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Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,
such as the power system and the transport network. In this paper, we construct two cascading failure models on the
multilayer spatial network. In our research, the distance l between nodes within the layer obeys the exponential distribution
P(l) ∼ exp(−l/ζ ), and the length r of dependency link between layers is defined according to node position. An entropy
approach is applied to analyze the spatial network structure and reflect the difference degree between nodes. Two metrics,
namely dynamic network size and dynamic network entropy, are proposed to evaluate the spatial network robustness and
stability. During the cascading failure process, the spatial network evolution is analyzed, and the numbers of failure nodes
caused by different reasons are also counted, respectively. Besides, we discuss the factors affecting network robustness.
Simulations demonstrate that the larger the values of average degree 〈k〉, the stronger the network robustness. As the length
r decreases, the network performs better. When the probability p is small, as ζ decreases, the network robustness becomes
more reliable. When p is large, the network robustness manifests better performance as ζ increases. These results provide
insight into enhancing the robustness, maintaining the stability, and adjusting the difference degree between nodes of the
embedded spatiality systems.
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1. Introduction

Complex network as a useful tool has been widely used to
predict future trends and analyze the properties of various sys-
tems, including power systems, transportation networks, com-
munication networks, and supply chain networks.[1–5] More
and more scholars from different fields have been devoting to
the study of complex networks, involving robustness, vulner-
ability, controllability, cascading failure, and the evaluation of
node importance.[6–10]

Cascading failure refers to the phenomenon that some in-
valid nodes will cause other nodes to fail, and as a result, the
network collapses. Cascading failures widely exist in real life,
novel pneumonia (COVID-19), for instance. If one person is
infected, he will spread the disease to others and then more and
more people get sick. Watts[11] analyzed a binary-decision
model and found that cascade propagation is influenced by
network density. When the network is dense, the effect of
the stability of the individual node on the cascade propaga-
tion is the largest; otherwise, global connectivity is the key
factor. Buldyrev[12] built a framework for investigating the
multilayer network robustness against cascading failure. They
showed that the broader the degree distribution, the more vul-

nerable of the multilayer network to random failure. Lee[13]

constructed a cascading failure model on the multilayer net-
work. They obtained that the cascade can be facilitated or in-
hibited depending on how nodes respond to their connected
nodes of other layers. Gao[14] investigated the robustness of
a network that consists of n interdependent networks. They
showed that the phase transition of the cascading model of the
multilayer network is different from the single-layer network.
Zhou[15] considered the possibility of restoring a network in
which cascading failure would happen. Critical slowing down
indicators were used to predict the network collapse and five
node addition rules were applied to prevent network paralysis.
Jin[16] analyzed the cascading failure in multilayer networks
with dependence groups. In a further step, the author obtained
the theoretical values of the network and discussed the factors
affecting network robustness. More extensive works on the
cascading failures of multiplex networks, we refer the read-
ers to Refs. [17,18]. Overload is one of the causes regarding
the cascading failure in the network, which means the load of
an ineffective node will be distributed to its neighbors, lead-
ing the neighbors to be invalid under their limited load capac-
ities. Overload can be used to describe many phenomena, like
the orders of products in the supply chain systems. If a com-
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pany closes down, its suppliers with a lot of materials may also
close. Zhou[19] proposed a new model to analyze mixed cas-
cading failure in complex systems, taking into account the im-
pacts of network load and dependency. Tang[20] constructed a
cascading failure model that focused on load propagation and
analyzed the robustness of the supply chain network. Wang[21]

studied the cascading failure process under servers overload,
which happened in a modern cloud datacenter, and put for-
ward a cascading failure resilience system (CFRS) to handle
this problem.

The spatial network is composed of nodes with the po-
sitional relationship, such as houses in the community net-
work. At present, the spatial network exists in the research
fields of information communication, ecology, sociology, and
plays a substantial role in engineering applications.[22–24]

Li[25] investigated the cascading failures in a system that
was composed of two interdependent square lattice networks.
Shekhtman[26] considered the robustness of embedded spa-
tiality networks which could explain the sudden failure phe-
nomena. Danziger[27] constructed a new model and modeled
the influence of spatiality on the robustness. With the same
strength embedment, the behaviors of single-layer network
and multiplex network were different. Chen[28] extended the
model of Ref. [27] to a general model in which whether the
nodes exist or not depends on the probability λ . The robust-
ness of the extension model was discussed and an algorithm
was put forward to change the link distance. From the per-
spective of network robustness, Shekhtman[29] provided an
overview of spatial networks.

