ballistic avalanche transistor made of InSe/BP heterostructure.[206] (c) Ferroelectric domains realized by
local patterning and the resulted photo detector with arbitrarily defined shapes.[207] (d) A FinFET using monolayered TMDC to replace
the conventional Si fin channel.[208] Reproduced with permission from Refs. [205–208].
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At this point, we would like to come to an end of this
brief review article. As inspired by brain-experiments pro-
posed by Feynman in early 1950s that there are plenty of
rooms at the bottom,[221] it finally comes true that humankind
can now stand at a technologically new era to play with iso-
lated atomic sheets as demanded. Indeed, it has already been
proven to be an exciting wealth to investigate the 2D electronic
systems in all kinds of geometrical and electrical configura-
tions. The resulted nanostructures have yielded insanely great
amount of electronic states, sometimes of topological and/or
quantum origins. An ending sentence is hereby drawn: when
flattened, whether it is vdW or non-vdW, it is always flatter-
ing to explore the unexplored physics emerging in them or in
their heterostructures, mechanically, optically, electronically,
and more to be continued.
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