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The drying of liquid droplets∗
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The drying of liquid droplets is a common phenomenon in daily life, and has long attracted special interest in scientific
research. We propose a simple model to quantify the shape evolution of drying droplets. The model takes into account the
friction constant between the contact line (CL) and the substrate, the capillary forces, and the evaporation rate. Two
typical evaporation processes observed in experiments, i.e., the constant contact radius (CCR) and the constant contact
angle (CCA), are demonstrated by the model. Moreover, the simple model shows complicated evaporation dynamics, for
example, the CL first spreads and then recedes during evaporation. Analytical models of no evaporation, CCR, and CCA
cases are given, respectively. The scaling law of the CL or the contact angle as a function of time obtained by analytical
model is consistent with the full numerical model, and they are all subjected to experimental tests. The general model
facilitates a quantitative understanding of the physical mechanism underlying the drying of liquid droplets.
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1. Introduction

The drying of droplets of particle suspensions and
polymer solutions on substrates can produce rich deposi-
tion patterns,[1,2] including coffee-ring,[3,4] mountainlike,[5–7]

volcanolike,[8,9] and multi-ring patterns.[10] The drying of liq-
uid droplets is a common phenomenon in daily life, and
has practical applications such as inkjet printing,[11] pesticide
spraying,[12] semiconductor industry production,[13] etc. The
dynamics of droplet evaporation therefore has long been of
special interest in scientific research.

Evaporating droplets show complex shape evolution
modes that the contact radius can increase or decrease with
time under different conditions.[14–21] In 1977, Picknett and
Bexon[14] reported on the mass and profile evolution of a
slowly evaporating liquid (methyl acetoacetate) drop on a
polytetrafluoroethylene (PTFE) surface in still air. They dis-
tinguished three evaporation modes: constant contact radius
(CCR) mode, constant contact angle (CCA) mode, and mixed
mode which changes from one to the other at some point or
both contact angle and contact radius change simultaneously.
Bourgès-Monnier and Shanahan[15] showed that the contact
angle of water and n-decane droplets remain constant in the
saturated vapor atmosphere conditions, and diminishing the
atmospheric vapor content can lead to marked reductions of
contact angle during the drying process. While in open air
conditions, the evaporation process has been split into four
stages. Erbil[16] et al. studied the CCA evaporation mode

through the evaporation of n-butanol, toluene, n-nonane, and
n-octane drops on a PTFE surface. They found that the de-
crease of the contact area of these drops is linear with time. On
the other hand, Kim et al.[17] reported that the receding angle
and the Marangoni instability are two main physical factors in-
fluencing the transition of evaporation mode during the drying
process of water droplets, which result from the concentration
gradient of contaminants in water.

In view of the experimental studies, there are a few the-
oretical and simulation works addressing the shape evolution
of drying droplets. Wang et al.[19] studied the contact line
dynamics of nanodroplets on different chemically inhomoge-
neous surfaces using molecular dynamics method. For the
evaporation of a nano-droplet on the surface with large char-
acteristic width of the inhomogeneity, the contact line pinned
on the substrate at the initial stage of the evaporation and ex-
hibited the CCR mode. While on the surfaces with smaller
characteristic width, only the CCA and mixed modes can be
found during the evaporation. Liu and Zhang[20] investigated
the evaporation dynamics of nanodroplets sitting on smooth
and rough substrates using the kinetic lattice density functional
theory (KLDFT). They reported that on smooth substrates,
the droplets generally evaporate in the CCA mode, while on
rough substrates, the droplets evaporate in the CCR mode or
the mixed mode.