In this paper, we will construct two models on multi-
layer spatial networks against cascading failure, considering
the combined influences of overload, percolation, and con-
nection between layers. Different from previous studies, the
distance between nodes within the layer obeys the exponen-
tial distribution, and the connection between layers general-
izes the one-to-one correspondence based on node position.
A new entropy method is proposed to investigate the spatial
network structure and reflect the difference degree between
nodes. Two indicators, namely dynamic network size and dy-
namic network entropy, are developed to evaluate the network
robustness and stability. Moreover, the evolution of spatial
networks during the cascading failure process is analyzed and
the number of failure nodes caused by different effects is also
counted respectively. Furthermore, we analyze and compare
some factors affecting the robustness of multilayer spatial net-
works. The practical significance of the conclusions is also
discussed.

This paper is organized as follows. In Section 2, we de-
velop two cascading failure models in the multilayer spatial
network. In Section 3, the spatial network is analyzed by en-
tropy. In Section 4, utilizing dynamic network size and dy-
namic network entropy, the spatial network evolution is ana-
lyzed during the cascading failure process, and the affecting
factors of the network robustness are discussed and compared
as well. In Section 5, we give the conclusion of this paper on
the whole.

2. Spatial networks cascading model
In this section, we will construct two cascading failure

models on multilayer spatial networks, taking into considera-
tion the combined effects of overload, the connection between
layers, and percolation. These models can be applied to de-
scribe many systems embedded in space, the server system in
the engine room, for example. If a server breaks down, its
workload will transfer to other servers that may become inef-
fective due to overload, and in the end, the system collapses.

2.1. Multilayer spatial network

The spatial network will be firstly introduced. In a single-
layer network, the number of nodes is N and the average de-
gree is 〈k〉. Therefore, the number of links is m = 〈k〉N/2. The
connection between nodes within the layer discovered in the
previous papers is shown in Fig. 1(a). Obviously, the spatial
effect is the largest when nodes tend to connect to their nearby
neighbors. However, there is not always such a tendency, with
the motion trajectories of atoms in crystalline structure as an
exception. Danziger[27] assumed the distance l between nodes
obeys the exponential distribution P(l)∼ exp(−l/ζ ), where ζ

is the spatial parameter adjusting the spatial effect. The expo-
nential distribution P(l) for different values of ζ is shown in
Fig. 1(b). When ζ → 0, nodes will prefer to connect to their
nearby neighbors and the spatial effect will also become larger.
When ζ →+∞, P(l1)≈ P(l2) for anytime when l1 6= l2. That
means the distance l between nodes is arbitrary and the spa-
tial effect is not dominant. Figures 1(c) and 1(d) display the
spatial networks when ζ = 0.1 and ζ = 10 respectively.

Secondly, the generation process of the spatial network
is also studied. In a 2D lattice, there are N = L2 nodes with
integer coordinate (x,y) ∈ [0,L)× [0,L). The links of the net-
work are constructed as below. Randomly choose a node i and
distance l with probability P(l), and then connect to node j
satisfying the formula of

∣∣∣√(xi− x j)2 +(yi− y j)2− l
∣∣∣= min

{∣∣∣√(xi− xz)2 +(yi− yz)2− l
∣∣∣,z = 1,2, . . . ,N

}
, (1)

where 1 ≤ j ≤ N, (xz,yz) ∈ [0,L)× [0,L) is the coordinate of node z, z = 1,2, . . . ,N. The reason why the minimum is used in
Eq. (1) is that the distance between nodes is not exactly equal to l in the lattice. Also, there may be more than one node satisfying
Eq. (1). Here we only randomly select one of them. The link construction process will continue until the number of links is m.
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Fig. 1. The connection of nodes within the layer in small networks. The solid line represents the actual connection while the dotted line denotes the
lattice line. The parameters are 〈k〉= 3, N = 16. (a) The connection between nodes defined in the previous papers. (b) The exponential distribution of l:
P(l)∼ exp(−l/ζ ), ζ = 1, 4, 10. (c) The distance l between nodes obeys the exponential distribution: P(l)∼ exp(−l/0.1). (d) The distance l between
nodes obeys the exponential distribution: P(l)∼ exp(−l/10).

