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Active Brownian particles simulated in molecular dynamics∗
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In the numerical studies of active particles, models consisting of a solid body and a fluid body have been well es-
tablished and widely used. In this work, such an active Brownian particle (ABP) is realized in molecular dynamics (MD)
simulations. Immersed in a fluid, each ABP consists of a head particle and a spherical phantom region of fluid where the
flagellum of a microswimmer takes effect. Quantitative control over the orientational persistence time is achieved via an
external stochastic dynamics. This control makes it possible to validate ABP’s diffusion property in a wide range of particle
activity. In molecular description, the axial velocity of ABP exhibits a Gaussian distribution. Its mean value defines the
active velocity which increases with the active force linearly, but shows no dependence on the rotational diffusion coeffi-
cient. For the active diffusion coefficient measured in free space, it shows semi-quantitative agreement with the analytical
result predicted by a minimal ABP model. Furthermore, the active diffusion coefficient is also calculated by performing
a quantitative analysis on the ABP’s distribution along x axis in a confinement potential. Comparing the active diffusion
coefficients in the above two cases (in free space and in confinement), the validity of the ABP modeling implemented in MD
simulations is confirmed. Possible reasons for the small deviation between the two diffusion coefficients are also discussed.
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1. Introduction
Active particles are self-propelled, capable of convert-

ing energy from the environment or the food into directed
motion.[1–4] Ubiquitous examples include bacteria,[5–8] motile
cells,[9–11] and artificial Janus particles.[12,13] Due to the con-
stant energy supply and consumption, active particles are non-
equilibrium by nature, making active suspensions intrinsically
different from their passive counterparts.[7,14,15]

Active particles swimming at small length scale are gov-
erned by low Reynolds number hydrodynamics dominated by
viscous damping.[16] For hydrodynamically interacting active
particles, the fluid flow generated by one swimmer inevitably
influences the motion of nearby swimmers. It has been gen-
erally accepted that hydrodynamic interactions play an impor-
tant role in the dynamics of collective phenomena.[17–19] In
addition, thermal Brownian noise originating from collisions
with fluid particles also affects the motion of active particles
significantly. In this sense, molecular dynamics (MD) simula-
tions have the unique advantage in simulating active dynamics
as both hydrodynamic interactions and thermal noise are nat-
urally included.

The hydrodynamic flow induced by the activity of
a microswimmer is usually described by using a force
dipole.[3,19–21] Investigations of flagellated swimmers, e.g.,
Escherichia coli bacteria and Chlamydomonas reinhardtii al-

gae, have confirmed this picture.[18,20–23] To model the mo-
tion of flagellated swimmers, flagellum is usually not explic-
itly described. Instead, a fluid body with active force exerted
is introduced in the active particle modeling to incorporate the
effect of a rotating flagellum. These models consisting of a
solid body and a forced fluid region have been well established
and widely used. Recently, the influences of particle shape
anisotropy and hydrodynamic interactions have been investi-
gated using the lattice-Boltzmann simulation.[24] In the fluid
particle dynamics method, a “phantom” spherical particle is
used to model the effect of a rotating flagellum.[19] In our MD
simulations presented here, a spherical phantom region is in-
troduced to an active particle, with the fluid particles in this
region being subjected to the force exerted by the flagellum.
The force dipole driving an active particle is formed by a pair
of active forces, one exerted on its solid body and the other
on the phantom region of fluid. As a result, the active particle
can be modeled as a pusher or a puller depending on how the
active forces are directed.

With hydrodynamic effects completely neglected, mi-
croswimmers are commonly described by a minimal model
for active Brownian particles (ABPs),[2–4] which can effec-
tively capture various fundamental features of microswim-
mers: overdamped dynamics, self-propelled motion, and ther-
mal noises acting on the translational and rotational degrees
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of freedom. In particular, spherical ABPs are widely used
because of their simple shape.[12,25,26] It has been well es-
tablished that the shapes of active and passive particles have
significant effects on their dynamics,[27–30] but this is be-
yond the scope of the present work. In the minimal model
for ABPs, one of the basic assumptions is the constant self-
propulsion speed of each particle. However, this is not always
the case, especially in a dense suspension of interacting active
particles.[31–33] In our MD simulations, the ABP is simulated
as a pusher that is driven by a force dipole.

