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Charge structure factors of doped armchair nanotubes in the
presence of electron–phonon interaction
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We present the behaviors of both dynamical and static charge susceptibilities of doped armchair nanotubes using
the Green function approach in the context of Holstein-model Hamiltonian. Specially, the effects of magnetization and
gap parameter on the the plasmon modes of armchair nanotube are investigated via calculating correlation function of
charge density operators. Random phase approximation has been implemented to find the interacting dynamical charge
susceptibility. The electrons in this systems interacts with each other by mediation of dispersionless Holstein phonons.
Our results show that the increase of gap parameter leads to decreasing intensity of charge collective mode. Also the
frequency position of the collective mode tends to higher frequencies due to the gap parameter. Furthermore the number
of collective excitation mode decreases with chemical potential in the presence of electron–phonon interaction. Finally the
temperature dependence of static charge structure factor of armchair nanotubes is studied. The effects of the gap parameter,
magnetization and electron–phonon interaction on the static structure factor are addressed in details.
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1. Introduction
The field of nanotubes has strongly benefited from

this broad fundamental and technological interest. These
nanoscale graphitic structures are of great interest for both
theoretical and experimental solid state physicists in the past
two decades.[1] These materials[1,2] are formed from carbon
atoms arranged on rolled honeycomb lattice as cylindrical
structures with nanometer diameters and micrometer lengths.
Nanotubes are considered as either single molecules or quasi
one-dimensional crystals with translational periodicity along
the tube axis. A single wall carbon nanotube (SWCNT) is
predicted to be either a metal or a semiconductor, depending
on its radius and chirality.[2] Nanotubes are also mechanically
very stable and strong, and their carrier mobility is equivalent
to that of good metals, suggesting that they would make ideal
interconnects with remarkable transport properties in nano-
sized devices.[3,4] One of the significant transport properties
of CNTs has been the high values of electrical conduction
of CNTs, which leads to attracting considerable attention.[5]

Negative differential resistance behavior of silicon monatomic
chain encapsulated in carbon nanotubes has been reported.[6]

In practice, metallic carbon nanotubes are very good con-
ductors exhibiting ballistic transport properties.[7] Simple cir-
cuits based on semiconducting carbon nanotube field effect
transistors have already been demonstrated.[8] Mobility of
electrons can be as high as 79000 cm2/V·s at room temperature
for semiconducting CNT field effect transistors with channel
lengths of more than 300 µm.[9] Therefore understanding the
mechanisms of reduction of electron mobility due to various

scattering effects by simulating the nanotubes can be consid-
ered as a novel topic.

Lattice displacements due to the ripple structures are sym-
metric with respect to their close carbon atoms and couple to
the carrier densities. The electrons moving through the sheet
are coupled to the out-of-plane phonons and therefore the
electron–phonon coupling play an important role in the trans-
port properties.[10–12] The symmetric property of this displace-
ment with respect to their neighboring atoms leads to coupling
between electronic density and this mode of phonons.[13] The
out of plane vibrations are dispersionless and couple with elec-
trons in the context of Holstein-model Hamiltonian.[14,15] In
this model the coupling of electrons to dispersionless optical
phonons is essentially local. The electron–phonon coupling
has been carefully examined and has been shown to give rise
to Kohn anomalies in the phonon dispersion at edge points
in the Brillioun zone where the phonon can be studied by
Raman spectroscopy.[16,17] The effect of the electron–phonon
coupling on the local density of states of zig-zag graphene rib-
bons has been studied by Sasaki et al.[18]

The collective charge excitation of electronic systems can
be found by studying the frequency dependence of dynamical
charge susceptibility. It is worthwhile to explain the experi-
mental interpretation of imaginary part of dynamical charge
susceptibility. Slow massive charged particles scatter from
solids via electrical interaction in which the electric charge
beam interacts with the electric charge of electrons in the
solid.[19] The inelastic cross section for charged particles scat-
tering from the electronic system can be expressed in terms of
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charge density correlation functions. Therefore the differential
inelastic cross section d2σ/dΩ dω is proportional to imagi-
nary part of charge susceptibility. Here ω denotes the energy
loss of massive charged beam which is defined as the differ-
ence between incident and scattered particles energies. Ω in-
troduces solid angle of scattered particles. The frequency posi-
tion of peaks in d2σ/dΩ dω determines the collective charge
excitation spectrum of the electronic system.

In an experimental study, the strongly coupled plasmon-
phonon mode dispersion has been measured by the angle-
resolved reflection electron-loss spectroscopy and it was found
that the discrepancy arises from electron–phonon coupling.[20]

The electron–phonon coupling is the macroscopic coupling
between the electronic collective modes and the optical
phonons. The mode coupling phenomenon, which hybridizes
the collective plasmon modes of the electron with the optical-
phonon modes of the lattice, gives rise to the coupled plasmon-
phonon modes which have been extensively studied[21–23] both
experimentally and theoretically in bulk and two-dimensional
electron systems.

