
Chin. Phys. B Vol. 29, No. 9 (2020) 090503

Directed transport of coupled Brownian motors in a
two-dimensional traveling-wave potential∗
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Considering an elastically coupled Brownian motors system in a two-dimensional traveling-wave potential, we inves-
tigate the effects of the angular frequency of the traveling wave, wavelength, coupling strength, free length of the spring, and
the noise intensity on the current of the system. It is found that the traveling wave is the essential condition of the directed
transport. The current is dominated by the traveling wave and varies nonmonotonically with both the angular frequency
and the wavelength. At an optimal angular frequency or wavelength, the current can be optimized. The coupling strength
and the free length of the spring can locally modulate the current, especially at small angular frequencies. Moreover, the
current decreases rapidly with the increase of the noise intensity, indicating the interference effect of noise on the directed
transport.
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1. Introduction

In the last few decades, Brownian motors have attracted
much interest due to the special energy conversion mechanism
and huge potential applications in physics, biology, and other
fields. Brownian motors can convert the nonequilibrium fluc-
tuation into the directed motion in a periodic asymmetric po-
tential in the absence of external bias.[1,2] A large variety of
motor proteins (kinesin, myosin, dynein, etc.) in biological
cells can all be regarded as Brownian motors, which can con-
vert the chemical energy from ATP hydrolysis into mechan-
ical work to achieve directed transport along tracks. Up to
now the directed transport mechanism of Brownian motors has
been a hot topic in physics and biology.[3–12] Inspired by the
Smoluchowski–Feynman ratchet, many theoretical models for
Brownian motors, called Brownian ratchets, have been pro-
posed, such as flashing ratchets,[13,14] rocking ratchets,[15,16]

and correlation ratchets.[17,18]

Most studies of Brownian ratchets have been con-
cerned with the directed transport mechanism of a single
Brownian motor in a one-dimensional asymmetric periodic
potential.[19,20] However, experiments have shown that the
collective directed transport widely exists in many biologi-

cal active processes. Vershinin et al. found that multiple
kinesin motors could work in groups to achieve a long dis-
tance transport and apply significantly larger forces without
the need of additional factors.[21] Shtridelman et al. sug-
gested that motors could work cooperatively to attain higher
transport force and velocity through comparing the transport
force and velocity of the collective transport with that of a sin-
gle molecular motor.[22] Ali et al. observed that different kinds
of molecular motors, such as kinesin and myosin, could also
cooperate to transport cargos for a longer distance.[23] These
studies indicate that the collective transport has more com-
plex effects compared to the single-motor transport. There-
fore, collective transport dynamics of Brownian motors have
attracted the interest of researchers in recent years. Julicher
and Prost investigated the dynamics of multiple rigid ratchets
in an asymmetric potential and found the existence of phase
transition.[24] Csahók et al. studied the transport of a chain
of elastically coupled particles in a ratchet potential.[25] Li et
al. explored the collective mechanism of coupled Brownian
motors in a flashing ratchet in the presence of coupling sym-
metry breaking and space symmetry breaking, and reversed
motion was found.[26] Besides, Zheng et al. proposed an
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interesting two-dimensional coupled transport mechanism in
which with the aid of interactions between two motors, co-
ordinated processive motion in the ratchet potential could be
achieved when external forces were exerted to the non-ratchet
potential.[27] Wang et al. investigated the transport properties
of coupled Brownian particles in a two-dimensional rocking
ratchet, and found that ratchet movement and collective ef-
fect could coexist.[28] Zhang et al. explored a flashing ratchet
model of a two-headed molecular motor in a two-dimensional
potential, and obtained the result which accorded with the ex-
perimental observations.[29]

In this paper, we consider a model of two elastically cou-
pled Brownian motors in a two-dimensional traveling-wave
potential. The effects of the traveling wave parameters (the
angular frequency and the wavelength), the system parameters
(the coupling strength and the free length of the spring), and
the noise intensity on the current of the system are discussed.
The results show that the current is dominated by the angu-
lar frequency and the wavelength of the traveling wave. With
the increase of the angular frequency and the wavelength, the
current varies nonmonotonically, and has its maximum value
at an optimal angular frequency or wavelength. The coupling
interaction between motors is not the necessary condition to
achieve the directed transport, but the coupling strength and
the free length of the spring can locally modulate the current.
Moreover, with the increase of the noise intensity, the current
decreases rapidly.

