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Acoustic radiation force on thin elastic shells in liquid∗
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Based on the coupled acoustic scattering of two neighboring fluid-filled thin elastic shells suspending in an unbounded
viscous liquid, an analytical method is developed to calculate the acoustic radiation force (ARF) of the shells. Two physical
effects are taken into account: elastic radiation scattering and the multiple interactions of shells. Numerical results reveal
that the magnitude of ARF can be enhanced by the sound radiation from the elastic shell undergoing forced vibrations
and two resonant peaks can be observed on the ARF function curves. The feature of the lower peak is determined by the
interactions and acoustic response of the back shell. The attractive forces can be obtained in the low kR1 band for the case
of radius ratio R2/R1 >1, while the magnitude of ARF at the lower peak may be influenced to some extent by acoustic
shielding phenomenon for the case of radius ratio R2/R1 <1. Accordingly, the interactions of particles cannot be ignored.
The results may provide a theoretical basis for precisive manipulation of multiple particle systems.

Keywords: thin elastic shell, radiation force, elastic radiation scattering, mutual interactions

PACS: 43.25.+y, 43.35.+d DOI: 10.1088/1674-1056/ab943e

1. Introduction
Researches have suggested the possibility of contact-free

trapping or manipulating tiny sized objects (such as parti-
cles or biological cells) in a progressive acoustic wave.[1–3]

Particles suspended in acoustic fields are subjected to time-
averaged forces from scattering of the acoustic waves,
and these forces are named acoustic radiation force (ARF)
theoretically.[4] The problem of ARF on rigid and elastic parti-
cles has attracted much attention.[5–9] Several theoretical mod-
els have been developed to calculate the ARF on objects
in different types of acoustical fields.[10–13] King proposed
his formula of ARF on a rigid sphere,[14] which could help
us to estimate the absolute sound intensity by the radiation
force method. However, Hasegawa and Yosioka[15] found that
King’s theory deviated from the experimental values of the ra-
diation force for spheres of brass, steel and stainless steel in
the range of ka > 2 (a is the radius of the sphere, and k is the
wavenumber in the liquid). Further, an improved ARF theory
is developed by taking the elasticity of the solid sphere into ac-
count, and the results of the evaluation are in good agreement
with the measurements.[15]

The multiple features of the objects were considered in
the investigations of acoustic radiation force, such as pro-
late spheroids, cylindrical particles, soft fluid spheres, and
air bubbles.[16–23] It is important to understand the radia-
tion force related to the nonlinearity of sound propagation,
and some potential applications could be extended. Objects
could be pushed towards nodal or anti-nodal planes by radi-
ation force in acoustic standing wave,[16] and negative forces
on spheres are found to be correlated with reduced acoustic

backscattering.[13,17] The manipulation of pulsating spherical
carrier[10] has potential applications in drug delivery and the
handling of the radiation force has proved feasible for spheres.

The scattering of floating objects submerged in liquid can
give much information about the internal structure or compo-
sitions of materials, which is related to the multiple interac-
tion between object and the surrounding medium.[24,25] Usu-
ally, the object can be considered as solid particle or shell.
For example, bacteria cells or spherical carriers were simpli-
fied as “shell model” to investigate the acoustic response.[12,26]

The acoustic radiation pressure on thin shell is different from
that on solid sphere. Junger[27] developed the theory of sound
scattering of an acoustic plane wave by thin elastic shell sub-
merged in liquid, and pointed out that the scattering pattern is
the result of synthesis of rigid body scattering and elastic ra-
diation scattering. Accordingly, the scattering effect could be
enhanced by the sound radiation of the shell undergoing forced
vibrations. The scattering of two elastic spherical shells in a
boundless acoustic medium has been previously studied,[28,29]

and two physical reasons were proposed to explain the phe-
nomenon that the function of total scattering is not in the form
of the sum of the two individuals: multiple interactions be-
tween the two shells and the observed position of scattering
wave. The first antisymmetric Lamb wave could be activated
by the multiple interactions, and the enhancement band of the
form function curve was observed.[28] Therefore, it has been
shown that the surface vibration modes play an important role
in characterizing the sound backscattering.