The deposition pattern of drying droplets has been widely
studied experimentally and theoretically over the past three
decades. The seminal work by Deegan et al.[22] established
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the basic principles that govern the deposition pattern, which
is mainly based on the evaporation-induced fluid flow inside
the droplet and the pinning of droplet contact line (CL). Hu
and Larson[23,24] carefully compared the results from full nu-
merical simulations with the experiments, and pointed out the
importance of the Marangoni effect in the final deposition pat-
tern. Freed-Brown[25] proposed a simple model assuming that
the contact line moves freely so that the contact angle re-
mains constant. This model explained the formation mecha-
nism of the mountainlike deposition pattern. Multi-rings have
been explained experimentally[26] and theoretically[27] by the
stick-slip motion of the contact line. Recently, Thampi[28]

performed an exhaustive numerical study of the contact line
evolution during droplet evaporation. They showed that the
motion of droplet contact line is mainly parameterized by the
substrate wettability. Previous theoretical models were written
in the form of nonlinear partial differential equations and re-
quired numerical simulation to see the outcome of the model.
Moreover, these models are usually for one special situation,
lacking the generality in understanding the deposition pattern
formation mechanism.

In recent years, we have proposed an Onsager variational
principle theory to study the drying of liquid droplets by as-
suming the contact angle being small and the liquid/vapor in-
terface having a parabolic form. In fact, the contact angle of
droplets can be large, and a spherical shape of the liquid/vapor
interface is more common in nature. So in this article, we pro-
pose a more general model without the assumption of small
contact angle. It is worth pointing out that the model automat-
ically goes back to the previous model when the contact angle
is small.

Using Onsager variational principle theory, we derive a
general shape evolution equation for drying droplets. This
model reveals three main droplet shape evolution modes ob-
served in experiments: the constant contact angle evaporation
process, the constant contact radius, and a mixture of the two
modes. Analytical expressions of the contact angle and the
contact radius as a function of evaporation time are given. The
simple model also recovers the famous Tanner’s law.

2. Model and theory
2.1. Droplet shape evolution equation

Onsager variational principle[29–31] was proposed by On-
sager in his celebrated paper[32,33] about the reciprocal re-
lation. This theory provides an applicable method to study
the dynamic process of various nonlinear and non-equilibrium
phenomena of soft matter, such as phase separation,[34] gel
dynamics,[35] colloidal dynamics, and molecular modeling for
viscoelasticity. One important aspect of this theory is that On-
sager variational principle can facilitate establishing nonlinear

time evolution equations. In fact, for isothermal process, this
principle is also referred to as the minimum energy dissipation
principle in hydrodynamics.

We assume that the liquid/vapor interface of the droplet
has a spherical shape. This assumption allows the calculations
for droplet on both hydrophilic and hydrophobic substrates.
It indicates that the droplet contact angle can vary from 0 to
π/2 in the following calculations. The schematic in Fig. 1(b)
shows that one droplet is placed on a substrate, and has cylin-
drical symmetry. The droplet has the height at the center H(t),
contact radius r(t), contact angle θ(t), and volume V (t), while
R(t) is the radius of the spherical crown of liquid/vapor inter-
face. We define α as the circumference angle of one point at
the liquid/vapor interface. With all these definitions, we have
the following relations:

x = Rsinα,

r = Rsinθ ,

H = R(1− cosθ),

h = R(cosα− cosθ),

V =
1
3

πR3(1− cosθ)2(2+ cosθ).
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Fig. 1. Schematic of a sessile droplet drying on a substrate. Panels (a) and
(b) are the top and the side views of the droplet, respectively. Relevant pa-
rameters are the radius of the contact line r, the radius of the spherical crown
R, the contact angle θ , the height of the droplet h at position x.

The volume V (t) of the droplet decreases with time due to
solvent evaporation. The evaporation rate of a droplet is deter-
mined by the diffusion of solvent molecules in the gas phase,
and can be analyzed theoretically. When there is no air flow
near the liquid surface, V̇ (t) can be obtained by solving the
diffusion equation of solvent vapor in air. It has been shown
that V̇ (t) is proportional to the base radius of the droplet,[36,37]
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and is weakly dependent on the contact angle. Therefore, we
ignore the contact angle dependence, and assume that

V̇ (t) = V̇0
r(t)
r0

= V̇0
R(t)sinθ

R0 sinθ0
, (2)

where V̇0 (≤ 0) and r0 denote the initial values of V̇ (t) and
r(t), respectively. V̇0 is expressed in terms of the diffusion
constant of the solvent molecules in the gas phase, the solvent
vapor pressure near and far from the droplet, and the temper-
ature. The evaporation rate (the volume of solvent evaporated
per unit time per unit surface area) is given by