In order to study electronic properties of electron gas
in the nano structures and graphene, the dynamical polar-
izability whereby the screening effects have been found is
required.[24,25] The static structure factor at fermi wave vector
that gives the Thomas–Fermi screening length is important for
transport properties of two-dimensional graphene.[26,27] The
dynamical polarizability renormalizing the phononic Green’s
function can explain the phonon softening and Kohn anomlay
phenomenon[28] at the Γ point. The charge response function
was studied for gapped graphene[29] and graphene in the pres-
ence of magnetic field.[30] A semi-analytical expression for the
dynamical density-density linear response function of doped
graphene sheet within Dirac approximation at finite tempera-
ture has been performed.[31] Their results demonstrated that
the fluctuations of density in bilayer case can present either
single-component massive-chiral character or standard two
layer character, depending on energy and doping.

The goal of this work is to study the effects of next near-
est neighbor hopping amplitude, gap parameter and electron–
phonon coupling on plasmon frequencies of doped armchair
nanotubes at finite temperature. In order to obtain these col-
lective modes, we study the frequency dependence of dy-
namical charge susceptibility due to magnetization, electron–
phonon coupling strength and gap parameter in the context of
Holstein-model Hamiltonian. Green’s function approach has
been implemented to calculate the charge susceptibility, i.e.
the time ordered charge density correlation. In order to ob-
tain the behaviors of both dynamical and static charge suscep-
tibilities, the interacting electron–electron Green function is
employed by using one loop approximation in the context of
full band approach for making electronic self-energy. The fre-

quency positions of sharp peak in dynamical charge suscep-
tibility introduce the collective plasmonic oscillations of the
above-mentioned nanostructure due to electron–phonon inter-
action effects. Furthermore the temperature dependence of
static charge susceptibility of armchair nanotubes due to varia-
tion of magnetization and gap parameter is studied. The effects
of the gap parameter on the behavior of static and dynamical
charge susceptibilities have been focused. Finally we discuss
and analyze our results to show how next nearest neighbor
hopping, electron–phonon coupling and gap parameter affect
the frequency of collective modes.

2. Theoretical formalism
The electronic properties of interaction between tight

binding electrons and dispersionless local vibrational modes
in graphene-like structures can be described by the Holstein-
model Hamiltonian. To calculate the electronic properties of
the graphene-like nanotube, we consider monolayer graphene
which is folded along armchair direction. The lattice structure
of each graphene layer has been shown in Fig. 1. The primitive
unit cell vectors are given as follows:

𝑎1 =
a
√

3
2

𝑖+
a𝑗
2
, 𝑎2 =

a
√

3
2

𝑖− a𝑗
2
, (1)

where 𝑖 and 𝑗 are unit cell vectors along zigzag and armchair
directions, respectively. Also the length of unit cell vectors is
considered to be a. We consider electrons in π orbital of car-
bon atoms by using the tight-binding Hamiltonian in addition
to the effect of the electron–phonon coupling due to localized
phonons. An intrinsic magnetic magnetization M has been
considered to be perpendicular to the axis of the nanotube.
In order to obtain electrical transport properties of graphene-
like nanotubes we must first examine the band structure and
provide the expression for the electronic Green function. We
start from a tight binding model incorporating nearest and
next nearest neighboring hopping terms. A finite difference
between on-site energies of two different sublattice atoms of
honeycomb structure has been applied in the model Hamilto-
nian. Since there is magnetic long range ordered phase for
graphene sheet, the contribution of electrons with σ =↑ is dif-
ferent from that of electrons with σ =↓. Thus the spin quan-
tum number is eliminated in the following relations. The spin
dependent next nearest neighbor Holstein-model Hamiltonian
for monolayer graphene, H, is given by

H = −t ∑
𝑘,σ

(φ𝑘a†
𝑘,σ b𝑘,σ +h.c.)

