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Two ultra-stable novel allotropes of tellurium few-layers∗
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At least four two- or quasi-one-dimensional allotropes and a mixture of them were theoretically predicted or exper-
imentally observed for low-dimensional Te, namely the α , β , γ , δ , and chiral-α + δ phases. Among them the γ and α

phases were found to be the most stable phases for monolayer and thicker layers, respectively. Here, we found two novel
low-dimensional phases, namely the ε and ζ phases. The ζ phase is over 29 meV/Te more stable than the most stable
monolayer γ phase, and the ε phase shows comparable stability with the most stable monolayer γ phase. The energetic
difference between the ζ and α phases reduces with respect to the increased layer thickness and vanishes at the four-layer
(12-sublayer) thickness, while this thickness increases under change doping. Both ε and ζ phases are metallic chains and
layers, respectively. The ζ phase, with very strong interlayer coupling, shows quantum well states in its layer-dependent
bandstructures. These results provide significantly insight into the understanding of polytypism in Te few-layers and may
boost tremendous studies on properties of various few-layer phases.
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1. Introduction

Low-dimensional elemental materials are a large fam-
ily of two-dimensional (2D) materials.[1–3] Graphene[4–8]

was the first mono-layer ever isolated for carbon and
2D materials while graphdiyne[9] is an allotrope of it.
Layers of group IV elements, known as silicene,[10–12]

germanene,[13] stanene,[14,15] and layers of a group III el-
ement, i.e., borophenes,[16–18] as well as group V few-
layers, i.e., 2D P,[19–23] As,[24] Sb,[25] and Bi,[26] were
subsequently predicted and synthesized or isolated. These
mono- and few-layers of groups III, IV, and V elements
were experimentally shown or were theoretically predicted to
have tunable bandgap,[7,12,23,24] high carrier mobility,[19–21,25]

strong light absorption and response in infrared and vis-
ible lights ranges,[27,28] exceptional mechanical and fric-
tional properties,[5,17,22] catalysis activities,[29] topological
electronic states,[8,10,14,26,30–35] superconductivity,[36,37] and
among the others.[38] However, the few-layer forms of group
VI elements are still ambiguous and are yet to be unveiled.

Tellurium few-layers are a category of emerging group
VI 2D layers.[39–49] The few-layer α phase, cleavable from
its bulk counterpart, shows amazing electronic, optical, vibra-
tional, and topological properties[50–52] and can be synthesized
using wet-chemistry methods.[41] Therefore, the synthesis of
it does not need a substrate while other 2D few-layers need
either exfoliation from their bulk counterparts[4–6,19–21,53–55]

or substrates to stabilize[17,56–60] the synthesis of layered sam-
ples. A striking feature of it lies in that it has, at least, four few-
layer allotropes predicted by density functional theory (DFT)
calculations, the number of which is comparable with that of
carbon. A previous theory shows that meta-stable few-layer
phases could be stabilized with charge doping.[52] Another
theory predicted topological states in Te nanostructures,[61]

however, those structures are highly unstable. It would be
thus of interest to know if there are any new phases, prefer-
ably with topological states, yet to be unveiled and the rea-
son why Te could offer so many allotropes. Answers to these
questions would boost both fundamental research and device
applications.
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Here, we predicted two novel forms, i.e., ε and ζ phases,
of Te few-layers, among which the ζ phase shows extraor-
dinary stability that its monolayer is 29 meV/Te more sta-
ble than the most-stable γ monolayer and its bilayer is over
30 meV/Te more stable than the most-stable α bilayer. An
energetic crossover between the ζ and α phases occurs at the
four-layer (12-sublayers) thickness that the ζ phase is prone to
transform into the α phase beyond that thickness, while either
hole or electron doping stabilizes the ζ phase and pushes the
crossover to thicker layers. The ε phase is less stable than the
ζ phase, but has a comparable stability with the monolayer γ

or few-layer α phase. Phonon dispersion calculations suggest
that the free-standing forms both phases are stable and could
be exfoliated from thicker layers or substrates. These two
novel phases strongly promote subsequent studies on polytyp-
ism of Te few-layers and add two new members to the family
of Te allotropes.