Thirdly, we define the connection between layers. The
number of layers is M in the network. Take the case of M = 2,
the first layer is denoted as A and the second layer is marked
as B. If node Ai of layer A connects to node B j of layer B, their
coordinates are expected to meet the following condition

|xAi − xB j | ≤ r, |yAi − yB j | ≤ r, (2)

where r ≥ 0, 1≤ i≤ NA, 1≤ j ≤ NB, (xAi , yAi) and (xB j , yB j)

are the coordinates of nodes Ai and B j individually, NA and NB

are the number of nodes of layer A and layer B respectively.
Figure 2(a) shows the connection between layers for different
values of r. It is worth noting that a node in one layer may
connect to more than one node in other layers when r > 0, as
shown in Fig. 2(b).

r/r/ r/ r/

A

B

r/

A

B

A A 

B

(a)

(b)

Fig. 2. (a) The connections between layers in a two-layer network when
r = 0, 1, 2, 3, 4 separately. (b) A node in one layer connects to more than
one node in other layers. When r = 1, node B1 is connected to the nodes of
A1, A2, A3.

Remark 1 If r = 0, M = 2, and the number of nodes and
the average degree in each layer are the same, our multilayer
spatial network can degenerate to the network of Ref. [27].

Consequently, it can be summarized from our multilayer
spatial network that the distance between nodes within the
layer obeys the exponential distribution and the connection be-
tween layers satisfies Eq. (2).

2.2. Load distribution process

We apply the degree centrality to represent the initial load
of each node, namely,

Li(0) =
ki

N−1
, i = 1,2, . . . ,N, (3)

where ki is the degree of node i. The largest load that can be
handled on node i is defined as load capacity Ci, which is re-
lated to the initial load Li(0). In a linear system, Ci (Ref. [30])
is proportional to Li(0), i.e.,

Ci = (1+a)Li(0), i = 1,2, . . . ,N, (4)

where a≥ 0 is the tolerance parameter. However, the real sit-
uation in our life is always described as a nonlinear system.
Therefore, we adopt a new load capacity[31] defined as

Ci = Li(0)+aLb
i (0), i = 1,2, . . . ,N, (5)

where a,b≥ 0 are the tolerance parameters that can adjust the
load capacity. Besides, equation (5) will transform to Eq. (4)
when b = 1.

It is defined that node i will become invalid when i over-
loads, i.e., Li(t) ≥ c×Ci, where c ≥ 0. If a node becomes
ineffective, the load of it will be distributed to its valid neigh-
bors. The load distribution strategy is formulated as

∆Li→ j =
k j

∑ j∈Γ (i) k j
×Li(t−1),

where Γ (i) is the valid neighbors of node i. Hence, the load of
node j becomes

L j(t) = L j(t−1)+∆Li→ j = L j(t−1)+
k jLi(t−1)
∑ j∈Γ (i) k j

.

Figure 3 gives a typical example of the load distribution pro-
cess.
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L1↼↽// L2↼↽// L3↼↽//

L4↼↽// L5↼↽// L6↼↽//

L7↼↽/ L8↼↽// L9↼↽/ L7↼↽/ L8↼↽// L9↼↽/

L1↼↽// L2↼↽// L3↼↽//

L4↼↽// L5↼↽/ L6↼↽//

L1↼↽// L2↼↽/ L3↼↽//

L4↼↽// L5↼↽/ L6↼↽//

L7↼↽/ L8↼↽// L9↼↽/

Fig. 3. Load distribution process. The parameters are a = 1/3, b = 1/2, c = 1, N = 9. The valid nodes are marked in yellow and the disabled ones are
depicted in red. When t = 0, the initial loads of nodes are L1(0) = 1/6, L2(0) = 3/6, L3(0) = 1/6, L4(0) = 1/6, L5(0) = 3/6, L6(0) = 2/6, L7(0) = 0,
L8(0) = 1/6, L9(0) = 0. Since node 5 is invalid, its load will distribute to nodes 2, 4, 6 according to the load distribution strategy. When t = 1, the loads of
nodes 2, 4, 6 become L2(1) = 3/4, L4(1) = 1/4, L6(1) = 1/2. Owing to L2(1)> c×C2, node 2 becomes ineffective and will distribute its load to nodes 1,
3. Other nodes will not change their state due to Li(1)< c×Ci, i = 1, 3, 4, 6, 7, 8, 9. When t = 2, nodes 1, 3 become invalid because their loads exceed their
capacities (L1(2)> c×C1, L3(2)> c×C3).