While there have existed many publications on the inter-
action of acoustic waves with objects including researches fo-
cusing on arbitrary scattering and radiation force, the acous-
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tic dynamic behavior of thin elastic shell differs considerably
from that of solid objects. According to the present sound scat-
tering theories, we will explore the acoustic radiation force on
thin elastic shells in an unbounded nonviscous liquid in this
investigation. A simple mathematical model of two coupled
thin shells is introduced, considering the effects of the surface
deformation and mutual interactions of shells. This work ex-
pands the theories of acoustic radiation force, and conduces
to a better understanding of the acoustic multi-interactions be-
tween different particles.

2. Coupled scattering of two elastic thin shells
We consider a pair of spherical shells with separation dis-

tance DO1O2 = R1 +R2 + d, where R1 and R2 are the radii of
the two shells, respectively. The two shells are immersed in
an unbounded liquid as shown in Fig. 1. The origins O1 and
O2 of the two spherical coordinate systems ((r j,θ j, ( j = 1,2))
are located at the centers of the left shell and right shell, re-
spectively. The propagating direction of the incident plane
wave is parallel to the z axis, and the wave is reflected and
diffracted into and out of the shells. The mass density and
sound speed of the fluid within and outside the shell are, re-
spectively, (ρ,c) and (ρin,cin). The mass density of shell is
denoted by ρs. We treat the acoustic radiation force on spher-
ical shell by taking the thin shell approximation[27] into ac-
count. This problem is based on the following assumptions:
(i) the fluid medium satisfies the simplified wave equation; (ii)
the material is isotropic, devoid of damping, and the defor-
mation of the shell is subject to Hooke’s law; (iii) the shell
thickness is much less than other dimensions.

z

R2

r1
r2

θ1 θ2

O2O

R1

Fig. 1. Geometry of the model.

In the j-th local spherical coordinates ( j = 1, 2), the ve-
locity potential of the incident wave and the outgoing waves
scattered from the shells can be represented as follows:

ϕ
( j)
I = ϕ0

∞

∑
n=0

(2n+1)injn (kr j)Pn cos(θ j) , (1)

ϕ
( j)
s = ϕ0

∞

∑
n=0

(2n+1)inA( j)
n h(2)n (kr j)Pn cos(θ j) , (2)

where k = ω/c with ω being the angular frequency, and c be-
ing the sound speed, A( j)

n are unknown expansion coefficients,
ϕ0 is the amplitude of velocity potential of the incident wave,
jn(·) and h(2)n (·) are the spherical Bessel function and Hankel

function of order n, and Pn is a Legendre polynomial. The
time-dependent term e iωt is omitted in the expressions of the
velocity potentials.

The total field is a result of the superposition of waves
scattered on the surfaces of the system. Therefore, velocity
potential around the shells in the surrounding liquid can be
written as

ϕ
( j)
o = ϕ0

∞

∑
n=0

G( j)
n (ω)(2n+1) inPn (cosθ j) , (3)

where

G( j)
n =

(
1+

∞

∑
m=0

Q(3− j)
nm

2m+1
2n+1

im−nA(3− j)
m

)
jn (kr j)

+A( j)
n h(2)n (kr j) , (4)

and the coefficients A( j)
n can be determined by the boundary

conditions, the expression of Q( j)
nm was given in Appendix A.

The velocity potentials in the internal fluids of the shells
are

ϕ
( j)
in = ϕ0

∞

∑
n=0

(2n+1)inB( j)
n jn (kinr j)Pn cos(θ j) , (5)

where B( j)
n is the coefficient. The sound pressure of the outside

liquid and inside liquid of the shells are obtained respectively,
as follows:

p( j)
o = iωρϕ

( j)
o , p( j)

in = iωρinϕ
( j)
in . (6)

The dynamic response of the shells is analyzed by mean of
the standard method of the theory of mechanical vibration. In
the spherical coordinates, the generalized radial and tangential
displacement component related to the deformation of shell
are given by two Fourier series[27]

δ =
∞

∑
n=0

a jnPn(cosθ j), (7)

τ =−
∞

∑
n=0

b jnP1
n(cosθ j), (8)

where P1
n(x) = (1− x2)1/2 dPn(x)/dx, and the coefficients a jn

and b jn yield:

2R2
jh jρsä jn +

2Eh j

1−ν
[2a jn− (n+1)nb jn] =−iωR2

j ϕ̄ jn, (9)

R2
jh jρsb̈ jn +

Eh j

1−ν

[
−a jn +

n(n+1)− (1−ν)

1+ν
b jn

]
= 0. (10)

Here

ϕ̄ jn = ρ (2n+1) in
[

jn(x j)+A( j)
n h(2)n (x j)