2. Methods
2.1. Density functional theory calculation

Density functional theory calculations were performed
using the generalized gradient approximation for the
exchange–correlation potential, the projector augmented wave
method,[62,63] and a plane-wave basis set as implemented in
the Vienna ab initio simulation package (VASP)[64] and Quan-
tum Espresso (QE).[65] Density functional perturbation the-
ory was employed to calculate phonon-related properties, in-
cluding vibrational frequencies at the gamma point (VASP)
and phonon spectrum (QE). The kinetic energy cut-off for the
plane-wave basis set was set to 700 eV for geometric and vi-
brational properties and 300 eV for electronic structures cal-
culations. A k-mesh of 15×11 × 1 was adopted to sample
the first Brillouin zone of the conventional unit cell of few-
layer Te (α phase) in all calculations. The mesh density of
k points was kept fixed when calculating the properties for
few-layer Te. A q-mesh of 6×6 × 1 was used for phonon
spectrum calculations. In optimization of geometry, van der
Waals interactions were considered at the vdW-DF[66,67] level
with the optB88 exchange functional (optB88-vdW),[68–70]

which was found to show appropriate electronic structures
revealed with the Heyd–Scuseria–Ernzerhof (HSE06) hybrid
functional.[71] For all calculation of the phonon spectrum, we
used the optB86b exchange functional, which was proved to
be accurate in describing the structural properties of layered
materials.[21,72–74] The shape and volume of each supercell
were fully optimized and all atoms in the supercell were al-
lowed to relax until the residual force per atom was less than
1×10−4 eV/Å. Electronic bandstructures were calculated us-
ing the PBE and HSE06 functionals with and without spin–
orbit coupling (SOC). The SOC effect was solely considered

on the atomic basis which does not account for orbital contri-
butions from formed electronic bands.

2.2. Implementation of charge doping

Charge doping on Te atoms was realized with the ionic
potential method,[75] which was used to model the chare trans-
fer from graphite substrates. For electron doping, electrons
are removed from a 4d core level of Te and placed into the
lowest unoccupied band. For hole doping, electrons were re-
moved from the valence band by adding a negative potential
into the 4d core level of those three Te atoms. This method en-
sures the doped charges being located around Te atoms. It also
keeps the neutrality of the whole supercell without introducing
background charge, which eliminates effects of compensating
charges. This method was widely used in the literature.[52,76]

3. Results and discussion
The α-phase, comprised of helical chains bonded with

covalent-like-quasi-bonds (CLQB) along inter-chain direc-
tions, is the most stable form in Te few-layers and bulk[46,77]

(Fig. 1(a)). In monolayers, however, the γ-phase (Fig. 1(c))
was believed the most stable phase and the α-phase be-
comes unstable and spontaneously transforms into the β -phase
(Fig. 1(d)). The γ-phase contains rhomboid chains along two
directions forming a network in the C3v symmetry while the
β monolayer is comprised of parallel rhomboid chains with
an inclination angle of 29.3◦ to the xy-plane. Strong charge
doping increases the inclination angle of the rhomboid chains
in the β -monolayer and the angle eventually reaches 90◦ at
a doping level of 0.50 e/Te, giving rise to a new phase ε

(Fig. 1(e)). This phase has parallel aligned diamond chains,
in which Te–Te distance is 3.04 Å and angles are 87◦ and 93◦,
respectively, while the interlayer CLQB length is 3.59 Å. The
ε-monolayer is 6 meV/Te less stable than the γ-monolayer
(Fig. 1(g)), when comparing surface energies of these two
phases, the relative stability reversed (23 meV/Å2). This is
due to the much smaller surface area of the ε-monolayer re-
sulted from its perpendicularly tilted rhomboid chains.

An even more stable ζ phase (Fig. 1(f)) was found by re-
laxing atomic coordinates from laterally shifted ε layers. The
ζ monolayer consists of three sublayers where the Te atoms
form a square lattice, with Te–Te bond length of 3.15 Å, in
each sublayer, leading to a structure with an ultra-low spe-
cific area and a high symmetry (P4/MMM). A similar, but
strongly tilted, structure was previously found in bulk Te un-
der a high pressure of over 8 GPa,[78] which transforms into
the ζ bulk phase after the pressure is fast released (see Sup-
porting information: Fig. S1). Although the ζ bulk form is
less stable than the α bulk phase, the ζ monolayer and bilayer
are much stable with at least 29 meV/Te (93 meV/Å2) and
35 meV/Te (200 meV/Å2) energy gains from the previously
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believed most-stable γ monolayer and α bilayer, respectively.
Phonon dispersion calculations confirm their thermal stability
although a likely charge density wave transition was evidenced
for the ζ phase at lower temperatures. It would be thus in-
teresting to find the transition boundary of energetic stability
between the α and γ multilayers.