+g ∑
𝑘,𝑞,σ

(a†
𝑘+𝑞,σ a𝑘,σ +b†

𝑘+𝑞,σ b𝑘,σ )(c𝑘+ c†
−𝑘)

+ ∑
𝑘

ω0c†
𝑘c𝑘+ ∑

𝑘,σ

(∆a†
𝑘,σ a𝑘,σ −∆b†

𝑘,σ b𝑘,σ )

− ∑
𝑘,σ

µσ (a
†
𝑘,σ a𝑘,σ +b†

𝑘,σ b𝑘,σ ),
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φ𝑘 = 1+ cos(ky/2)exp(−ikx
√

3/2), (2)

where a†
𝑘,σ (b†

𝑘,σ ) creates an electron at sublattice A (B) with
wave vector 𝑘 and with spin quantum number σ . The wave
vector 𝑘 belongs to the first Brillouin zone of honeycomb lat-
tice. Also, t is the nearest neighbor hopping integral for itiner-
ant electrons on honeycomb lattice;[2] µσ introduces the spin
dependent chemical potential for electron gas which is deter-
mined in the following. Moreover, c𝑘 denotes the annihilation
phonon operator at wave vector 𝑘 on each sublattice; ω0 refers
to the frequency of the out of plane vibrations of the optical
phonon of each atom on the lattice. The electron phonon cou-
plings for sublattices A and B are determined by g. The sublat-
tice symmetry breaking mechanism is understood as different
on-site energies for A and B sublattices, namely ∆ and −∆ in
Eq. (2). The Fourier transformations for fermionic operators
a†

i and b†
i can be given by

a†
𝑘 =

1√
N ∑

i
e−i𝑘.𝑅ia†

i , b†
𝑘 =

1√
N ∑

i
e−i𝑘.𝑅ib†

i , (3)

where N is the number of unit cells, 𝑅i introduces the posi-
tion vector of i th unit cell in graphene layer; 𝑘 is wave vec-
tor belonging to the first Brillouin zone of nanotube structure.
Depending on the zigzag or armchair type of nanotube, the
region of wave vectors 𝑘 are determined. Nanotubes of the
type (n,n) are called armchair tubes, because they exhibit an
armchair pattern along the circumference. A single-wall arm-
chair nanotube is geometrically obtained by rolling up a single
graphene layer around y direction according to Fig. 1. The
length of circumference of armchair nanotube is obtained as
ℛ = an

√
3. Now a periodic boundary condition for armchair

nanotube (n,n) defines the small number of allowed wave vec-
tors kx in the circumferential direction,

e ikx,qℛ = e i2πq,

nkx,qa = 2πq −→ kx,q =
2πq

an
√

3
. (4)

The integer quantum number q is determined using the first
Brillouin zone of honeycomb structure. Based on Fig. 1 and
the first Brillouin zone of honeycomb structure, kx satisfies the
expression − 2π√

3a
< kx <

2π√
3a

. Using Eq. (4), one can write

− 2π√
3an

< 2πq
an

√
3
< 2π√

3an
. Thus we have −n < q < n for arm-

chair nanotube (n,n). Based on the above statements, we can
introduce the wave vector regions for armchair type of nan-
otubes as follows:

kx =
2πq

an
√

3
with −n < q < n, − 4π

3a
< ky <

4π

3a
. (5)

Since each unit cell of armchair graphene structure includes 2
atoms with types A and B, one particle Green’s function can
be written as the 2×2 matrix. According to the model Hamil-
tonian introduced in Eq. (2), the elements of noninteracting

spin resolved Matsubara Green’s function are introduced as
the following forms:

G(0)σ
AA (𝑘,τ) =−⟨𝒯 (a𝑘,σ (τ)a

†
𝑘,σ (0))⟩,

G(0)σ
AB (𝑘,τ) =−⟨𝒯 (a𝑘,σ (τ)b

†
𝑘,σ (0))⟩,

G(0)σ
BA (𝑘,τ) =−⟨𝒯 (b𝑘,σ (τ)a

†
𝑘,σ (0))⟩,

G(0)σ
BB (𝑘,τ) =−⟨𝒯 (b𝑘,σ (τ)b

†
𝑘,σ (0))⟩, (6)

where τ is the imaginary time. Symbol 𝒯 implies time or-
dering operator. The Fourier transformation of each Green’s
function element is obtained by

G(0)σ
αβ

(𝑘, iωn) =
∫ 1/kBT

0
dτ e iωmτ G(0)σ

αβ
(𝑘,τ), α,β = A,B, (7)

where ωn = (2n+1)πkBT is fermionic Matsubara frequency.
T introduces the equilibrium temperature of the system. Af-
ter some algebraic calculation, the following expression is ob-
tained for Green’s functions in Fourier presentation

G(0)σ
αβ

(𝑘, iωn) = ∑
η=±

𝒞αβ

η ,σ (𝑘)

iωn −Eσ
η (𝑘)

,

Eσ
η=±(𝑘) =±

√
∆ 2 + |φ𝑘|2 −µσ , (8)

where α and β refer to the each atomic basis of honeycomb
lattice, and Eη(𝑘) is the band structure of gapped graphene-
like structure. Moreover coefficients 𝒞αβ

η=±(k) are given by

𝒞AA
η ,σ (𝑘) =

1

1+ |φ𝑘|2
(Eσ

η (𝑘)+∆)2

,

𝒞BB
η ,σ (𝑘) =

|φ𝑘|2

(Eσ
η (𝑘)+∆)2(1+ |φ𝑘|2

(Eσ
η (𝑘)+∆)2 )