+
∞

∑
m=0

Q(3− j)
nm

2m+1
2n+1

im−nA(3− j)
m jn(x j)

]
+ρi (2n+1) inB( j)

n jn(xi j),
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and x j = kR j, xi j = kiR j (ki = ω/cin is the wavenumber

of medium inside the shell), h j is the thickness of the j-th

shell, E and ν are the Yong’s modulus and Poisson’s ratio

of the shell medium. It is should be noted that the model

given by Eqs. (7)–(11) is limited to the condition of the non-

dimensional thickness h/R� 1.[27]

For the linearity problems, one has ä jn = −ω2a jn and
b̈ jn = −ω2b jn, and the solutions of a jn and b jn can be ex-
pressed as follows:

a jn =−ϕ0ϕ̄ jn/Z jn, (11)

b jn =
E

1−ν

[
E

1−ν

n(n+1)− (1−ν)

1+ν
−ρsc2x2

j

]−1

a jn, (12)

Z jn = 2i
h j

R j

[
ρscx j−

E
cx j

(n−1)(n+2)E−2ρsc2x2
j (1+ν)

[n(n+1)− (1−ν)]E−ρsc2x2
j (1−ν2)

]
. (13)

The vibration of the shell is determined by the inner and
outer sound fields, and the relation among A( j)

n , B( j)
n , and a jn

can be obtained from the boundary conditions. Accordingly,
the continuity of normal velocity at the surface requires that

−∂ϕo/∂ r j
∣∣
r j=R j

= −∂ϕin/∂ r j
∣∣
r j=R j

= iωa jn. (14)

Substituting Eqs. (3), (5), and (11) into Eq. (14), one ob-
tains

A( j)
n = α

( j)
n + iβ ( j)

n , (15)

B( j)
n =

cin

c j′n(xi j)

[(
1+

∞

∑
m=0

2m+1
2n+1

Q(3− j)
nm im−nA(3− j)

m

)
× j′n(x j)+A( j)

n h′(2)n (x j)

]
, (16)

where

α
( j)
n =−

1+δ
( j)
1n −δ

( j)
2n tanγ

( j)
n

1+(tanγ
( j)
n )2

,

β
( j)
n =−

δ
( j)
2n + tanγ

( j)
n

(
1+δ

( j)
1n

)
1+(tanγ

( j)
n )2

,

tanγ
( j)
n =

nn(x j)+ Z̄ jnn′n(x j)

jn(x j)+ Z̄ jn j′n(x j)
,

Z̄ jn = (ρc)−1
[

ρincin
jn (xi j)

j′n (xi j)
+ iZ jn

]
,

δ
( j)
1n = Re

[
∞

∑
m=0

Q(3− j)
nm

2m+1
2n+1

im−nA(3− j)
m

]
,

δ
( j)
2n = Im

[
∞

∑
m=0

Q(3− j)
nm

2m+1
2n+1

im−nA(3− j)
m

]
.

Substituting Eq. (15) into Eq. (4) and setting G( j)
n (ω) =V ( j)

n +

iU ( j)
n , one obtains

V ( j)
n = Re[G( j)

n (ω)]

=
(

1+α
( j)
n +δ

( j)
1n

)
jn (kr j)+β

( j)
n nn (kr j) , (17)

U ( j)
n = Im[G( j)

n (ω)]

=
(

δ
( j)
2n +β

( j)
n

)
jn (kr j)−α

( j)
n nn (kr j) , (18)

where nn(·) is the n-order spherical Bessel function of the sec-
ond kind.

3. Acoustic radiation force

The time averaged force acting on a spherical particle im-
mersed in an infinite and ideal fluid is given by[15]

𝐹 = −
〈∫∫

S0

ρ(υr𝑒r +υθ𝑒θ )υrdS
〉

+

〈∫∫
S0

ρ

2
|𝜐|2𝑒rdS

〉
−

〈∫∫
S0

ρ

2c2

(
∂ψ̇

∂ t

)2

𝑒rdS

〉
, (19)

where 𝑒r and 𝑒θ are radial and tangential components of the
unit vector; radial and tangential components of the velocity
vector 𝜐 are defined by υr = − ∂ψ

∂ r and υθ = − 1
r

∂ψ

∂θ
, where

ψ = Re[ϕo e iωt ] is the real part of the total velocity potential
in surrounding liquid; S0 is the surface boundary at the equi-
librium position; dS = r sinθ drdθ . The component in the x
direction of the time averaged acoustic radiation force on the
j-th shell in its local spherical coordinates can be broken down
into four parts:

〈
Fjx
〉
= 〈Fr〉+ 〈Fθ 〉+ 〈Frθ 〉+ 〈Ft〉 , (20)

where

〈Fr〉 = −2πρϕ
2
0 x2

j

∞

∑
n=0

(n+1)

×
(

V ′( j)
n U ′( j)

n+1−U ′( j)
n V ′( j)

n+1

)
r j=R j

,

〈Fθ 〉 = 2πρϕ
2
0

∞

∑
n=0

n(n+1)(n+2)

×
(

V ( j)
n U ( j)

n+1−U ( j)
n V ( j)

n+1

)
r j=R j

,

〈Frθ 〉 = 2πρϕ
2
0 x j

∞

∑
n=0

(n+1)
[
n
(

V ( j)
n U ′( j)

n+1−U ( j)
n V ′( j)

n+1

)
−(n+2)

(
V ′( j)

n U ( j)
n+1−U ′( j)

n V ( j)
n+1

)]
r j=R j

,

〈Ft〉 = −2πρϕ
2
0 x j

∞

∑
n=0

(n+1)
(

V ( j)
n U ( j)

n+1−U ( j)
n V ( j)

n+1

)
r j=R j

.
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Combining Eqs. (3), (12), (17), and (18) with Eq. (20)
and making the integration over the outer surface of the j-th
shell, the dimensionless radiation force function is obtained as

Y p j =
〈
Fjx
〉
/(ĒS jc)

=
4
x2

j

∞

∑
n=0

{
(n+1)

(
V ′( j)

n U ′n+1−U ′( j)
n V ′n+1

)
x2

j

−n(n+1)(n+2)
(

V ( j)
n U ( j)

n+1−U ( j)
n V ( j)

n+1

)
+x j

[
n(n+1)

(
V ′( j)

n+1U ( j)
n −U ′n+1V ( j)

n

)
−(n+1)(n+2)

(
V ( j)

n+1U ′( j)
n −Un+1V ′( j)

n

)]
+x2

j (n+1)
(

V ( j)
n U ( j)

n+1−U ( j)
n V ( j)

n+1

)}
, (21)

where Ē = 1
2 ρk2 |ϕ0|2 is the mean energy density of the inci-

dent plane wave, and S jc = πR2
j is the cross-sectional of the

object.

4. Numerical analysis
The acoustic radiation forces on coupled elastic shells in

a plane wave field will be numerically studied in this section.
The main objective here is to examine the effects related to the
mutual interactions of the coupled scattering on the radiation
force exerting on a thin elastic shell. Combining Eqs. (17) and
(18) with Eqs. (20) and (21), the ARF function Y p j ( j = 1, 2)
of the thin shells can be estimated. The results of the evalu-
ation are illustrated in the case of stainless-steel shell, whose
physical constants are cited from Ref. [15]. The surrounding
liquid and inside medium are assumed to be water and air with
properties of ρ = 1000 kg/m3 and c = 1497 m/s for water, and
ρin = 1.29 kg/m3 and cin = 344 m/s for air.

To check the validity of this model, the evaluations of the
ARF function for a single thin shell, rigid sphere and elas-
tic sphere are shown by the solid, broken and dashed curves
in Fig. 2, respectively. King’s formula[14] and Hasegawa’s
formula[15] are chosen for calculating the ARF function of
rigid sphere and elastic sphere made of stainless steel, respec-
tively. In our model, the thin shell has a thickness-to-radius
ratio h/R = 0.01. The results show that Y p1 begins at small
value of kR1 (kR1 < 0.5), as though the thin shell is rigid. De-
viation from the other curves appears with the increase of kR1

(kR1 > 0.5) and the Y p1 arrives at a high resonant peak, which
corresponds to the forced vibration of the thin shell activated
by ultrasound sound wave. Because of the acoustic response of
the thin elastic shell, the nonlinearity is enhanced, and Y p1 of
the thin elastic shell is larger than that of the sphere with the
same size at the band of dynamics response of the thin shell
when the objects are activated by the same sound wave. Com-
paring the curves of three models, one finds that each curve
ascends in the range of 0< kR1 <≈ 1.6. Therefore, the ARF
function for the spherical bodies with the same outside radii

has similar physical properties related to the sound scattering.
However, the sound scattering can be enhanced significantly
by elastic radiation scattering[27] of the thin elastic shell vi-
brated forcedly in the range 0.5 < kR1 <≈ 5. There are a
number of sharp maxima and minima in the curve of solid
elastic sphere, which results from the normal modes of the
free vibration in the range of kR1 >≈ 1.6.[15] However, a sim-
ilar phenomenon does not exist in the curve of the thin shell
in that kR1 range, which means the effects of the high-order
normal modes of a thin shell on the ARF might be suppressed
by other factors. Therefore, there is distinct deviation between
the elastic shell and solid sphere.