The ζ few-layers prefer an AA stacking by at least
9 meV/Te, in which a Te atom of an upper sublayer sits right
over another Te atom underneath (see Supporting information:
Fig. S2 and Table S1). We thus adopted the AA stacking in
following calculations. Figure 1(g) plots the total energies of
the six known phases as a function of the number of sublayers,

which shows that the ζ few-layer (blue square) is energetically
more stable than other five phases before the thickness reaches
12 sublayers (four layers). Beyond this thickness, the structure
of the ζ phase still holds but the α phase becomes the most
stable phase; this is, most likely, ascribed to weakened surface
effects as the bulk properties dominate the behavior of the ζ

phase in thicker layers. We also plotted surface energies in
Fig. 1(h). It shows the α phase is the easiest one to cleave and
the β phase has a comparable surface energy. Other phases,
except the ε phase, show slightly higher but reasonable sur-
face energies.
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Fig. 1. (a) and (b) Top- and side-view of the bilayer α and δ phases, respectively. (c)–(f) Top- and side-views of monolayer Te in γ , β , ε ,
and ζ phases, respectively. Orange, red, and blue balls represent Te atoms in different sublayers along the interlayer direction z. (g)–(h) Total
energies per Te atom and surface energies per unit area in different phases as a function of number of sublayers, respectively. The monolayer
Te in α , γ , δ , ε , and ζ are presented with green, magenta, blue, orange, red, and black symbols, respectively.

The intra-layer bond lengths (lattice constant a/b) are
3.02 Å and 3.08 Å in a mono- and bi-atomically thick ζ sub-
layers, respectively, which are much smaller that the bulk
value of 3.21 Å. Figure 2(a) shows the evolution of intra-
sublayer and inter-sublayer bond lengths as a function of layer
thickness. The increased thickness significantly varies both
the inter-sublayer and the intra-sublayer distances, indicat-
ing a strong inter-sublayer interaction. The more the sublay-
ers stacked together, the stronger the charge transfers from
pz orbitals of Te atoms to in-plane px/py orbitals and intra-
sublayer regions, leading to undercut intra-sublayer and re-
inforced inter-sublayer Te–Te bonds. The intra-sublayer lat-
tice constant (blue rectangular), as a result, expands 3.02 Å
(1-sublayer) to the bulk value of 3.21 Å at 12-sublayer while
the inter-sublayer distance shrinks from 3.38 Å (2-sublayer) to
3.21 Å also at 12-sublayer. Both intra- and inter-sublayer bond
lengths converge to the bulk values (3.21 Å) at 12 sublayers,

consistent with energetic crossover and the order of stability
of the α and ζ bulk forms.

It is exceptional that structural relaxations were found in
ζ multilayers that they are prone to form dimers or trimers
with adjacent sublayers along the interlayer z direction. We
used the bulk bond length of 3.21 Å as a criterion. The sub-
layers with bond lengths smaller than this value were regarded
as dimerized and trimerized sublayers. Figure 2(b) presented
the detailed distributions of dimers or trimers from mono- to
12-sublayers. Sublayers dimerizing or trimerizing together are
marked by red dotted rectangles and the directions of atomic
relaxations are indicated with black arrows. A trimer first ap-
pears in the tri-sublayer (a ζ monolayer), which is, most likely,
due to a Fermi surface nesting induced electronic structure
and geometry instability. Dimers, trimers and their mixtures
emerge in thicker ζ sublayers with the thickness up to 12 sub-
layers. We tested different combinations of the dimers and
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trimers confirming the configurations shown in Fig. 2(b) are
the most stable ones (see Supporting information: Fig. S3).
All of them show mirror and central inversion symmetries
along the inter-sublayer direction. Besides that, dimers would

not show up at the surface region, which is consistent with the
non-dimeric 2-sublayer ζ . The reason why these relaxations
occurs is another research topic than we will discuss it else-
where.
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Figures 3(a) and 3(b) show the bandstructures of the ζ