J(t) =− V̇ (t)
πr2(t)

=− V̇0

πr0r(t)
. (3)

In order to obtain the evolution model of droplets during
evaporation, we calculate the evolution equation Ṙ(t), by using
Onsager variational principle. Then, we can obtain the droplet
shape evolution equation ṙ and θ̇ from Ṙ. We take R and θ as
the slow variables. The theory starts from the Rayleighian that
comprises two parts: the time derivative of the free energy, Ḟ
and the energy dissipation function Φ

ℜ = Φ + Ḟ . (4)

The droplet size is assumed to be less than the capillary length,
then the free energy F is written as a sum of the interfacial en-
ergies

F = (γLS− γSV)πr2 + γLV ·
∫

θ

0
2πxRdα

= πR2
γLV
[
−sin2

θ cosθe +2(1− cosθ)
]
, (5)

where γLV, γLS, and γSV are the surface tensions at liq-
uid/vapor, liquid/substrate, and substrate/vapor, respectively.
The equilibrium contact angle is given by the Young’s equa-
tion

cosθe =
γSV− γLS

γLV
. (6)

Then, the time derivative of such a free energy is

Ḟ = 2γLVπR
[
Ṙ(2−2cosθ − sin2

θ cosθe)

+Rsinθθ̇(1− cosθ cosθe)
]
. (7)

We calculate the energy dissipation function, Φ , by taking the
lubrication approximation. Let v(x, t) be the height-averaged
fluid velocity at position x and time t. The energy dissipation
function Φ is written as

Φ =
1
2

∫ r

0
2πx

3η

h
v2dx+πξclrṙ2. (8)

The dissipation function has two parts. The first term is the
usual hydrodynamic energy dissipation in the lubrication ap-
proximation, while the second term is the energy dissipation

from the motion of the contact line over the substrate.[38] The
parameter ξcl is a phenomenological parameter of the mobil-
ity of the contact line: the droplet would be pinned on the
substrate when ξcl is large enough, and can move freely when
ξcl = 0.

Experiments have shown that ξcl originates from the sub-
strate wetting properties, substrate defects, and surface-active
solutes. Since not much is known about the quantitative re-
lation between ξcl and all these factors, in the following, we
define a dimensionless parameter kcl = ξcl/η and proceed to
make a simple assumption that ξcl is a constant phenomeno-
logical parameter. We define such a kcl as the effective friction
constant between the contact line and the substrate to indi-
cate the mobility of the contact line. For weak contact angle
hysteresis (CAH) substrate, the CL mobility is strong, corre-
sponding to small values of kcl. On the other hand, for strong
CAH substrate, the CL is pinned. We therefore set a large
value of kcl.

The height-averaged fluid velocity at position x and time
t, v(x, t), is obtained by solving the mass conservation equa-
tion

ḣ =−1
x

∂

∂x
(xvh)− J. (9)

With Eqs. (1), (3) , and (9), We obtain the simple expression
of v(x, t)

v(x, t) = Ṙ
(cosα−1)(cosα cosθ + cosα + cosθ)

sinα(1+ cosθ)
. (10)

Then, the energy dissipation function Φ becomes

Φ = 3πηRṘ2C1(θ)+πξclRsin3
θ Ṙ2 +πξclR3 sinθ cos2

θθ̇ 2

+2πξclR2 sin2
θ cosθ Ṙθ̇ , (11)

where

C1(θ) =
11
6

cos3
θ − cos2

θ − 9
2

cosθ +
23
3

− 7
1+ cosθ

− 2
(1+ cosθ)2

+
cos3 θ(1− cosθ)(2+ cosθ)2

(1+ cosθ)3 ln
1− cosθ

ε

+
2

(1+ cosθ)3 ln
2

1+ cosθ
, (12)

and ε is the molecular cutoff length, which is introduced to
remove the divergence in the energy dissipation at the contact
line.