0 1 2 3 4 5 6 7 8
0

0.5

1.0

1.5

2.0

2.5

3.0

Y
p

1

elastic sphere

rigid shpere

elastic shell

kR1

Fig. 2. Comparison among curves of ARF function Y p1 versus kR1 for dif-
ferent models: rigid/elastic sphere, single thin elastic shell.

In Fig. 3, all numerical results of the ARF function Y p j

( j = 1) are presented for the case of two identical stainless-
steel shells (R1 = R2) with a thickness-to-radius ratio h/R =

0.01 and ratios of separation distance to radius d/R1 = 2, 2.5,
4, 10, 20, 50, and 100, which are contrasted with those of
a single shell for a range of 0 ≤ kR1 ≤ 8. At the very low
kR1 (kR1 < 1), there is no distinctive difference among all the
cases, which means that the nonlinear effects of interaction
on ARF of shells can be omitted on condition that the wave
length is much larger than the size of the shells. However, if
the scattering system is approaching to acoustical resonance,
the peaks of the ARF function are observed. As for a small
separation of d/R1 = 2 or 2.5, there is a sharp resonant peak
at kR1 ≈ 1.3, and ARF function fluctuates within the rough
range of 2.8< kR1 < 6.0, as shown in Fig. 3(a). The two shells
are elastic scatters, and the radiation scattering influences the
returned echoes extremely.[27] The system is capable of pro-
nounced resonant response in most modes. Therefore, when
the two shells are very close to each other, the scattering are
amplified by the interactions, and a sharp peak of Y p1 is ob-
served.

With a slightly larger separation d/R1 = 4, two peaks
are observed in the curve. Comparing the curve in the case
d/R1 = 4 with that of a single shell, the radiation force behind
shell differs from that of the single only by a small deviation
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in the range of kR1 >≈ 6.0 as shown in Fig. 3(b). In the elec-
tromagnetic end-fire scattering case, this kind of small devia-
tion has been explained as that the frontal shell could hide the
back shell when acoustic wave frequency is higher than the
resonant frequencies of the pair shells.[28] With the increase in

the distance separation d, the interaction between the identical
shells wakens. The ARF function Y p1 approaches to that of
the single when the separation- to-radius ratio d/R1 > 10, and
the multiple scattering effects of the shells can be neglected
approximately.

0 2 4 6 8
-1

0

1

2

3

4

5
(a)

0 2 4 6 8

0

1

2

3
d/a1==4
single shell

(b)

0 2 4 6 8 10

0

1

2

3
(c)

Y
p

1

kR1

Y
p

1

kR1

Y
p

1

kR1

d/R1=100
d/R1=50
d/R1=20
d/R1=10
d/R1=4

d/R1=2
d/R1=2.5
d/R1=4

Fig. 3. Effects of separation distance on relation between ARF function Y p1 and kR1 for the frontal shell, showing comparison (a) among the cases d/R1 = 2,
2.5, and 4, (b) between the case d/R1 = 4 and single shell, and (c) among d/R1 = 4, 10, 20, 50, 100.

To fully understand the multiple interaction effects on the
ARF of thin elastic shells, the dependence of the ARF func-
tion Y p1 on the radii ratio (R2/R1 = 0.5, 1, 2, and 5) is shown
in Fig. 4 for the cases of d/R1 = 4 and h/R = 0.01. Fig-
ure 4(a) presents that the frontal shell can completely shield
the back shell at the lower frequency band kR1 < 2.4 for the
case R2/R1 = 0.5, and the ARF of the frontal shell differs from
the that of the single only by a small perturbation in the range
kR1 > 2.6. In each case for d/R1 = 4, two peaks are observed,
and the main peak is located at kR1 ≈ 1.6, while the lower
(side) peaks for R2/R1 = 0.5, 1, 2, and 5 are situated at 2.6,
1.3, 0.7 and 0.3, respectively as shown in Figs. 4(b) and 4(c).
Comparing the kR1 values of the lower peaks for the case of