2.3. Cascading failure model

In this subsection, we will construct two cascading failure
models on spatial networks separately. The cascading failure
process of each model is divided into five steps. Two examples
are illustrated in Fig. 4.

To begin with, we introduce the first cascading failure
model.

Step 1 The random failure process. In the initial state
(i.e., t = 0), the load of each node is defined by Eq. (3). By ran-
domly selecting and initially removing some nodes with prob-
ability p, there are Nx× p nodes will become invalid in layer
x, x = 1,2, . . . ,M. Nx is the number of nodes of layer x. Con-
sequently, the total number of invalid nodes is ∑

M
x=1 Nx× p.

Step 2 The effect of overload within the layer. Based
on the load distribution strategy, the loads of the invalid nodes
will be distributed to their valid neighbors. Therefore, more

nodes will receive extra loads and become invalid due to over-

load. This process continues until there is no any further node

overload.

Step 3 The effect of the connection between layers. After

the above steps, the state of each node is either valid or invalid.

If a node in one layer is valid, the invalid nodes connected to

it in other layers will get recovered. For example, if node A1

is invalid and node B1 is valid, as shown in Fig. 2(b), node A1

will become valid. We name this effect of the first model as

effect 1.

Step 4 The percolation process within the layer. With the

steps mentioned above, we can obtain the largest connected

component of each layer. If a node is not in the largest con-

nected component, it will become invalid.

Step 5 Turn to step 2 until the state of all nodes is stable.

A1 A2

A3 A4

B1 B2

B3 B4

valid node

node initially removed

node fails due to overload

node recovers due to effect 1

node fails due to percolation

node fails due to effect 2

actual connection within the layer 

actual connection between layers 

lattice line

Step 4Step 3Step 2Step 1

Step 4Step 3Step 2Step 1

A1 A2

A3 A4

B1 B2

B3 B4

A1 A2

A3 A4

B1 B2

B3 B4
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B1 B2

B3 B4
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A3 A4

B1 B2
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Fig. 4. Cascading failure processes of two models in double-layer spatial networks in the first iteration. The parameters are a = 0.25, b = 2, c = 1.5, r = 1,
ζ = 0.2, p = 0.25, N1 = N2 = 4, 〈k〉1 = 〈k〉2 = 1. Nx and 〈k〉x are the number of nodes and average degree of layer x individually, x = 1,2. In layer x, the
number of nodes initially removed is Nx× p = 1. (a) The cascading failure process of the first model. In Step 1, nodes A2 and B2 are initially removed. In
Step 2, node B4 fails due to overload (13/24 = c×CB4 < LB4 (1) = 2/3). In Step 3 (effect 1), node B4 recovers because A1 is valid. In Step 4, A4 and B4
become invalid owing to the percolation process. (b) The cascading failure process of the second model. The behaviors of nodes are consistent with (a) in
Step 1 and Step 2. In Step 3 (effect 2), node A1 becomes invalid because B4 is invalid. In Step 4, node A4 fails owing to the percolation process.
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Moreover, we present the second cascading failure model.
The difference between these two models is the Step 3. In the
second cascading failure model, we define the Step 3 as fol-
lows. If a node in one layer is invalid, the valid nodes con-
nected to it in other layers will become invalid. For example,
if the state of nodes A1 and B1 is invalid and valid separately,
as shown in Fig. 2(b), node B1 will fail. We name this effect
of the second model as effect 2. The other steps of the second
model are consistent with the first cascading model.

3. Analysis of the spatial network
In this portion, entropy is utilized to investigate the spa-

tial network structure and reflect the difference degree between
nodes. Simulations found that the spatial network entropy is
influenced by the spatial argument ζ , node number N as well
as average degree 〈k〉. As ζ increases, the spatial network en-
tropy will become smaller. With the increments of N and 〈k〉,
the spatial network entropy will become larger.

In physics, entropy is used to describe the disorder phe-
nomenon of the system. The more chaotic the system, the
larger the entropy. Recently, entropy has demonstrated signif-
icant applications in cybernetics, number theory, probability
theory and has become a substantial tool to solve numerous
problems. In complex networks, the definition of the network
entropy[32] is

E =−
N

∑
i=1

Ii ln Ii, (6)

where Ii = ki/∑
N
i=1 ki is the importance degree of node i, ki

is the degree of node i, i = 1,2, . . . ,N. It is worth noting
that Emax = lnN when Ii = 1/N, i.e., the regular network en-
tropy is the largest. Emin = ln4(N−1)/2 when k1 = N − 1,
k2 = k3 = · · · = kN = 1, i.e., the star network entropy is the
smallest.