To the best of our knowledge, this is the first effort in
which an ABP consisting of a solid body and a fluid body is re-
alized in MD simulations. Before directly applying this model
to the collective dynamics, some quantitative validations are
necessary, given the presence of additional complexities in the
molecular description. For this purpose, the dilute ABP sus-
pension is adopted and the many-body behaviors induced by
the hydrodynamic interactions are not within the scope of this
work. A notable feature of ABP is that its active diffusion
coefficient DA can be roughly estimated as the product of the
orientational persistence time τr and the square of active veloc-
ity vA. In particular, DA = v2

Aτr/3 is quantitatively predicted
in the commonly used minimal ABP model.[3] In our MD sim-
ulations, we simulate ABPs’ diffusion in free space and inves-
tigate to what extent this relation remains valid. Moreover,
the active diffusion coefficient is measured when the ABP is
placed in a confinement potential. Through the comparison
between the diffusion coefficients measured in free space and
in confinement, it is shown that the ABP model consisting of a
solid body and a fluid body implemented in MD simulations is
able to grasp the salient features of the overdamped ABPs. For
confined active particles, the typical bimodal distribution, i.e.,
the boundary accumulation effect, has been intensively stud-
ied due to its unique out-of-equilibrium nature.[13,34–41] Here
in our MD simulations, a clear evolution from the Boltzmann-
type distribution to bimodal distribution is also observed.

The paper is organized as follows. In Section 2, we
elaborate on how to realize an ABP as a pusher in MD sim-
ulations. Based on the dumbbell model, a modified ABP
model with quantitatively tunable rotational dynamics is im-
plemented. We also show that the axial velocity of the ABP
exhibits a Gaussian distribution. Its mean value is defined as
the active velocity vA which increases with the active force FA

linearly but shows no dependence on the rotational diffusion
coefficient Dr. In Section 3, we investigate the diffusive mo-
tion of ABPs in free space. Our numerical results support the
relation DA ∝ v2

Aτr, and reasons are presented for why the MD
results deviate from the prediction of the minimal model. In
Section 4, we simulate and analyze the distribution of ABPs
in an isotropic harmonic potential. A clear evolution from the
Boltzmann-type distribution to non-Boltzmann distribution is

demonstrated, in agreement with previous theoretical and nu-
merical results.[34–36] In addition, the active diffusion coeffi-
cient is also acquired by performing a quantitative analysis on
the particle distribution along the x axis. In comparison with
that measured in free space, a fairly good semi-quantitative
agreement is obtained. The paper is concluded in Section 5.

2. Active Brownian particles in MD simulations
2.1. Simulation details

To investigate the ABP dynamics in a dilute suspension,
MD simulations are carried out for three active particles placed
in a cubic box, as shown in Fig. 1(a). The simulated system
is composed of three active particles and a large number of
fluid particles. In the present work, the ABP is realized and
simulated as a pusher, which is schematically illustrated in
Fig. 1(b). Each ABP consists a solid body and a fluid body.
The solid body is made by a spherical particle representing
the active particle’s head. This spherical particle will also be
called the head particle. The fluid body is made by a spheri-
cal phantom region of fluid that is centered at a position away
from the head particle along a certain direction. The orienta-
tion of the active particle is represented by a unit vector 𝑛 in
the direction from the center of the phantom region to the cen-
ter of the head particle. To realize the ABP as a pusher, a pair
of active forces FA𝑛 and −FA𝑛 form a force dipole, and are
applied on the head particle and the phantom region of fluid,
respectively. Physically, there is a thin flagellar bundle that is
attached to the head particle and exerts a force on the phantom
region of fluid.

The fluid particles are spherical and interact with each
other through the Lennard–Jones (LJ) potential

V ff
LJ (r) = 4εff

[(
σff

r

)12
−
(

σff

r

)6
]
, (1)

where r is the distance between particles, and εff and σff de-
note the energy and length scales, respectively. The interac-
tion parameters for fluid and head particles are all taken from
a MD work which investigated the axial dispersion of Brown-
ian colloids in microfluidic channels.[42] All the results in this
paper are to be presented in the reduced units, with length mea-
sured by σff, energy by εff, mass by mf which is the mass of

each fluid particle, and time by τ0 =
√

mfσ
2
ff/εff. The LJ po-

tential between fluid particles is cut off at rff
cut = 2.5σff. In

our simulations, the average number density of fluid parti-
cles is ρ = 0.8σ

−3
ff . The interaction between head particles

is modelled by using the purely repulsive Weeks–Chandler–
Anderson (WCA) potential,[43] which is obtained from the
standard LJ potential with a truncation at the minimum po-
tential energy at the distance 21/6σaa and an upward shift by
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the energy εaa