2. Model
We consider a coupled system consisting of two Brown-

ian motors connected by an elastic spring in a two-dimensional
potential. The overdamped dynamics of the system can be
written as

γ ẋi(t) =−
∂V (xi,yi)

∂xi
− ∂Uint

∂xi
+ξi(t), (1)

γ ẏi(t) =−
∂V (xi,yi)

∂yi
− ∂Uint

∂yi
, (2)

where γ is the friction coefficient. 𝑟i(t) = (xi(t),yi(t)) is
the position of the i-th Brownian motor at time t. The two-
dimensional potential V (x,y) = Vx(x, t) +Vy(y) is shown in
Fig. 1. Here, we apply the traveling wave form for the po-
tential in x direction

Vx(x, t) =V0 cos
(

2π

λ
x−ωt

)
, (3)

where V0, λ , and ω are the wave amplitude, the wavelength,
and the angular frequency of the traveling wave, respectively.
Then, the wave velocity can be expressed as u = ωλ/2π , and
the energy flow density of the wave can be determined by
E = k′V 2

0 ω2u, where k′ is the proportionality factor. The larger

the energy flow density is, the greater the energy of the wave
is.

The potential in y direction is chosen as the parabolic
form

Vy(y) =
1
2

εy2, (4)

where ε is the parameter which determines the concavity of
the potential in y direction

In Eqs. (1) and (2), Uint is the interaction energy between
two Brownian motors which is given by the harmonic form
Uint = k [‖𝑟2−𝑟1‖−a]2 /2, where k is the coupling strength,
and a is the free length of the spring. ξ i(t) is Gaussian
white noise with 〈ξi(t)〉= 0 and

〈
ξi(t)ξ j(t ′)

〉
= 2Dδi jδ (t−t ′),

where D is the noise intensity.
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Fig. 1. Schematic diagram of coupled Brownian motors in the two-
dimensional traveling-wave potential V (x,y).

We simulate numerically Eqs. (1) and (2) by using the
stochastic Runge–Kutta algorithm. Each trajectory evolves
5×106 steps with the time step ∆t = 10−3. Two motors are
initially placed at (2.5, 0) and (7.5, 0), respectively. Due to
the limitation of the potential barrier, it is difficult to achieve
effective directed transport in y direction. So, we are only con-
cerned with the current in x direction which is determined by

υ = lim
T→∞

1
2T

∫ T

0

2

∑
i=1

ẋi dt. (5)

3. The results and discussion
3.1. Effects of the traveling wave parameters on the di-

rected transport

In this model, the angular frequency and the wavelength
are two important parameters for the traveling wave. In or-
der to investigate the influence of the traveling wave on the di-
rected transport, firstly, we calculate the current υ as a function
of the angular frequency ω for different values of the coupling
strength k and the noise intensity D in Figs. 2(a) and 2(b), re-
spectively. It is found that when ω is zero, namely, there is no
fluctuation, there is no directed transport. It can be explained
that in this case no ordered energy generated from fluctuation
is transmitted to the system to induce the directed transport.
However, when ω is not zero, the current υ varies nonmono-
tonically with the angular frequency ω . For both very small
and very large angular frequencies, the current υ is small, and
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has its maximum at an optimal angular frequency. It can be un-
derstood that when the angular frequency ω is very small, the
wave travels very slowly, so the motors system can be tightly
coupled to the potential and travels with the wave. If the angu-
lar frequency increases, namely, the wave velocity increases,
the current also increases. But when the angular frequency ω