The changes of network entropy can be applied to reflect
the network structure stability. The smaller the changes of
network entropy, the more stable the network structure. In
addition, network entropy is a measurement of network dis-
order that can indicate the difference between nodes. The
greater the network entropy, the more disordered the network
and the smaller the difference between nodes. For instance,
in the regular network,[33] the nodes have the same degrees.
Consequently, the network is disordered and there is no dif-
ference between nodes. In the ER network,[34,35] the connec-
tions between nodes are random. Hence, the nodes of the ER
network have a slight difference from each other. In the BA
network,[36] the node degree obeys the power-law distribution.
That means some nodes have larger degrees and other nodes
have smaller ones. Therefore, the network is ordered and there
is a great difference between nodes. The elementary statistics
of characteristics of the regular network, ER network, and BA

network are displayed in Table 1 in which the values of en-
tropy are accurate to four decimal places.

The spatial network entropy is influenced by the spatial
argument ζ . As shown in Fig. 5(a), with the increase of ζ , the
spatial network entropy will decrease gradually. That means
the spatial network will be more ordered and the difference
between nodes will become larger and larger. The reason is
that when ζ → +∞, the distance l between nodes will be ar-
bitrary which is analogue to the ER network. When ζ → 0,
nodes prefer to connect to their nearby neighbors. As shown
in Fig. 1(c), the node degree is almost equal in the spatial net-
work which is similar to the regular network. From Fig. 5(a)
and Table 1, the difference degree between nodes is described
as below: {

DER < DSN < DRN, 0 < ζ < 2,
DBA < DSN < DER, 2 < ζ ,

(7)

where DSN, DRN, DER, DBA are the difference degrees be-
tween nodes in the spatial network, regular network, ER net-
work, and BA network, correspondingly. Remarkably, as ζ

increases, the spatial network entropy will converge to a con-
stant ζc. That indicates the network structure is unstable when
ζ < ζc and the network structure is scarcely influenced by ζ

when ζ ≥ ζc.
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Fig. 5. (a) Entropy E as a function of ζ on the spatial network. The pa-
rameters are N = 900, 〈k〉 = 4. (b) Entropy E as a function of lnN on the
spatial network, regular network, ER network, and BA network separately.
The parameters are ζ = 0.2, 〈k〉= 4. Each point on the above figures is the
average value of 20 experiments.
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What is more, the spatial network entropy is affected by
the number of nodes, namely N. As shown in Fig. 5(b), with
the increase of N, the spatial network entropy will increase.
That means the network will be more disordered and the dif-
ference degree between nodes will become smaller bit by bit.
The reason lies that the importance degree Ii of node i is reduc-
ing as N increases. For example, in the regular network, the
importance degree of node i is Ii = 1/N. According to Eq. (6),
with the increase of N, Ii will decrease and E will grow.

Furthermore, the spatial network entropy is subject to
the average degree 〈k〉. As shown in Table 2, these quanti-
ties are accurate to four decimal places and each point is the
average value of 20 experiments. The higher the average de-
gree 〈k〉, the larger the spatial network entropy. That means
as 〈k〉 increases, the spatial network will be more disordered
and the difference degree between nodes is expected to de-
crease. It is caused by that the numerator and denominator of
Ii = ki/∑

N
i=1 ki = ki/〈k〉N will surely be larger as 〈k〉 increases.

Since the increment of molecular is far less than the change of
denominator, Ii will become smaller and E will become larger.
Besides, the regular network entropy is hardly altered by the
increase of 〈k〉. The reason is that 〈k〉 has nothing to do with
the importance degree Ii = 1/N of node i.

Table 1. The elementary statistics of characteristics of the three net-
works.

N m 〈k〉 kmax kmin E

Regular network 900 1800 4 4 4 6.8024

ER network 900 1806 4 11 0 6.6767

BA network 900 1796 4 87 2 6.4589

Table 2. The entropy of different networks with the average degree
〈k〉= 2, 4, 6, 8 respectively.