The Onsager principle states that Ṙ is determined by the
condition

∂ (Φ + Ḟ)

∂ Ṙ
= 6πηRṘC1(θ)+2πξclRṘC2(θ)

+2ξcl
V̇
R

C3(θ)+2πγLVRC4(θ)

= 0, (13)
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where

C2(θ) =
(1− cosθ)2

sinθ(1+ cosθ)2 , C3(θ) =
cosθ

sinθ(1+ cosθ)2 ,

C4(θ) =
1− cosθ

1+ cosθ
(cosθ − cosθe).

To simplify the equations, we define the evaporation time
τev and relaxation time τre by

τev =−
V0

V̇0
, τre =

ηr0

γLV
, (14)

where τev represents the characteristic time taken by the ini-
tial droplet to dry up, and τre represents the characteristic time
taken by the initial droplet to reach its equilibrium state. kev is
defined by

kev =
τre

τev
, (15)

which represents the evaporation rate. The evaporation rate
increases when kev increases.[37]

2.2. Comparison with convention hydrodynamics theory

When there is no evaporation, the liquid volume does not
change, V̇ = 0. Then we obtain the function

∂ (Φ + Ḟ)

∂ Ṙ
= 0,

V̇ = 0.
(16)

The evolution of rescaled r and θ becomes
τre ˙̃r =− (1− cosθ)2

3C1(θ)sinθ(1+ cosθ)2 (cosθ − cosθe),

τreθ̇ =
(1− cosθ)2(2+ cosθ)

3C1(θ)(1+ cosθ)2r̃
(cosθ − cosθe),

(17)

where r̃ = r/r0, and r0 is the initial contact radius of the
droplet.

This is a full model of the droplet shape evolution when
there is no evaporation. We show that the famous Tanner’s
law can be naturally obtained from the model. According to
the condition of Tanner’s law,[39] we assume that the droplet is
placed on a superwetting substrate with a small initial contact
angle.

Then, the evolution equation of r̃ becomes

τre ˙̃r ≈ k1θ
−3 = k2r̃−9, (18)

which has the same power law of r̃ as a function of time as the
Tanner’s law.

Figure 2 shows the evolution of the droplet contact line
for various values of initial contact angle θ0. When θ0 is not
equal to its equilibrium value, the droplet will relax to its equi-
librium shape. The fitting slopes of three log–log curves of r̃(t)
are all close to 0.1, which is good verification of Tanner’s law.

The spreading of the contact line is governed by the capillary
and viscous forces. The capillary force is raised by the differ-
ence between the apparent contact angle and the equilibrium
contact angle, while the viscous forces come from the inner
fluid flow of the droplet and the contact line motion over the
substrate. For larger θ0, the more capillary force makes the
spreading speed faster. When the contact angle is small, the
effective spreading coefficient Si has already been reduced to
its equilibrium value Seq = γLV(cosθe−1) = 0. Therefore, the
spreading rate tends to be exceedingly slow and stable.
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/
r
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Fig. 2. Evolution of the contact line r/r0 of drying droplets for three values
of initial contact angles, θ0 = 0.2, 0.4, and 0.6. The time is in units of τre.
The fitting tangent slopes k in the later evaporation processes confirm the
Tanner’s law. For all calculations, θe = 0,kcl = 0 and kev = 0.

3. Result

In experiments, both frictionless and frictional substrates
can be prepared by using different substrate materials and liq-
uids. Various evaporation processes have been observed in ex-
periments by changing the friction constant kcl between the
contact line and the substrates. The value of kcl is deter-
mined by the substrate wetting properties, substrate defects,
and surface-active solutes. We here simply take kcl as a phe-
nomenological parameter: kcl is infinitely large for a pinned
contact line, and is zero for a freely moving contact line. We
discuss the drying of liquid droplets on both frictionless and
frictional substrates, separately. This is inspired by previous
experiments. Li et al.[6,7] experimentally showed that the CL
of a water droplet can move freely on silica glass or poly-
carbonate substrate. This corresponds to the frictionless sub-
strate case. On the other hand, they also showed that when
water droplet is placed on a graphite substrate, the CL is al-
most pinned, representing a frictional substrate. We will focus
on the droplet shape evolution during evaporation by analyz-
ing the time evolution of the droplet contact line r(t) and the
droplet contact angle θ(t), which can be experimentally mea-
sured by using high-speed cameras. So all results are subject
to experimental test.