,

𝒞AB
η ,σ (𝑘) =

φ *
𝑘

(Eσ
η (𝑘)+∆)(1+ |φ𝑘|2

(Eσ
η (𝑘)+∆)2 )

= 𝒞BA*
η ,σ (𝑘). (9)

The spin dependence of each component Green’s function
in Eq. (8) originates from chemical potential µσ . This spin
dependent chemical potential µσ is determined by the concen-
tration of electrons with spin σ (nσ

e ),

nσ
e =

∫ +∞

−∞

dℰD(ℰ) 1
e(ℰ−µσ )/kBT +1

,

D(ℰ)≡ 1
N ∑

𝑘,η

−2Im
( 1

ℰ −η
√

∆ 2 + |φ(𝑘)|2 + i0+

)
. (10)

Here D(ℰ) indicates the total density of states of noninter-
acting nanotube in the presence of gap parameter. To de-
termine µσ , we use the definition of spin polarization and
total occupation of electrons. Spin polarization is given by
m = |n↑− n↓|/n and electronic concentration is expressed as
n = n↑+n↓. Based on the values of magnetization m and elec-
tronic concentration n, the chemical potential for each spin
degree of freedom, µσ , can be obtained by means of Eq. (10).
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Fig. 1. Crystal structure of honeycomb lattice with two different sublat-
tices. Here 𝑎1 and 𝑎2 are the primitive unit cell vectors.

The Migdal theorem[32] let us to maintain the lowest or-
der perturbation theory in order to find self energy diagram
because phonon energy scale is much smaller in compari-
son with electronic energy scale. In Holstein phonons, g and
D(0)(𝑝, i pm) are momentum independent so that the noninter-
acting phononic propagator is simplified to

D(0)(i pm′) = −
∫ 1/(kBT )

0
dτ e i pm′ τ

×
〈

T
(

c𝑘(τ)+ c†
−𝑘(τ)

)(
c𝑘(0)+ c†

−𝑘(0)
)〉

=
2ω0

(i pm′)2 −ω2
0
, (11)

where pm′ = 2m′πkBT with integer number m′ implying the
bosonic Matsubara frequency. Due to dispersionless prop-
erty of Holstein phonon frequency, the off-diagonal elements
of self energy matrix get zero value. Since the propaga-
tor of phonons in the Holstein model is local, the electronic
self-energy is momentum independent. Thus Feynman dia-
grammatic rules[24] at second order perturbation theory for
electron-Holstein phonon interaction gives us the matrix el-
ement of spin dependent diagonal self-energy as follows:

Σ
σ
αα(iωm)

= −kBT
N ∑

𝑘,m′
g2D(0)(i pm′)G(0)σ

αα (𝑘, iωm − i pm′), (12)

where diagonal matrix elements of noninteracting Green’s
function (G(0)σ

αα ) has been replaced in order to calculate self-
energy. Since screening effects corresponding to static charge
susceptibility[25] have been obtained from electronic density
of states at Fermi surface, phononic self-energy is negligi-
ble for graphene-like structures approximately. Therefore the
propagator of Holstein phonons in Eq. (12) is considered to be
unscreened. In order to calculate the summation over internal
Matsubara frequency pm′ , we use Lehman representation[33]

as follows:

G(0)σ
αα (𝑘, iωm − i pm′)

=
∫ +∞

−∞

dω

2π

−2ImG(0)σ
αα (𝑘,ω + i0+)

iωm − i pm′ −ω
. (13)

Substituting Eq. (13) into Eq. (12) and applying the Matsub-
ara frequency summation rules, we can obtain spin-dependent
self-energy matrix elements as follows:

Σ
σ
αα(iωm) =

g2

2N ∑
𝑘

∫ +∞

−∞

dε

2π

×
(nB(ω0)+nF(ε)

iωm − ε +ω0
+

nB(ω0)+1−nF(ε)

iωm − ε −ω0

)
×
(
−2ImG(0)σ

αα (𝑘,ε + i0+)
)
, (14)

with nF(ε) =
1

eβε+1
and nB(ω0) =

1
eβω0−1

are Fermi and

Bosonic distribution functions, respectively. N denotes the
number of unit cells and summation in Eq. (14) is taken over
kx points belonging to the first Brillouin zone of the arm-
chair nanotube. The perturbative expansion for the interacting
Green function matrix in the Matsubara notation is given by
Dyson’s equation[24] as

𝐺−1
σ (𝑘, iωn) =𝐺(0)−1

σ (𝑘, iωn)−𝛴σ (𝑘, iωn), (15)

so that 𝐺σ implies Green’s function of interacting electrons
with spin σ including 2× 2 elements. 𝐺

(0)
σ denotes Green’s

function matrix of tight binding electrons in the presence of
magnetic field. The matrix elements of 𝐺

(0)
σ and 𝛴σ have

been presented in Eqs. (8) and (14), respectively. The explicit
form for each element of interacting Green’s function is quite
lengthy and is not presented here.