V aa
WCA (r) =

 4εaa

[(
σaa
r

)12−
(

σaa
r

)6
]
+ εaa, r 6 21/6σaa,

0, r > 21/6σaa.
(2)

A strong repulsion with the energy scale εaa = 10εff is used for
head particles and the corresponding length scale is σaa = 3σff.
The mass of each head particle is ma = 10.64mf.[42] The inter-
action between head and fluid particles is modeled by using
another LJ potential with the energy scale εaf = εff and length
scale σaf = (σaa +σff)/2 = 2σff. This interaction is cut off at
raf

cut = 2.5σaf.
For each active particle, the center of the fluid phantom

region is away from the center of the head particle by a fixed
distance of 5σff. The radius of the phantom region is 2σff and
there are always about 27 fluid particles in this region with
small fluctuation. In addition, the active force FA exerted on
the phantom region is equally divided by the fluid particles in
the region.

MD simulations have been carried out using the
LAMMPS package.[44] The equations of motion are integrated
using Velocity-Verlet algorithm with a time step of 0.0025τ0.
Using a Langevin thermostat in an NVE ensemble, the tem-
perature of the fluid is controlled at 1.5εff/kB, with kB being
the Boltzmann constant. For the average number density of
fluid particles ρ = 0.8σ

−3
ff used here, there are 108000 fluid

particles placed in a simulation box measuring Lx×Ly×Lz =

51.3σff×51.3σff×51.3σff. Periodic boundary conditions are
applied in all the three directions. As a result, the spherical
phantom region of an active particle may fall into several parts
at the boundaries. As shown in Fig. 1(a), the phantom region
of one active particle is separated into four parts at the bound-
ary lines.

(a) (b)

phantom head

2σff 5σff

↩FAn FAn
n

Fig. 1. (a) A snapshot of the simulation showing a dilute suspension
of three active particles in the simulation box. The red particles are the
head particles and the blue particles are the fluid particles in the phan-
tom regions. Fluid particles out of the phantom regions are not shown
here. Due to the periodic boundary conditions, the fluid body of one
active particle is separated into four parts. (b) The ABP modeled in this
work. A force dipole is exerted on the head particle and the phantom
region of fluid to model a pusher.

2.2. Elementary aspects of active Brownian particles

Many different models have been proposed to describe
the self-propelled motion of active particles.[38,45,46] A com-
mon feature of these models is that an active particle moves

under the influence of certain directional control of stochas-
tic nature. Different from a passive Brownian particle (PBP)
with decoupled rotational and translational motions, the self-
propelled motion of an ABP results in the coupling between
rotational and translational degrees of freedom.[2]

2.2.1. Stochastic orientational dynamics

The dynamics of a spherical ABP is governed by the over-
damped Langevin equations

�̇� = vA𝑛+
√

2DT𝜉, (3)

�̇�=
√

2Dr𝑛×𝜁, (4)

in which 𝑟 is the particle position, 𝑛 is the unit vector denot-
ing the particle orientation, vA𝑛 is the active velocity in the
direction of 𝑛 with vA being the constant speed, DT and Dr

are the translational and rotational diffusion coefficients, re-
spectively, and 𝜉 and 𝜁 are three-dimensional translational and
rotational Gaussian white noises, with each component having
zero mean and unit variance.

In the present work, the orientational dynamics of an
ABP, i.e., the time evolution of 𝑛, is obtained by solving
Eq. (4). This is accomplished as follows. Firstly, for a given
value of Dr, equation (4) is numerically solved using a Python
code to generate a time series of 𝑛. Secondly, this series of 𝑛
are used as the input to the MD simulation carried out by the
LAMMPS package. The particle orientation 𝑛 is read at each
time step. Once 𝑛 is given at a particular time step, the phan-
tom region of fluid is located (relative to the head particle) and
the force dipole along the particle orientation is then exerted,
as illustrated in Fig. 1(b). As a result, the active particle is
self-propelled in the direction of 𝑛 amid the noises acting on
the translational and rotational degrees of freedom.