096803-4



Chin. Phys. B Vol. 29, No. 9 (2020) 096803

3.1. Droplet on frictionless substrate

When the substrate is frictionless (kcl = 0), the evolution
equation of Ṙ(t) in Eq. (13) is reduced to

Ṙ =−
γLVC4(θ)

3ηC1(θ)
. (19)

Then we obtain the evolution equations of the contact line r
from Eqs. (1), (2), and (19),

τev ˙̃r = − (1− cosθ0)
2(2+ cosθ0)cotθ

3sin3
θ0r̃

+
(1− cosθ)2(cosθe− cosθ)

3C1(θ)kev sinθ(1+ cosθ)2 , (20)

and the contact angle evolution equation

τevθ̇ = − (1− cosθ0)
2(2+ cosθ0)

3sin3
θ0r̃2

− (1− cosθ)2(2+ cosθ)(cosθe− cosθ)

3kevC1(θ)(1+ cosθ)2r̃
. (21)

The two evolution equations seem to be complicated, however,
they are just first-order differential equations that facilitate the
numerical solutions. We will show that for some special case,
the model can even give analytical results.

Figure 3 shows three typical droplet shape evolution pro-
cesses for evaporation. When a droplet is placed on a substrate
with an initial contact angle θ0 and an equilibrium contact
angle θe, it will perform three typical dynamics for θ0 < θe,
θ0 = θe, and θ0 > θe, respectively. The corresponding evolu-
tion of r(t) and θ(t) is shown in Figs. 3(d) and 3(e), respec-
tively. In order to have all these three dynamics, we assume a
slow evaporation rate kev = 0.001, and set a fixed equilibrium

contact angle, θe = 0.8.
Figure 3(a) is the situation of θ0 < θe, where we take

θ0 = 0.4. The droplet contact line first shrinks quickly, mean-
while, its contact angle increases to θe. Then, r continuously
decreases, while θ keeps constant due to the lose of volume.
Figure 3(b) is for θ0 = θe = 0.8, which shows that r recedes
homogeneously and θ keeps constant for most parts of the
evaporation process. This is the CCA evaporation process ob-
served in experiments[40]. On the other hand, when θ0 = 1.2,
droplet first spreads to reduce the contact angle to its equi-
librium value, and then recedes due to the lose of volume, as
shown in Fig. 3(c).

It is clear that droplet shape evolution is determined by
both the capillary effect and the evaporation effect. The cap-
illary force arises from the difference between the apparent
contact angle and the equilibrium value. When θ(t) is differ-
ent from θe, droplet has to relax to its equilibrium contact an-
gle. This is why r first recedes in Fig. 3(a), but first spreads in
Fig. 3(c). Meanwhile, due to evaporation, the lose of volume
tends to decrease r, explaining the later shrinking of the con-
tact line in all situations. It is worth noting that when kcl = 0,
θ will be constant as long as it reaches its equilibrium value.

For this frictionless case, the contact angle evolution can
also be changed by varying the evaporation rate. Figure 4
shows that when the evaporation rate is slow (kev = 0.001),
the contact angle nearly stays unchanged for the whole evapo-
ration process. However, it changes to a continuously decreas-
ing mode for a fast evaporation rate (kev = 1.0) while all other
parameters are the same.
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Fig. 3. Droplet shape evolution for evaporation on frictionless substrate for three situations: (a) θ0 < θe, (b) θ0 = θe, and (c) θ0 > θe. The
corresponding evolution of the contact line r/r0 is shown in panel (d), and the contact angle θ is shown in panel (e). For all calculations,
θe = 0.8 and kev = 0.001.

096803-5



Chin. Phys. B Vol. 29, No. 9 (2020) 096803

0
0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

(a)
1.0

0.5 1.0

t/τev

1.5

0 0.5 1.0

t/τev

r
/
r
0

1.5

kev=0.001

kev=0.005

kev=1.000

(b)

θ

Fig. 4. Evolution of (a) contact radius r/r0 and (b) contact angle θ of a dry-
ing droplet for various evaporation rates kev. By increasing the evaporation
rate, the evolution mode changes from CCA to a continuously decreasing
one. For all cases, the initial contact angle θ0 of the droplet is the same as
its equilibrium contact angle θe, and kcl is fixed as kcl = 0.