different radius ratios, one finds that the value of kR1 is in re-
verse proportion to the size of the back shell approximately,
which reveals that the lower peak might be related to the res-
onant response of the back shell to the driving acoustic wave.
For the cases R2/R1 > 1, there exists a narrow kR1 range in
which the ARF is negative, and shells could be attracted to
the sound source. According to the calculating results, for the
case that the size of the back shell is larger than that of the
frontal, its back-scattering is stronger than that of the frontal,
which enhances the multiple interaction effects on ARF of the
frontal. Therefore, the ARF can be significantly affected by
the multiple interactions between shells in the resonant region
of the acoustic response of the pair.

0 2 4 6 8
0

1

2

3

R2/R1=0.5
single

(a)

0 2 4 6 8 10

0

1

2

3
(b)

0 2 4 6 8

0

1

2

3
R2/R1=5
R2/R1=2
R2/R1=0.5

(c)

Y
p
1

kR1

R2/R1=2

R2/R1=1

Y
p
1

kR1

Y
p
1

kR1

Fig. 4. Effects of radius ratio on relation between ARF function Y p1 and kR1 for frontal shell, showing (a) comparison among the case R2/R1 = 1 and single
shell, (b) between the cases R2/R1 = 1, 2, and (c) between the cases R2/R1 = 0.5, 2, 5.

To further check the validity, the effects of the shell thick-
ness on the ARF are investigated numerically as shown in
Fig. 5. The magnitude of the main peak in ARF function Y p1

curve decreases with the increase of the shell thickness at the
kR1 band of resonant response to incident progressive wave
when R2/R1 = 1 and d/R1 = 4. Elastic scattering of a thin
shell[27] is the important reason for the difference between the
scattering action of thin shell and that of a solid elastic body.

The acoustic scattering feature of the thick shells is different
from that of thin shells, and the elastic waves (transverse wave
and longitudinal wave) might be activated in the medium of
a thick shell, which relates to the surface vibration (or wave)
of the thin elastic shell. Therefore, this model should be lim-
ited to the application to predicting the ARF of the thin elastic
shell precisely, i.e., shelled medical carrier, micro-capsular ul-
trasound contrast agent.

094301-5



Chin. Phys. B Vol. 29, No. 9 (2020) 094301

0 2 4 6 8 10
-0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

h/R1=0.03

h/R1=0.01

h/R1=0.1

Y
p
1

kR1

Fig. 5. Effect of shell thickness on relation between ARF function Y p1
and kR1 for frontal shell.

5. Conclusions
This theory is based on the thin elastic shell approxima-

tion, and it may be considered as a development of the ARF
theory, including the elastic radiation of thin shells and the
mutual interactions of multiple particle systems.

Based on the rectified model of sound scattering of a thin
elastic shell pair including the effects of elastic scattering of
the shell and interaction between shells, the acoustic radiation
force of a thin elastic shell suspended in a plane progressive
sound wave field is calculated approximately. Due to the non-
linear nature of the acoustic radiation, some new features re-
lated to the multiple interactions of two shells in liquid are
highlighted. Enhanced resonant peak in the curve of ARF
force versus kR1 reasults from elastic scattering. The interac-
tions between shells is closely related to the identify character
of acoustic radiation force, and the negative force is obtained
at the band related to the resonant response of the back shell.
Acoustic shielding phenomenon of the frontal shell first im-
pinged upon by the incident wave can affect the ARF magni-
tude of lower peak to some extent for the case R2/R1 < 1. The
kR1 value related to the lower peak is in reverse proportion to
the size of the back shell approximately. Therefore, the acous-
tic resonant response of thin shells should be emphasized for
the manipulation of multiple particle systems.

Appendix A
The expression of Q( j)

nm is given as follows:[30]

Q( j)
nm =

n+m

∑
α=|n−m|

(−1)α( j−1)(2α +1)(−i)α Smα
n h(2)α (kD),

(A1)

where Smα
n = (mα00|n0)2, Clebsch–Gordan coefficient is de-

fined with using q = (α +m+n)/2 and 2q is even, as[31]

(mα00|n0) =
(−1)n+qq!

(q−n)!(q−m)!(q−α)!

×

√
2n+1

(2q+1)!
(2q−2n)!(2q−2 m)!(2q−2α)!, (A2)

and when 2q is odd, as (mα00|n0) = 0.
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