is very large, the wave travels very fast, so the motors system
is loosely coupled to the potential so that it cannot keep up
with the traveling wave. Thus the current decreases. These
results indicate that the wave velocity can obviously affect the
directed transport of the system, and at an optimal wave veloc-
ity the current can be optimized, which is in agreement with
the result given in Ref. [2]. Moreover, it is also shown that the
current decreases with the increase of the coupling strength k
in Fig. 2(a). This is because that the rigidity of the spring be-
tween motors increases so that the coupling of the system to
the potential becomes looser. Figure 2(b) shows that with the
increase of the noise intensity D, the current also decreases, in-
dicating the interference effect of noise (i.e., the thermal fluc-
tuation) on the directed transport.
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Fig. 2. The current υ versus the angular frequency ω for different val-
ues of (a) the coupling strength k at D = 5.0 and (b) the noise intensity
D at k = 3.0, with other parameters being γ = 1.0, a = 5.0, V0 = 3.0,
λ = 3.0, and ε = 0.2.

In Fig. 3, we study the current υ versus the wavelength
λ for different values of the angular frequency ω . It can be
clearly seen that the variation of the current υ with the wave-
length λ is very similar to that of υ with ω , that is, υ is also
a nonmonotonous function of λ . At an optimal λ the current
can also be optimized. The reason is similar to that in Fig. 2.
When λ is small, the wave travels slowly so that the motors

system is tightly coupled to the potential. In this case, the cur-
rent increases with the increase of the wave velocity. But when
λ is very large, the wave travels very fast so that the coupling
is very loose. Thus, in this case the current is also very small.
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Fig. 3. The current υ versus the wavelength λ for different values of
the angular frequency ω , with other parameters being γ = 1.0, a = 5.0,
V0 = 3.0, k = 3.0, D = 5.0, and ε = 0.2.

3.2. Effects of the system parameters on the directed
transport

We investigate the effects of the traveling wave parame-
ters on the directed transport in Subsection 3.1. In this section,
we explore the influences of the system parameters, namely,
the coupling strength and the free length of the spring on the
directed transport. In Fig. 4(a), we plot the current υ versus
the coupling strength k for different values of the angular fre-
quency ω . It can be observed that when k is zero, there is still
a large current, implying that the coupling interaction between
motors is not the necessary condition to achieve directed trans-
port. In the range of low-to-moderate coupling strength, the
current varies obviously with k. Moreover, for small angular
frequencies, the current can obtain its maximum at an optimal
coupling strength. For this, it can be understood that when k
is zero, because two motors are independent of each other, al-
most all of the energy to achieve the directed transport comes
from the traveling wave. For the small coupling strength, be-
sides the energy from the traveling wave, the elastic energy
can also be transmitted to the system to promote the directed
transport. But, with the increase of the coupling strength, the
rigidity of the spring increases so that the coupling of the sys-
tem to the potential becomes looser. So the current decreases.
Therefore, at small angular frequencies, only for an optimal
coupling strength, can the current obtain its maximum. Here,
in fact, it also indicates the effect of the coupling on the co-
ordination between motors. When the wave travels slowly,
smaller coupling can enhance the coordination between mo-
tors so that the system can keep up with the traveling wave.
Thus the current is larger than that of the single motor. But
when the coupling strength is larger, the coordination between
motors decreases so that the system cannot keep up with the
wave. So the current decreases. In Fig. 4(a), it is also shown
that at strong coupling, the current is hardly affected by the
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coupling strength. The reason is that in this case the two mo-
tors can be regarded as a whole due to the rigid connection.

In order to further explore the influence of the coupling
strength on the directed transport in the traveling-wave poten-
tial, the current υ versus the coupling strength k and the an-
gular frequency ω is presented in Fig. 4(b). We can find that
when the coupling strength k is given, υ varies nonmonotoni-
cally with ω , which is consistent with that shown in Fig. 2(a).
At a given angular frequency ω , the curve of υ versus k ac-
cords with that in Fig. 4(a). On the whole, the current is dom-
inated by the angular frequency, and the coupling strength can
locally modulate the current.
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Fig. 4. The current υ versus (a) the coupling strength k for different
values of the angular frequency ω , and (b) the coupling strength k and
the angular frequency ω with other parameters being γ = 1.0, a = 5.0,
V0 = 3.0, λ = 3.0, D = 5.0, and ε = 0.2.