An explicit expression of the droplet shape evolution
equation can be obtained for the aforementioned CCA dynam-
ics. For this case, we have an additional condition θ̇ = 0. To-
gether with the empirical form of V̇ , we have the simple evo-
lution equation of r(t) as

r̃ =

√
1− 2

3
t̃. (22)

Figure 5 is the comparison of the results obtained by this
simple model and the full Onsager model. The evolution of r
is almost consistent between these two models, indicating that
for this special case, such a simple model is enough to study
the shape evolution of drying droplets. This may be useful for
experimental quantitative comparisons.

0 0.500.25 0.75 1.251.00

t/τev

1.50
0

0.2

0.4

0.6

0.8

1.0

r
/
r


theoretical

numerical

Fig. 5. The comparison of the evolution of r calculated from the simple
model and the full Onsager model. The results are in good agreement. The
parameters are: θ0 = θe = 0.4,kev = 1,kcl = 0.

3.2. Droplet on frictional substrate

When droplets evaporate on frictional substrate, the evap-
oration process becomes more complicated. For this case, be-
sides the capillary and evaporation effects, a pinning force ap-
pears, which can also determine the motion of the droplet con-
tact line.

From Eqs. (1), (2) and (13), we obtain the full evolution
equation of r,

τev ˙̃r =− (1− cosθ0)
2(2+ cosθ0)cosθ

3sin3
θ0 sinθ r̃

+
1− cosθ

1+ cosθ

sinθ

3sinθ(1+ cosθ)2C1(θ)+ kcl(1− cosθ)2

×
[
kcl

(1−cosθ0)
2(2+cosθ0)cosθ

3sin3
θ0r̃

+
sinθ(cosθe−cosθ)

kev

]
,

(23)

and the contact angle evolution equation

τevθ̇ =− (1− cosθ0)
2(2+ cosθ0)

3sin3
θ0r̃2

− (1− cosθ)2(2+ cosθ)

3sinθ(1+ cosθ)2C1(θ)+ kcl(1− cosθ)2

×
[
kcl

(1−cosθ0)
2(2+cosθ0)cosθ

3sin3
θ0r̃2

+
sinθ(cosθe−cosθ)

kevr̃

]
.

(24)

We want to emphasize that the full model is reduced to the
evolution equations (20) and (21) by taking kcl = 0.

We have shown the freely moving cases in the previous
subsection. We here analyze the droplet shape evolution for
both small kcl = 25 and large kcl = 1000, separately.

Figure 6(a) is for droplet evaporating on substrate with
kcl = 1000, an equilibrium contact angle θe = 0.2, an initial
contact angle θ0 = 0.8, and the evaporation rate kev = 0.01.
Although θ0 6= θe, the strong pinning force makes the contact
line r nearly unchanged during most parts of the evaporation
process, as shown in Fig. 6(b) (the black solid line). Mean-
while, the contact angle keeps decreasing due to the lose of
volume, indicating by the blue dashed line in Fig. 6(b). For a
small value of kcl = 25 in Figs. 6(c) and 6(d), r is first pinned,
and then starts to recede. The first pinned of the contact line is
because of the pinning force. The later receding is mainly due
to the increase of the evaporation rate, as we assume that J(t)
is an inverse function of r.

When the contact line is nearly pinned during most parts
of the evaporation process, it is named as CCR process ob-
served in experiments. For this special case, ṙ = 0 and together
with the form of V̇ leading to a simple evolution equation of
θ ,

θ̇ =− (1− cosθ0)(2+ cosθ0)

3τev sinθ0(1+ cosθ0)
(1+ cosθ)2. (25)

This equation clearly shows that θ keeps decreasing because
θ̇ < 0.
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Figure 7 is the comparison of the results obtained by this
simple model and the full Onsager model. The evolution of θ

is almost consistent between these two models, indicating that
for this special case, such a simple model is enough to study
the shape evolution of drying droplets.
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t/τev
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Fig. 7. The comparison of θ evolution between the reduced model and
the Onsager full model when the contact line is pinned, ṙ = 0. The
calculation parameters are: θ0 = 1.0,θe = 0,kev = 1,kcl = 1000.