In most ABP models, once the active force along the par-
ticle orientation is imposed, the rotational diffusion coefficient
Dr is solely determined by thermal fluctuations. The dumbbell
model in which the solid body is made by a head particle and
a tail particle belongs to this category. The ABP model used
here is in fact modified from the dumbbell model. Reasons
why we perform the modification are as follows:

(i) The validation of ABP’s diffusion properties needs to
be performed in a wide range of activity conditions. However,
the activity, i.e., the orientational persistence time of the dumb-
bell model, is fixed for a certain suspension system. Hence, we
discard the tail particle and control the rotational dynamics via
Eq. (4).

(ii) This control enables the orientational dynamics of
ABP to be quantitatively tunable. Theoretically, any Dr value
can be incorporated in Eq. (4) and ABP with arbitrary activ-
ity can be accomplished with this simple modeling. In this
sense, the dumbbell model can be regarded as an ABP model
implemented in this work with a certain Dr value.
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(iii) Once Dr is used as an input parameter, the relation be-
tween Dr and τr can be quantified directly after τr is acquired
by fitting the orientational time correlation function.

(iv) Note that however, this modified ABP model is not
applicable of the investigation of hydrodynamic behaviors.
When the suspension is non-dilute and hydrodynamic interac-
tions play a role, this model is no longer viable and the dumb-
bell model needs to be employed.

2.2.2. Orientational persistence time

For an ABP whose orientation is governed by Eq. (4), it
can be numerically verified that the orientational time correla-
tion function C (t) can be expressed by an exponential function

C (t) = 〈𝑛(t) ·𝑛(0)〉= e−t/τr , (5)

where τr is the orientational persistence time. For spherical
particles in three-dimensional space, the orientational persis-
tence time τr is directly related to the rotational diffusivity Dr

through the relation[3]

τr =
1

2Dr
. (6)
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Fig. 2. (a) Exponential decay of the orientational time correlation func-
tion C (t) for Dr = 0.05τ

−1
0 . The red solid line represents the numerical

result and the black dashed line represents the exponential fitting with
τr = 10.32τ0. (b) The product Dr× τr plotted for different values of Dr
in units of τ

−1
0 . Note that for small Dr, τr is large and leads to large

statistical error in a limited time duration.

In Fig. 2(a), an ABP with Dr = 0.05τ
−1
0 is taken as an ex-

ample to show C (t) as a function of time. It is readily seen
that the numerical result for C (t) can be fitted by Eq. (5) with

τr = 10.32τ0, which is related to Dr via Eq. (6) within statisti-
cal error.

In Fig. 2(b), the product of Dr and τr is plotted for differ-
ent values of Dr. It is seen that the numerical value fluctuates
around the theoretical value 1/2. For each value of Dr, C (t) is
calculated for five times to obtain the error bar. It is noted that
for Dr < 0.005τ

−1
0 , we have τr > 100τ0. Limited by the sam-

pling time for obtaining C (t), we have large statistical error
for long persistence time.

Finally, we would like to point out that in our MD simu-
lations, the particle orientation is directly taken from 𝑛 which
is obtained by solving Eq. (4). Therefore, although the active
particle is surrounded by fluid particles, its orientation is not
affected by the collisions with fluid particles, and the orien-
tational time correlation function is solely controlled by the
parameter Dr. In our MD simulations, the force dipole is ex-
erted on the ABP in the direction of 𝑛, along which the active
velocity is acquired and to be measured. Note that in the pres-
ence of thermal noises, the instantaneous velocity of the active
particle is by no means in the direction of 𝑛, making a trajec-
tory that is strongly fluctuating in time.

2.2.3. Active velocity

Besides the orientational persistence time, the active ve-
locity in the direction of particle orientation is another key
characteristic that controls the ABP dynamics. In the com-
monly used minimal model described by Eqs. (3) and (4), the
active velocity in the direction of 𝑛 has a constant magnitude.
However, this is no longer the case in our MD simulations. For
an active particle driven by the force dipole applied in the di-
rection of 𝑛, the axial velocity wA ≡ �̇� ·𝑛 is measured at each
time step in the same direction. Due to the frequent collisions
with surrounding fluid particles, the axial velocity exhibits a
Gaussian distribution, as shown in Fig. 3(a). Some interesting
observations on the axial velocity are summarized as follows:

(i) The axial velocity wA exhibits standard Gaussian dis-
tribution. Its mean and variance are called the active velocity
vA and axial velocity variance σ2

A, respectively.
(ii) Once the size of the active particle is fixed, the active

velocity vA increases with the increasing force FA linearly, as
shown in Fig. 3(b). Furthermore, vA is found to be indepen-
dent of Dr or τr. We will take the mean vA as the active velocity
in the Langevin Eq. (3).