〈k〉= 2 〈k〉= 4 〈k〉= 6 〈k〉= 8

Spatial network 6.6510 6.7817 6.7823 6.7870

Regular network 6.8023 6.8023 6.8023 6.8023

ER network 6.6658 6.6745 6.7097 6.7353

BA network 6.4177 6.4539 6.4780 6.5110

4. The simulation analysis and discussion
4.1. Analysis of the spatial network evolution

In this subsection, we will analyze the spatial network
evolution during the cascading failure process. Two metrics,
namely dynamic network size S(t) and dynamic network en-
tropy E(t), are proposed to describe the network stability.
The number of invalid nodes triggered by different reasons is
counted and analyzed respectively. From the perspective of
the description of network evolution, it can be seen from sim-
ulations that the changes of S(t) and E(t) are consistent under
effect 1 or effect 2 while S(t) performs better than E(t).

Firstly, we present the definitions of dynamic network
size S(t) and dynamic network entropy E(t). In terms of net-
work connectivity, the dynamic network size is defined by

S(t) =
S1(t)+S2(t)+ · · ·+SM(t)

N1 +N2 + · · ·+NM
, (8)

where Sx(t) is the size of the largest connected component of
layer x at t moment, Nx is the number of nodes of layer x,
x = 1,2, . . . ,M. To verify the effectiveness of the proposed
method (8), we define the dynamic network entropy by

E(t) =
E1(t)+E2(t)+ · · ·+EM(t)

M
, (9)

where at t moment, Ex(t) = −∑
Nx(t)
j=1 I j(t) ln I j(t) is the dy-

namic entropy of layer x, Nx(t) is number of valid nodes of
layer x, x = 1,2, . . . ,M, I j(t) = k j(t)/∑

Nx(t)
j=1 k j(t) is the impor-

tance degree of node j, k j(t) is the degree of node j.
Secondly, we analyze the spatial network evolution dur-

ing the cascading failure process when p = 0.2 and p = 0.7
separately. As shown in Figs. 6(a) and 6(b), when p = 0.2, the
network becomes stable after the first iteration (i.e., t = 1) and
most nodes are active under effect 1. The reason is that there
are few nodes initially removed, which will cause fewer nodes
invalid owing to overload. Therefore, the probability is large
that a failure node connects to effective nodes of other layers.
Hence, the probability of node recovery increases. As shown
in Fig. 6(c), as a result of effect 1, the number of invalid nodes
caused by initial deletion of layer x is not equal to Nx p when
the network is stable. Different from the effect 1, figures 6(d)
and 6(e) present that the number of iterations increases under
effect 2. Figure 6(f) indicates that most nodes are invalid and
the effect 2 and percolation process are the primary reasons
causing nodes to be invalid.

When p = 0.7, as shown in Figs. 7(a) and 7(b), the net-
work becomes stable after the first iteration under effect 1.
The number of invalid nodes resulted from the percolation pro-
cess increases and most nodes shown in Fig. 7(c) are invalid.
The reason is that most nodes are initially removed which will
cause links ineffective. Therefore, more nodes will not con-
nect to the largest component and will become invalid. Under
effect 2, the number of iterations increases shown in Figs. 7(d)
and 7(e), and most nodes become invalid shown in Fig. 7(f).
The reason behind it is the number of initially removed nodes
is large. Therefore, the probability that an ineffective node
connects to an invalid one increases within the layer or be-
tween layers. Hence, the number of disabled nodes due to
overload or effect 2 is relatively few. Since most nodes are
invalid after the processes of load distribution within the layer
and connection between layers, there are few remaining valid
nodes. Consequently, fewer nodes will become invalid due to
the percolation process.
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r = 1, ζ = 0.2, N1 = N2 = 900, 〈k〉1 = 〈k〉2 = 4. Nx and 〈k〉x are the number of nodes and average degree of layer x individually, x = 1, 2. Each point on
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From Figs. 6 and 7, it can be found that the number of net-

work iterations under effect 2 is greater than that under effect

1. Owing to the influence of node recovery, the spatial network

robustness under effect 1 is stronger than that under effect 2. It

is worth noting that dynamic network size S(t) is more suitable

for describing the network evolution process than dynamic

network entropy E(t) in our model. As shown in Table 3, when

t changes from 0 to 1, and 2 to 4, the changes of E(t) are equal,
i.e., E(0)−E(1) = E(2)−E(4). However, the changes of S(t)
are different, i.e., 886(S(0)−S(1))> 335(S(2)−S(4)). Thus,
in the next section, we will use the following metric to explain
the network robustness:

S =
S1 +S2 + · · ·+SM

N1 +N2 + · · ·+NM
, (10)
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where Sx is the size of the largest connected component of
layer x under the circumstance that the network is stable, Nx

is the number of nodes of layer x, x = 1,2, . . . ,M. We remark
that the relation between Eqs. (8) and (10) is that S is the final
state of S(t). For example, as illustrated in Table 3, the net-
work comes to be stable when t ≥ 6. Consequently, S(t) = S,
t ≥ 6.