The interesting quantity for studying many particle prop-
erties such as plasmon oscillations and phonon softening is
the dynamical charge response function. Also this quantity
determines the effective electron–electron interaction and the
Friedel oscillations. Linear response theory gives us the inter-
acting charge response function (χ) in the presence of quan-
tum effects of electronic interactions based on the correlation
function of density-density operators of electron gas (ρ) as

χ(𝑞, iΩn) =−∑
σ

∫ 1/kBT

0
dτ e iΩnτ⟨T (ρσ (𝑞,τ)ρσ (−𝑞,0))⟩,

ρ
σ (𝑞) =

1
N ∑

𝑘

(
a†
𝑘+𝑞,σ a𝑘,σ +b†

𝑘+𝑞,σ b𝑘,σ
)
, (16)

where Ωn = (2n+1)πkBT denotes the Bosonic Matubara fre-
quency. Moreover 𝑞 belongs to the First Brillioun zone of
armchair nanotube presented in Eq. (5). According to the ran-
dom phase approximation, the charge response function of in-
teracting electrons on armchair nanotube is expressed in terms
of one bubble charge susceptibility,[24,33] i.e. χbubble, as the
following relation

χ(𝑞, iΩn) =
χbubble(𝑞, iΩn)

1−V e−eχbubble(𝑞, iΩn)
, (17)
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where χbubble is shown with a single-fermion closed loop.[24]

Each line in one bubble Feynman diagram of charge suscep-
tibility is interacting electron propagator. V e−e implies the
Fourier transformation of the effective electron–electron inter-
action. Here the electrons interact with each other via media-
tion of phonons. Based on Feynman rules the strength of re-
tarded electron–electron interaction via mediating of phonons
is obtained using phononic propagator[24]

V e−e = g2D(0)(ω) =
2g2ω0

ω2 −ω2
0
. (18)

Note this energy scale V e−e leads to the binding electrons
into local pairs, which occurs when the energy scale is large.
This energy scale in this situation is named bipolaron bind-
ing energy.[34] Now we should calculate one bubble charge
response function χbubble(𝑞, iΩn) in Eq. (17).

Up to one bubble level and after substitution of opera-
tor form of electronic density into Eq. (16), we arrive at the
following expression for dynamical charge response function
χbubble(𝑞, iΩn),

χbubble(𝑞, iΩn)

= − 1
N2 ∑

𝑘,𝑘′
∑
σ

∫ 1/kBT

0
dτ e iΩnτ

×
〈
T (a†

𝑘+𝑞,σ (τ)a𝑘,σ (τ)+b†
𝑘+𝑞,σ (τ)b𝑘,σ (τ))

×(a†
𝑘+𝑞,σ (0)a𝑘,σ (0)+b†

𝑘+𝑞,σ (0)b𝑘,σ (0))
〉
. (19)

The long range magnetic ordering for nanotube leads to the
fact that the contribution of electrons with down-spin to the
response function is different from that of electrons with up-
spin. In order to calculate the correlation function in Eq. (19),
the elements of interacting one particle spin dependent Green’s
function presented in Eq. (15) should be exploited. Wick’s the-
orem has been applied to express the charge response in terms
of matrix elements of interacting electronic Green’s function
in the presence of phonons. Consequently we reach the fol-
lowing expression for the bubble dynamical charge response
function χbubble of electrons on the nanotube structure due to
Holstein phonons,

χbubble(𝑞, iΩn) =
1
N ∑

𝑘
∑

α,β=A,B
∑
σ

∫ 1/kBT

0
dτ e iΩnτ

×Gσ

βα
(𝑘+𝑞,−τ)Gσ

αβ
(𝑘,τ). (20)

One can rewrite the bubble dynamical polarizability function
χbubble in terms of Fourier transformations of Matsubara’s rep-
resentation of electronic Green’s function matrix elements as
follows:[24]

χbubble(𝑞, iΩn)

=
1
N ∑

𝑘
∑

α,β=A,B
∑
σ

kBT∑
m

Gσ

βα
(𝑘+𝑞, iΩn+ iωm)Gσ

αβ
(𝑘, iωm).