(iii) The magnitude of vA measured in MD simulations is
consistent with the hydrodynamic estimation. Mathematically,
the flow induced at position 𝑟 measured from the force dipole
𝑝= p𝑛 is given by[3,20]

𝑢(𝑟) =
p

8πηr3

[
3cos2

θ −1
]
𝑟, (7)

in which η is the shear viscosity and θ is the angle be-
tween 𝑟 and 𝑛. Figure 3(b) shows that the ratio of vA to
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FA is ∼ 0.01τ0m−1
f , which quantitatively agrees with vA =

FA× 5σff× 2/8πη l2 for θ = 0, in which 5σff is the distance
between the center of the head particle and the center of the
fluid phantom region (see Fig. 1(b)), η = 2.5mfσ

−1
ff τ

−1
0 is used

for the viscosity, and l = 4σff is used for the typical length
scale. This agreement suggests that the ABP swims in the sur-
rounding liquid as a pusher. Regarding the temperature con-
trol in our MD simulations, we would like to point out that the
Langevin thermostat applied to each solvent particle does not
preserve the momentum conservation locally. In fact, the ef-
fect of the thermostat in non-equilibrium MD simulations has
been investigated for decades.[47] Although our simulations
are expected to be capable of semi-quantitatively reproducing
the near field of a pusher, as seen from the magnitude of vA,
we are not sure if the far flow field as described by Eq. (7)
can be reproduced. The small magnitude of the far field also
makes it very difficult to measure accurately.

(iv) Once the size of the active particle is fixed, σ2
A is in-

dependent of FA.
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Fig. 3. (a) Gaussian distribution of the axial velocity wA, plotted for
different values of rotational diffusivity Dr (in units of τ

−1
0 ) and applied

force FA (in units of εffσ
−1
ff ). (b) The active velocity vA plotted as a

function of the applied force FA for Dr = 0.01τ
−1
0 and 0.02τ

−1
0 .

Based on the above observations, it can be concluded that
the active velocity is instantaneously induced by the applied
force dipole (given by FA×5σff here), with its magnitude pre-
dicted by Eq. (7) semi-quantitatively. Furthermore, the active
particle is subject to the random force dipole originating from
the collisions with fluid particles, and hence shows a variance
in the distribution of axial velocity.

For swimming organisms such as cells and bacteria, the
size of a swimmer is typically larger than that of the fluid par-
ticle by several orders of magnitude. As a result, the ratio of
the standard deviation σA to the active velocity vA is negli-
gible. In our MD simulations, however, the active particle is
not that big compared to the fluid particles (see Fig. 1(b)), and
hence the standard deviation σA becomes appreciably large.
It is interesting to observe how σA would scale with the size
of ABP. For this purpose, a length parameter L is introduced
to measure the size of ABP, with L = 1 corresponding to the
ABP illustrated in Fig. 1(b). Note that when L is increased,
all the length parameters are increased in proportion, includ-
ing the length scale in the WCA potential for head particles,
the radius of the fluid phantom region, and the distance be-
tween the head particle and the fluid phantom region. Figure 4
shows that the standard deviation σA does decrease with the
increasing L. A theoretical argument can be made to predict
σA ∝ L−1/2, which is indeed indicated by Fig. 4.
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Fig. 4. Dependence of the standard deviation σA on the size of ABP.

2.2.4. Critical persistence length

In the present work, the particle orientation 𝑛 evolves ac-
cording to Eq. (4) and is supplied to the MD simulations as ex-
ternal input. Theoretically, any orientational persistence time
τr can be used. However, if τr is very short, then the effect of
the active velocity vA𝑛 in Eq. (3) becomes that of the white
noises with no time correlation. In our MD simulations, we
find that to make the active particles behave truly ‘actively’,
the persistence time τr has to be sufficiently large. While we
understand that this is only from a phenomenological perspec-
tive, we believe that a sufficiently large τr is necessary for the
ABPs to behave differently from PBPs. This will be made ev-
ident in the next two sections.