tri-sublayer calculated using the PBE functional without and

with SOC, respectively. We found several band inversions as

confirmed by the orbital decomposed band structures shown in

Fig. 3(a). The inversion occurred around the G point forming

a nodal ring is of particular interest that the inversion point sits

roughly at the Fermi level. Inclusion of SOC opens a bandgap

of 0.38 eV around the Fermi level. We thus calculated the

Z2 topological invariant using Quantum Espresso (QE) to ver-

ify the topological characteristic of the ζ tri-sublayer. The

Te atom in the ζ tri-sublayer is in a square network struc-

ture, which has both time reversal and space central inversion

symmetries. Therefore, the Z2 topological invariant can be

obtained by multiplying parities of filled states at all time-

reversal invariant points, as shown in Fig. 3(c). Our calcu-

lation revealed the Z2 value of (−1), which indicates the ζ

tri-sublayer to be with nontrivial characteristic. However as

present in Fig. 3(d), the surface states were overcovered by the
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bulk states. Details of the SOC induced bandgap opening and
inversions were available in Supporting information: Figs. S4
and S5. In addition, we also found that the monolayer ε and
1-sublayer ζ phases are topologically trivial, as summarized
in Supporting information: Tables S2 and S3. Quantum well
states were explicitly observed for the states along the z di-
rection, the direction normal to the layer planes, as shown in
Fig. S6 where shows the evolution of the band structures of ζ

few-layers with different thicknesses.
In a recent work,[52] we found direct charge doping could

change the relative stability of Te phases and transform a cer-
tain phase to another. We thus considered the stability of both
the ε and ζ phases under electron or hole doping. Figure 4(a)
shows the total energies of these two phases, γ and β phases
in Te monolayers, in which the most stable ζ phase was cho-
sen as the reference zero. The diagram shows that the ζ phase
keeps its exceptional stability, with at least 30 meV/Te to the
β phase, under either electron or hole doping. This statement
was double confirmed by the SCAN + rVV10 functional cal-
culations (see Fig. S7). Further calculations show the ζ mono-
layer should be the most stable phase even when the doping

level reaches 0.8 e/Te or 0.8 h/Te. Such values are beyond the
capability of modern ionic liquid gating techniques, which, to-
gether with vibrational frequency calculations, guarantee the
superior stability of the ζ monolayer. These results indicate
that the ζ monolayer has little chance transforming into other
forms of low-dimensional Te, if it is fabricated. The ε mono-
layer is slightly less stable than the γ phase at the neutral state,
while it becomes more stable when adding or removing elec-
trons, which is substantially different from the previous found
δ and mixed phases.[52] This structural phase transition ma-
nipulates the semiconducting β or γ phase transforming into
the metallic ε phase. The detailed discussion for the electronic
properties of ε phase and the origin of β–ε phase transition in
the Te monolayer are available in Fig. S8. Figure 4(b) shows
the relative energies of different phases in 2L. It, again, shows
the superior stability of the ζ phase and the more stable ε

phase than the γ phase under doping. These results suggest
doping could further stabilize the ζ phase, which pushes the
ζ –α crossover thickness beyond 4L under charge doping as
shown in Fig. 4(c).
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4. Conclusion

In summary, we predicted two new low-dimensional Te
allotropes, i.e., ε and ζ , which, especially the ζ phase, yield
extraordinary stability. It has strong vertical inter-sub-layer
interaction that shows quantum well states along the direc-
tion normal to the layers. As the most stable few-layer phase
found so far, it was surprising that this phase has not been
synthesized yet; this is, most likely, due to its substantially
different geometry from the helical bulk-like form or the lack
of a square substrate lattice. We expected that the ζ phase
might be prepared by molecular beam epitaxy, physical vapor
deposition, laser or electron beam deposition or even chem-
ical vapor deposition with precisely controlled dosing rates,
temperatures, substrates or from a fast released high pressure
phase. Unlike semiconducting α , β , and γ layers, the δ and
ε chains and the ζ phase are metallic with high and tunable
density of states and strong band dispersions. We identified
a weaker electronic interaction, with a typical interacting dis-

tance of roughly 3.2 Å–3.3 Å (marked by red lines in Support-
ing information: Fig. S10) in the metallic δ , ε , and ζ phases.
Such distance is ∼ 0.3 Å longer than the lengths (2.8 Å–3.1 Å)
of typical covalent bonds found in Te allotropes. The longer
distances weaken the attraction to electrons from Te cores and
thus lead to more delocalized Te p electrons between the Te
chains in the δ and ε phases or among those individual Te
atoms in the ζ phase, which is believed to result in those
highly dispersive states in those metallic phases. In addition,
those metallic phases are ideal for applications of layered elec-
trodes. Our results added two more allotropes to few-layer Te
and open a new avenue for studying topological properties in
group VI 2D layers.
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