In order to perform summation over fermionic Matsubara en-
ergies ωm, we exploit the Lehman representation[33] which re-
lates Matsubara Green’s function to the imaginary part of re-
tarded Green’s function as

Gσ

αβ
(𝑘, iωm) =

∫ +∞

−∞

dω

2π

−2ImGσ

αβ
(𝑘,ω + i0+)

iωm −ω
. (21)

Substituting the Lehman representations of Matsubara Green’s
function into Eq. (21) yields the result for χbubble as follows:

χbubble(𝑞, iΩn)

=
4
N ∑

𝑘
∑
α,β

∑
σ

∫ +∞

−∞

dε

2π

∫ +∞

−∞

dε ′

2π

(
ImGσ

βα
(𝑘+𝑞,ε + i0+)

)
×
(

ImGσ

αβ
(𝑘,ε ′+ i0+)

)
kBT

× ∑
m

1
(iΩn + iωm − ε)

1
(iωm − ε ′)

. (22)

After frequency summation over fermionic Matsubara fre-
quency ωm, the bubble dynamical charge susceptibility of
electrons on the armchair nanotube lattice takes the following
form:

χbubble(𝑞, iΩn)

=
4
N ∑

𝑘
∑
α,β

∑
σ

∫ +∞

−∞

dε

2π

∫ +∞

−∞

dε ′

2π

(
ImGσ

βα
(𝑘+𝑞,ε + i0+)

)
×
(

ImGσ

αβ
(𝑘,ε ′+ i0+)

)nF(ε)−nF(ε
′)

iΩn + ε − ε ′
, (23)

where nF(x) = 1
ex/kBT+1

is the Fermi–Dirac distribution func-
tion. Notice that the frequency of collective charge modes are
determined by finding the position of peaks in the imaginary
part of retarded form of dynamical charge susceptibility. Us-
ing Eq. (17) and effective electron–electron interaction pre-
sented in Eq. (18), the imaginary part of retarded charge sus-
ceptibility of interacting electrons is found by analytic contin-
uation iΩn −→ ω + i0+,

Im χ(𝑞, iΩn −→ ω + i0+)

= Im

(
χbubble(𝑞, iΩn −→ ω + i0+)

1− 2g2ω0
ω2−ω2

0
χbubble(𝑞, iΩn −→ ω + i0+)

)
. (24)

Static charge structure factor (S(𝑞)) which is a measure of long
range charge ordering for electron density can be related to
imaginary part of retarded dynamical charge susceptibility, i.e.
Im χ(𝑞,ω), using the following relation:

S(𝑞,T ) = ∑
σ

⟨ρσ (𝑞,τ)ρσ (−𝑞,0))⟩

= kBT ∑
n

1
2π

∫
∞

−∞

dω
−2Im χ(𝑞, iΩn −→ ω + i0+)

iΩn −ω

=
∫ +∞

−∞

dω
nB(ω)

π
Im χ(𝑞, iΩn −→ ω + i0+), (25)
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where nB(x) = 1
ex/kBT−1

denotes the Bose–Einstein distribu-
tion function. In the next section, we present the numerical
results of both dynamical and static charge susceptibilities of
armchair nanotubes.

3. Numerical results and discussion
In this section, we present our main numerical results for

dynamical and static charge susceptibilities of doped armchair
nanotubes in the presence of the Holstein phonons and intrin-
sic magnetization along the plane. The electronic self-energy
due to Holstein phonons has been obtained using numerical
calculation of Eq. (14). Afterwards the matrix elements of in-
teracting Green’s function of electrons have been found based
on Eq. (15). Equation (23) gives us the bubble dynamical
charge susceptibility of electrons on the armchair graphene
nanotube lattice. Finally by substitution of bubble dynamical
charge susceptibility into Eq. (24), the imaginary part of inter-
acting dynamical charge polarizability can be calculated. Also
the temperature dependence of static charge susceptibility has
been readily calculated using Eq. (25). In the following, the
frequency behavior of dynamical susceptibilities is studied at
characteristic wave number 𝑞0 = (qx,qy) = (2π,π/

√
3). The

temperature behavior of static charge response function is also
studied at 𝑞0. The electron doping effects have been consid-
ered for armchair nanotubes with different values of chemical
potential. As it has been mentioned in Section 1, the imagi-
nary part of dynamical charge susceptibility corresponds to in-
elastic cross section of scattering of charged particles from the
electrons of the nanotube structure in the presence of electron–
phonon coupling and external magnetic field.

Figure 2 presents the frequency behavior of imaginary
part of interacting dynamical charge susceptibility of arm-
chair nanotube (5,5) for different gap parameters at zero mag-
netization for electron–phonon coupling constant g/t = 0.2.
The normalized temperature has been fixed at kBT/t = 0.05.
The frequency position of sharp peak in the imaginary part
of charge susceptibility describes collective excitation mode
or plasmon frequency. The height of peak in imaginary part
of dynamical charge response function corresponds to the in-
tensity of scattered beam from the electrons of graphene nan-
otubes. As shown in Fig. 2, the frequency position of charge
excitation mode with high intensity appears at ω/t ≈ 3.8 for
gap parameter ∆/t = 0.8. The frequency position of charge
excitation mode moves to higher frequencies with increase of
gap parameter. This arises from the increase of band gap width
in density of states with gap parameter. Based on Fig. 2, we
can find that the height of sharp peaks reduces with ∆ .