Figure 5 shows the trajectories for different values of the
persistence length lA defined by

lA = vAτr, (8)

which quantifies the step length for an active particle’s random
walk. It is seen that the trajectory of the ABP of lA = 0.18σff

exhibits a random walk of very short step length, which is
very much close to that of a PBP. In this case the persistence
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time τr = 1τ0 is very short. Although a large active velocity
vA = 0.18σffτ

−1
0 is used, the persistence length lA = 0.18σff

is still very short and the active particle shows no appreciable
difference from a PBP. As the persistence length is increased to
lA = 4.5σff, the trajectory is formed by a sequence of ‘straight’
lines. In this case the ABP behaves truly actively, capable of
exploring a much larger space compared to that of the PBP.

Through our simulations, we find that the self-propelled
motion of ABP can be effectively distinguished from the ran-
dom walk of PBP if the persistence length exceeds lA =

1.125σff, as illustrated in Fig. 5. The critical persistence length
is therefore taken at ∼ 1σff. In the results presented below,
lA = 1.125σff serves as the lower bound for all the active par-
ticles.

lA/.

lA/.

lA/.

PBP

Fig. 5. Trajectories of a PBP and three ABPs with lA = 0.18σff
from τr = 1τ0,vA = 0.18σffτ

−1
0 , lA = 1.125σff from τr = 25τ0,vA =

0.045σffτ
−1
0 , and lA = 4.5σff from τr = 50τ0, vA = 0.09σffτ

−1
0 . Each

trajectory includes 100 frames with a time duration of 25τ0.

3. Active Brownian particles in free space
Both PBPs and ABPs exhibit ballistic motion at short

time scales, but enter into the regime of diffusive motion at
long time scales.[25] Here we measure the effective diffusivity
for ABPs in free space without confining potential.

We start from the diffusivity of a PBP for reference. The
PBP used for this purpose is just the head particle. No phan-
tom region of fluid is introduced and no external force dipole
is applied either. To reduce the statistical fluctuations, simula-
tions have been performed for many times with different initial
conditions. From the mean square displacement (MSD) which
increases with time linearly as shown in Fig. 6(a), we obtain
the translational diffusion coefficient DT from

DT =

〈
|𝑟 (t)−𝑟(0)|2

〉
PBP

6t
. (9)

Through a linear fitting, DT is found to be 0.015σ2
ffτ
−1
0 . Ac-

cording to the Einstein relation γDT = kBT , the drag co-
efficient γ is approximately 100mfτ

−1
0 . Using the Stokes

drag coefficient γ = 6πηR for a spherical particle and η =

2.5mfσ
−1
ff τ

−1
0 for the viscosity, it is estimated that the radius

of the PBP is about 2σff. This is consistent with the fact that
the interaction between head and fluid particles is modeled by
a LJ potential with length scale σaf = (σaa +σff)/2 = 2σff.
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Fig. 6. (a) MSD for PBPs (solid line), with DT found to be 0.015σ2
ffτ
−1
0

through a linear fitting (dashed line). (b) MSD for three ABPs with dif-
ferent values of Dr (in units of τ

−1
0 ) and FA (in units of εffσ

−1
ff ). In each

case, the solid line represents the simulation data and the dashed line of
the same color represents the corresponding linear fitting.

Now we turn to ABPs with Dr = 0.01τ
−1
0 and 0.02τ

−1
0

subject to several different values of the active force FA. To
reduce the statistical fluctuations, simulations have been per-
formed for many times with different initial conditions and
different orientational trajectories of 𝑛. Figure 6(b) shows the
MSD results for three representative ABPs in a time duration
of 2500τ0. Although the MSD lines do exhibit a linear in-
crease with time, it is noted that statistical fluctuations are am-
plified by the increase of the effective diffusivity itself. This
is due to the insufficiency of sampling in the limited time du-
ration. Compared with the PBP result in Fig. 6(a), figure 6(b)
shows that the diffusive motion of ABPs is much faster, with
a much larger effective diffusion coefficient DE defined by

DE =

〈
|𝑟 (t)−𝑟(0)|2

〉
ABP

6t
. (10)

Subtracting the passive part DT from DE, we obtain the active
diffusion coefficient DA ≡ DE−DT, which measures the con-
tribution of self-propelled motion to diffusion. For the ABPs
modeled by Eqs. (3) and (4), DA is given by[3]

DA =
v2

Aτr

3
. (11)
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While equations (3) and (4) only describe the ABPs in a min-
imal model, it is still interesting to see if the MD results ob-
tained here support DA ∝ v2

Aτr.
Figure 7 shows the dependence of DA on v2

A for two dif-
ferent values of Dr. It is seen that for a given Dr, DA increases
with v2