Table 3. The dataset of Figs. 6(d) and 6(e).

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

S(t) 1800 914 645 534 310 140 118 118
E(t) 6.78 6.04 5.71 5.52 4.97 4.15 3.99 3.99

4.2. The affecting factors of the network robustness

In this subsection, we will analyze the influence factors
of multilayer spatial network robustness. Two double-layer
networks, two three-layer networks, two four-layer networks
are constructed and equation (10) is utilized to describe the
network robustness. It is generally known that the larger the
values of c×Ci, the stronger the network robustness. Accord-
ing to Eq. (5), the load capacity Ci of a node will increase by
adjusting the values of a and b. As c increases, the network
will perform better. However the load capacity of a node is
limited in real life, such as the computer power of server is fi-

nite. Therefore, we need to investigate other factors affecting
the network robustness.

Firstly, the effect of the spatial parameter ζ is brought for-
ward. Inspired by Eq. (7), the values of ζ are chosen as 0.2, 2,
20 for simulation. As shown in Fig. 8, the network performs
better as ζ decreases when p is small. That means the smaller
the distance between nodes within the layer, the stronger the
network robustness. When p is large, the network robustness
grows to be stronger as ζ increase. In addition, as the number
of layers M increases, the behaviors of networks are different
under effect 1 and effect 2. In terms of effect 1, with the in-
crease of M, the probability of node recovery becomes larger,
which leads to a better performance of the network robustness.
As for effect 2, the greater the number of layers M, the higher
the probability that a node fails, followed by the worse perfor-
mance of networks.

Secondly, the influence of length r is also considered.
As r increases, the network robustness becomes worse, which
can be easily seen from Fig. 9. That means the connection
between layers based on the same coordinate will enhance
the network robustness. The reason is that the larger the val-
ues of r, the more the nodes satisfying the condition Eq. (2).
For this reason, the probability that a node fails will increase
and the probability that a node recovers will decrease. What is
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more, the network with more layers performs better than that
with fewer layers under effect 1. On the contrary, the network
behaves worse as M increases under effect 2.

Thirdly, the effect of the average degree 〈k〉 is investi-
gated. As illustrated in Fig. 10, the network robustness man-
ifests better performance as 〈k〉 increases. The root cause is
that the larger the values of 〈k〉, the more the link number of
the network. Accordingly, the probability that a node becomes
invalid due to overload will decrease and the probability that
a node connects to the largest connected component will in-
crease. Hence, the network robustness will become stronger.

4.3. The comparative analysis on affecting factors

In this subsection, we will make a comparative analysis
of affecting factors discussed in Subsection 4.2. By increas-
ing the same values of different parameters, we analyze the
changes of network robustness.

Figure 11(c) is chosen as an example to explain the steps
of the method. Firstly, we construct a four-layer spatial net-
work and obtain the network robustness S under different
probability p. The fixed parameters are a= 6, b= 0.5, c= 1.5,
N1 = 225, N2 = 400, N3 = 625, N4 = 900. Nx is the number
of nodes of layer x, x=1,2,3,4. The variable parameters are
ζ = 0.2, r = 3, 〈k〉1 = 5, 〈k〉2 = 6, 〈k〉3 = 7, 〈k〉4 = 8. 〈k〉x
is average degree of layer x, x = 1, 2, 3, 4. Secondly, we
change ζ = 0.2 into ζ = 2.2 and do not alter other parameters.
Therefore, we obtain the values of Sζ and the absolute values
of network robustness changes |∆S|ζ = |S− Sζ |. Thirdly, we

change r = 3 into r = 5. Other parameters are not changed,
i.e., ζ = 0.2, 〈k〉1 = 5, 〈k〉2 = 6, 〈k〉3 = 7, 〈k〉4 = 8. The val-
ues of Sr and |∆S|r = |S−Sr| can be obtained. Fourthly, we use
〈k〉1 = 7, 〈k〉2 = 8, 〈k〉3 = 9, 〈k〉4 = 10 to obtain the values of
S〈k〉 and |∆S|〈k〉= |S−S〈k〉| under the conditions of ζ = 0.2 and
r = 3. At last, we compare |∆S|ζ , |∆S|r, and |∆S|〈k〉 to analyze
which factor has the greatest impact on network robustness.