We have also studied the effect of chemical potential on
plasmon peaks of armchair nanotube (5,5). The frequency
dependence of imaginary part of dynamical charge response

function of doped armchair graphene for different normal-
ized chemical potentials, namely µ/t = 2.6, 2.7, 2.8, 2.9, for
∆/t = 0.8 has been depicted in Fig. 3. The normalized tem-
perature has been fixed at kBT/t = 0.05. A single sharp peak
in Im χ(𝑞0,ω) at ω/t ≈ 1.8 is clearly observed for all values
of µ/t. The intensity of this charge collective mode decays
with chemical potential, i.e. electron density, due to increase
of scattering between electrons. Also the height of sharp peak
which relates to intensity of scattered charged particle beam
from the sample reduces with increase of chemical potential.
Moreover other sharp peaks at ω/t ≈ 2.1 with lower intensity
compared to the previous sharp peaks are found for all values
of chemical potential according to Fig. 3. The height of this
peak is approximately independent of chemical potential. For
µ/t = 2.6, 2.7, a broad peak with low intensity appears at fre-
quency below 1.5 so that there is no such a peak for the other
chemical potentials.
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Fig. 2. Imaginary part of dynamical charge susceptibility (Im χ(𝑞0,ω))
of undoped armchair nanotube (5,5) as a function of normalized fre-
quency ω/t for different values of gap parameter ∆/t for fixed temper-
ature kBT/t = 0.05. The magnetic field is assumed to be zero. The
electron–phonon coupling constant has been fixed as g/t = 0.2.
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Fig. 3. Imaginary part of dynamical charge susceptibility (Im χ(𝑞0,ω))
of doped armchair nanotube (5,5) as a function of normalized frequency
ω/t for different values of chemical potential µ/t for fixed temperature
kBT/t = 0.05. The magnetization is assumed to be zero. The electron–
phonon coupling constant has been fixed as g/t = 0.2. The gap param-
eter has been fixed at ∆/t = 0.8.

In Fig. 4, we have plotted the imaginary part of dynamical
charge susceptibility of undoped armchair nanotube (5,5) ver-
sus normalized frequency ω/t for different next nearest neigh-
bor hopping amplitudes t ′/t, namely t ′/t = 0.24,0.28,0.32.
The normalized temperature and coupling constant have been
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considered to be kBT/t = 0.05 for g/t = 0.2, respectively.
Also we have fixed normalized gap parameter as ∆/t = 0.8.
The higher frequency plasmon modes tend to higher values
with t ′ as shown in Fig. 4.
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Fig. 4. Imaginary part of dynamical charge susceptibility (Im χ(𝑞0,ω))
of undoped armchair nanotube (5,5) as a function of normalized fre-
quency ω/t for different values of next nearest neighbor hopping am-
plitude t ′/t for fixed temperature kBT/t = 0.05. The magnetization is
assumed to be zero. The electron–phonon coupling constant has been
fixed as g/t = 0.2. The gap parameter has been fixed at ∆/t = 0.8.

The characteristic results for static charge structure fac-
tor (S(𝑞0,T )) of undoped armchair nanotube (5,5) in terms
of temperature with different gap parameters, namely ∆/t =
0.4,0.6,0.8,1.0, in the absence of magnetization for electron–
phonon coupling constant g/t = 0.2 are presented in Fig. 5.
There is a peak in the structure factor for each value of ∆ so
that the temperature position of this peak moves to higher tem-
perature with ∆ . This motion of peak position arises from the
increase of band gap in density of states with ∆ so that the ex-
citation of electrons between bands occurs at higher tempera-
tures. The height of the peak rises with gap parameter. The
appearance of peak is an evidence for charge long range or-
dering. Thus this figure implies the charge ordering increases
with ribbon width. A novel feature pronounced in Fig. 5 is
the nonzero value for the static structure factor of insulating
graphene nanotubes when temperature tends to zero. This re-
sult is in contrast to Fermi liquid theory which expresses that
the static structure factor at low temperatures is proportional
to density of states at Fermi level energy. Therefore the Fermi
liquid theory loses its validity for quasi-one-dimensional nan-
otube system in the presence of electron–phonon coupling. In
addition, the static charge structure factor is an evidence for
charge ordering of the electronic system. Each curve in Fig. 5
indicates S(𝑞0,T ) increases with temperature until it reaches a
maximum and then it exponentially goes to zero. This behav-
ior implies that temperature causes to charge ordering up to
maximum point and then more increases of temperature leads
to decrease charge ordering.