4. Discussion and conclusion
In this article, we have proposed a simple model for the

shape evolution of drying droplets. We assume a spherical
shape of the droplet liquid/vapor interface, enabling the study
of drying droplets on both hydrophobic and hydrophilic sub-
strates. The model provides a generally quantitative study of
the effects of the friction between the CL and the substrate, the
capillary force and the evaporation rate in the droplet evapo-
ration dynamics. The friction of the CL/substrate causes two
motions of the CL, i.e., pinned or depinned. The capillary
force, arising from the difference between the apparent contact
angle and the equilibrium contact angle, leads to the spreading

or receding motion of the CL. The evaporation tends to cause
the receding motion of the CL due to the lose of volume. One
realistic evaporation process is determined by the combined
effects of the three factors, resulting in various droplet shape
evolution processes.

When the substrate is frictionless (kcl = 0), the CL can
move freely over the substrate. In this case, the capillary
force and the evaporation rate dominate the droplet evapora-
tion process. On the other hand, when it is frictional substrate
(kcl 6= 0), kcl is an additional factor to determine the droplet
shape evolution. When the evaporation rate is slow, the model
demonstrates two experimentally observed evaporation pro-
cesses: the CCA by taking kcl = 0, and the CCR by setting
a large value of kcl. Moreover, complicated evaporation pro-
cesses are also obtained, for example, the contact radius first
spreads and then shrinks when the initial contact angle is larger
than the equilibrium contact angle.

In addition to the full Onsager model, we have also pro-
posed three analytical models for some special cases. When
kcl = 0 and there is no evaporation, the Onsager model reduces
to the famous Tanner’s law, giving a scaling law of r as a func-
tion of time t, r ∼ t

1
10 . Analytical evolution equations of both

ṙ and θ̇ are also given corresponding to experimental situa-
tions of the CCA and the CCR processes, respectively. These
simple expressions are not only consistent with full Onsager
model calculations, but also provide a quantitative compari-
son between experimental measurements and theoretical stud-
ies, facilitating the understanding of the physical mechanism
underlying the drying of liquid droplets.

Since there are various parameters determining the evap-
oration of droplets in experiments, it is difficult to make a
quantitative comparison between the theory and experiments.
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However, a qualitative comparison of the evaporation modes
can be made. In experiment and simulation studies, for the
evaporation of droplets on weak contact angle hysteresis sub-
strates, the contact line of droplet can move freely on the sub-
strate and the droplet evaporates in the CCA mode.[14–16,19–21]

This is consistent with the present theoretical results by set-
ting kcl to 0 or very small values. While on strong contact an-
gle hysteresis substrates, the pinning force of the contact line
is very large and the droplets evaporate in the CCR mode or
mixed mode.[14,18–21] This is related to the theory by setting
kcl to large values. On the other hand, experiments also show
that decreasing the surrounding saturated vapor pressure,[15]

the evaporation mode of droplet changes from CCA to mixed
mode, which is also in agreement with our theory by increas-
ing the evaporation parameter kev as shown in Fig. 4.

In terms of the evaporation rate, we notice that it is also
affected by the heterogeneous distribution of temperature and
the physical-chemical properties of the substrate.[41,42] We
here assume a homogeneous evaporation rate that is a func-
tion of the droplet radius during evaporation. However, when
one wants to study more complicated droplet evaporation, all
these extra effects must be included in the model in the future.

The simple Onsager variational principle model of drying
droplets is for droplets with a single component, but can be
extended to mixed liquid droplets. Although we only focus on
the droplet shape evolution in this article, the corresponding
deposition patterns can also be obtained for droplets placed
on both hydrophobic and hydrophilic substrates. The Onsager
model can also be applied to the study of droplet motion by
assuming that the position of the droplet center can be moved.
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