The key factors are different under effect 1 and effect 2.
As shown in Fig. 11, when p < 0.55, there is little difference
between these factors under effect 1. The reason is that most
nodes are effective when p is small. When p > 0.55, the spa-
tial parameter ζ is the key factor. The root cause is that the
larger the values of ζ , the higher the probability that node
connects to the largest connected component. As illustrated
in Fig. 12(a), when p < 0.2 and the layer number M is small,
the average degree 〈k〉 is the leading factor under effect 2. The
reason is that as 〈k〉 increases, the probability that node over-
loads will decrease. With the increase of M, the influence of
length r becomes larger, as shown in Fig. 12(c). When p> 0.2,
the effect of ζ is the largest. The fundamental cause is similar
to the reason of effect 1. Therefore, the key factors are differ-
ent in various circumstances under effect 2. We could change
the parameters to alter the network robustness according to the
actual situation. It is worth noting that the peaks of changes
in network robustness are different under effect 1 and effect
2. The reason is that the network robustness performs better
under effect 1 relative to effect 2, as shown in Figs. 8–10.
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4.4. Discussion

There are many systems are embedded in space and the
link lengths are exponentially distributed, such as infrastruc-
ture networks, computer networks, and social networks. The
conclusions of this paper have extensive applicability and
practical significance for the spatial systems.

In Section 3, the spatial argument ζ , node number N,
and average degree 〈k〉 have an impact on the spatial network
structure and the difference between nodes. Therefore, these
results provide insight into maintaining the network structure
stability and adjusting the difference degree between nodes of
the embedded spatiality systems. For example, in the aviation
network, flights between different cities correspond to various
distances. To keep system stable and provide convenience for
people, which flights need to open is important. In the server
system, how many servers are at least equipped to maintain the
system stability and reduce resource consumption. In some
communication systems, nodes need to adopt the same com-
munication equipment and architecture. Therefore, how to re-
duce the difference between nodes is necessary.

In Section 4, the affecting factors of the network robust-
ness are discussed and compared, such as the spatial argument
ζ , length r, and average degree 〈k〉. These results have con-
tributed to enhancing the robustness and restoring a network in
which cascading happens under various circumstances. Take
the case of a cascaded multilayer system, the recovery of the
system involves many factors such as the number of layers,
the number of invalid nodes, and the interaction mechanism
between layers. Therefore, this paper provides an idea on how
to change the parameters to maximize the enhancement of net-
work robustness and keep down costs.

5. Conclusion
In this paper, we construct two cascading failure models

on multilayer spatial networks, taking into account the influ-
ences of overload, the effect between layers, as well as the
percolation. As observed from our research, the distance be-
tween nodes within the layer obeys the exponential distribu-

tion and the connection between layers generalizes the one-to-
one correspondence based on node position. Entropy is ap-
plied to reflect the spatial network structure and indicate the
differences between nodes. With the decrease of the spatial
parameter ζ or the increments of the node number N and the
average degree 〈k〉, it can be seen from simulations that the
spatial network structure tends to be more stable and the dif-
ference degree between nodes becomes larger. By virtue of
the approaches of the dynamic network size S(t) and dynamic
network entropy E(t), we describe the network stability and
robustness. The number of failure nodes caused by different
reasons is counted and analyzed respectively. Besides, the fac-
tors affecting network robustness are analyzed and compared
as well. Simulations demonstrate that the behaviors of the spa-
tial network perform better as 〈k〉 increases. As r decreases,
the network robustness grows to be stronger. When p is small,
as ζ decreases, the network robustness becomes more reli-
able. When p is large, the network performs better as ζ in-
creases. Furthermore, as layer number M increases, the spatial
network presents different behaviors under effect 1 and effect
2. If M increases, spatial networks will perform better under
effect 1. In contrast, the network robustness gets worse under
effect 2. At last, the practical significance of the results is also
discussed.
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