Next, we continue to investigate the other important pa-
rameter of the system, namely, the free length of the spring on
the directed transport. Figure 5(a) shows the current υ as a
function of the free length a for different values of the angu-
lar frequency ω . It can be clearly found that at small angular
frequencies, υ oscillates periodically with a. When a/λ is ap-
proximately an integer, the two motors are trapped in the wells
of the potential so that they can be tightly coupled to the po-
tential. In this case, the current υ can reach a local maximum.
While, when the angular frequency is very large, the coupling
of the system to the potential becomes loose. Thus, the depen-
dence of the current on the free length a decreases.

In order to study synthetically the influence of the free
length of the spring on the directed transport in the traveling-
wave potential, the current υ versus the free length a and
the angular frequency ω is plotted in Fig. 5(b). Similar to
Fig. 4(b), the current in the a–ω space is still determined by
the angular frequency, and the free length only modulates the
current locally.

According to the above results, it is fully shown that the
traveling wave is the essential condition of the directed trans-
port. The current is dominated by the angular frequency and
the wavelength. The coupling strength and the free length of
the spring can locally modulate the current of the system.
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Fig. 5. The current υ versus (a) the free length of the spring a for
different values of the angular frequency ω , and (b) the free length of
the spring a and the angular frequency ω , with other parameters being
γ = 1.0, k= 3.0, V0 = 3.0, λ = 3.0, D = 5.0, and ε = 0.2.

3.3. Effect of noise on the directed transport

For Brownian motors, noise is an important factor for the
directed transport. In many models of Brownian motors, the
stochastic resonance effect can often be shown, namely, noise
can enhance the directed transport.[27,30,31] In order to inves-
tigate whether the stochastic resonance effect appears in this
model, we calculate the current υ as a function of the noise
intensity D for different values of the angular frequency ω in
Fig. 6(a). We can clearly see that with the increase of the noise
intensity D, the current decreases monotonically. This illus-
trates that the thermal fluctuation cannot be effectively recti-
fied to promote the directed transport. So the stochastic reso-
nance effect is difficult to be found in this model.
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Figure 6(b) shows the current υ as a function of the noise
intensity D and the angular frequency ω . We can see that when
there is no noise, the current can reach the maximum at an
optimal angular frequency. In the case of noise, the current
decreases rapidly with the increase of the noise intensity.
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Fig. 6. The current υ versus (a) the noise intensity D for different values
of the angular frequency ω , and (b) the noise intensity D and the angu-
lar frequency ω , with other parameters being γ = 1.0, k= 3.0, a = 5.0,
V0 = 3.0, λ = 3.0, and ε = 0.2.

4. Conclusions
In this paper, the directed transport properties of two

elastically coupled Brownian motors in a two-dimensional
traveling-wave potential are investigated. The effects of the
traveling wave parameters (the angular frequency and the
wavelength), the system parameters (the coupling strength and
the free length of the spring), and the noise intensity on the di-
rected transport are discussed respectively. The results show
that the traveling wave is the essential condition of the directed
transport. With the increase of the angular frequency and the
wavelength, the current of the system varies nonmonotoni-
cally, and has its maximum at an optimal angular frequency
or wavelength. In terms of the system, the coupling between
motors is not necessary to achieve the directed transport, but
the coupling strength and the free length of the spring can lo-
cally modulate the current. In the range of low-to-moderate

coupling strength, the current obviously varies. In particular,
at small angular frequencies, the current can reach a local max-
imum at an optimal coupling strength. But at strong coupling,
the current is hardly affected by the coupling strength. In ad-
dition, at small angular frequencies, the current oscillates pe-
riodically with the free length of the spring. When the free
length is an integral multiple of the wavelength, the current
also has a local maximum. But at very large angular frequen-
cies, the dependence of the current on the free length a de-
creases. Besides, when there is no noise, the current has a
maximum at an optimal angular frequency. While in the case
of noise, the current decreases rapidly with the increase of the
noise intensity, indicating the interference effect of noise on
the directed transport.
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