Also we turn our attention to the effect of electron–
phonon coupling strength on the temperature dependence of
static structure factor S(𝑞0,T ). In Fig. 6, we have plotted the
temperature behavior of S(𝑞0,T ) of undoped armchair nan-
otube (5,5) for different values of g/t. All the curves in Fig. 6

have a peak at the same value kBT/t ≈ 0.7 so that the height
of peak grows with electron–phonon coupling constant. This
increase of height of the peak with g/t corresponds to the in-
crease of charge long range ordering. In fact the localization
of electrons rises with increase of electron–phonon coupling
strength, which leads to enhancement of charge ordering of
electrons. In addition, at fixed values of normalized temper-
atures below 4, lower g/t causes less localization and conse-
quently lower values in the static structure factor. Moreover it
is clearly observed that the structure factor plots on each other
on the whole range of temperature above normalized value 4
are shown in Fig. 6. In other words the variation of g/t has no
effect on temperature dependence of static structure factor in
temperature region kBT/t > 5.
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Fig. 5. Static charge susceptibility (S(𝑞0,T )) of undoped armchair nanotube
(5,5) as a function of normalized temperature kBT/t for different values of
gap parameter ∆/t in the absence of instantanous magnetization. The nor-
malized electron–phonon coupling constant has been fixed as g/t = 0.05.
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Fig. 6. Static charge susceptibility (S(𝑞0,T )) of undoped armchair nanotube
(5,5) as a function of normalized temperature kBT/t for different electron–
phonon coupling strength g/t in the absence of instantaneous magnetization.
The normalized gap parameter has been fixed as ∆/t = 0.8.

The effect of radial magnetization on temperature depen-
dence of static charge structure factor has been shown in Fig. 7.
In this figure we have plotted the temperature dependence
of charge structure factor for different values of magnetiza-
tion, namely M = 0.0, 0.009, 0.03, 0.08, for ∆/t = 0.8 with
g/t = 0.2. The position of the peak in the static structure fac-
tor goes to lower values with increase of magnetization. In ad-
dition, at fixed value of temperature, the static structure factor
enhances with increase of magnetization as shown in Fig. 7.
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Fig. 7. Static charge susceptibility (S(𝑞0,T )) of undoped armchair nan-
otube (5,5) as a function of normalized temperature kBT/t for different
magnetization values of M at fixed g/t = 0.2. The normalized gap pa-
rameter has been fixed as ∆/t = 0.8.

Finally we have studied the effect of chemical potential
on temperature dependence of armchair nanotubes in the pres-
ence of electron–phonon coupling. In Fig. 8, we have plotted
the static charge structure factor S(𝑞0,T ) of the armchair nan-
otube (5,5) in terms of normalized temperature kBT/t for dif-
ferent values of chemical potential at fixed electron–phonon
coupling g/t = 0.2. The gap parameter has been assumed to
be 0.8. For high temperatures above normalized value 3.0, all
curves fall on each other, thus static structure factor has no
considerable dependence on chemical potential in this temper-
ature region. However, quantum aspects of electrons become
important at low temperatures and consequently the structure
factor varies with chemical potential. At fixed temperature be-
low normalized value 2.0, the static charge structure factor in-
creases with chemical potential. This implies that the charge
long range ordering of electrons improves with increase of
chemical potential at low temperatures. In addition, the tem-
perature position of peak in static structure factor moves to
lower temperature with chemical potential as shown in Fig. 8.
It can be understood from this fact that the charge ordering
is preserved at lower temperatures with increase of magnetic
field. All the curves indicate a nonzero value for the static
structure factor at zero limit of temperature according to Fig. 8.
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Fig. 8. Static charge susceptibility (S(𝑞0,T )) of undoped armchair nan-
otube (5,5) as a function of normalized temperature kBT/t for different
normalized chemical potential values µ/t at fixed g/t = 0.2. The nor-
malized gap parameter has been fixed as ∆/t = 0.8.

4. Conclusion
In summary, we have studied the effects of both electron

phonon interaction and gap parameter on the structure fac-
tors and collective magnetic modes of Holstein-model Hamil-
tonian on the nanotube structure. Using Green’s function
method, the excitation spectrum of the model hamiltonian has
been found. The dynamical charge susceptibility have been
calculated using Wick’s theorem and excitation spectrum of
the model is found. The results show the charge susceptibility
includes the sharp well defined peaks in its frequency depen-
dence. Also the behavior of static charge structure factor in
terms of chemical potential and temperature has been investi-
gated for different electron phonon coupling strengths.
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