A linearly. Furthermore, the slope for Dr = 0.01τ
−1
0 is

approximately twice as big as that for Dr = 0.02τ
−1
0 , indicat-

ing DA ∝ v2
Aτr with τr = 1/2Dr. Although our MD simulation

results support DA ∝ v2
Aτr, the prefactor α in DA ' αv2

Aτr is
found to be less than 1/3 predicted by the minimal model in
Eq. (11). This may be attributed to the additional complexi-
ties which are inherent in our MD simulations and beyond the
description by Eqs. (3) and (4). These include:

(i) Due to the frequent collisions of the active particle
with surrounding fluid particles, the axial velocity wA exhibits
a Gaussian distribution, with the active velocity vA defined as
the mean of wA (see Fig. 3). The use of a constant vA in Eq. (3)
is an oversimplification.

(ii) The orientational persistence time τr is associated
with the time evolution of particle orientation 𝑛. Although
the force dipole is applied in the direction of 𝑛, the induced
velocity may deviate from this direction due to various noises
in MD simulations. The use of vA𝑛 in Eq. (3) is an oversim-
plification again.

(iii) According to the way the ABP is constructed (see
Fig. 1(b)), the active particle is by no means spherical and the
use of DT for a spherical particle in Eq. (3) is an oversimplifi-
cation yet again.
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A
/
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ff
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v2/σ2τ-2
ff 0A

Fig. 7. MD simulation results for the dependence of DA on v2
A for

Dr = 0.01τ
−1
0 and 0.02τ

−1
0 . From the linear fitting (dashed lines), the

prefactor α in DA ' αv2
Aτr is found to be 0.274 for Dr = 0.01τ

−1
0 and

0.252 for Dr = 0.02τ
−1
0 .

4. Active Brownian particles in confinement
In this section we investigate the distribution of non-

interacting ABPs confined by an isotropic harmonic potential
U (r) = kr2/2, with the distance r measured from the center of
the simulation box. A series of different values for the spring
constant k (in units of εffσ

−2
ff ) will be used to explore differ-

ent regimes of confinement. Time averaging is performed over

an ensemble of particle trajectories. For weaker confinement,
longer time averaging is needed to remove statistical fluctua-
tions.

4.1. Boltzmann distribution of passive Brownian particles

We start from the Boltzmann distribution of a PBP. The
PBP used for this purpose is still the head particle, with no
phantom region and no external force dipole. The equilibrium
probability density function (PDF) g(r) is given by the Boltz-
mann distribution

g(r) ∝ e−
kr2

2kBT . (12)

Figure 8 shows g(r) as a function of r for the spring constant
k = εffσ

−2
ff . Note that the PDF g(r) is defined for r > 0 with

the normalization condition∫
∞

0
g(r)4πr2dr = 1. (13)

To better present g(r) visually, r is extended to cover
(−∞,+∞) and the data for r > 0 are mirrored to the negative
half of r axis, with the curve of g(r) being symmetric about
r = 0. This applies to all the g(r) curves in this section. Fig-
ure 8 shows that the numerical result for g(r) is quantitatively
described by Eq. (12). Such agreement is also achieved for
other values of the spring constant.

g
↼r
↽/
σ

-
3
  
 

ff
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0.010

0.015
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0.030

0.035 simulation
theory

r/σff

Fig. 8. The equilibrium PDF g(r) of the confined PBP for k = εffσ
−2
ff .

4.2. Stationary distribution of active Brownian particles

Now we consider an ABP confined by the harmonic po-
tential U (r) = kr2/2 and focus on its stationary PDF g(r).
To understand the physical picture, we start from a minimal
model described by Eq. (4) and

�̇� =−µ∇U + vA𝑛+
√

2DT𝜉, (14)

in which µ is the mobility coefficient, which is the inverse of
the drag coefficient γ . Compared with Eq. (3), equation (14)
includes an additional term−µ∇U due to the confining poten-
tial U . In the limit of DT→ 0, the particle motion is confined
by the boundary r = rB with rB given by

rB =
vA

µk
. (15)
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At finite DT, the particle can still go beyond r = rB with the
assistance of thermal noises. The relaxation time for the over-
damped motion in the confining potential U is 1/µk, and the
other time scale is the orientational persistence time τr. Here
we introduce a dimensionless parameter R1 to measure the ra-
tio of τr to 1/µk,

R1 =
τr

1/µk
= µkτr. (16)

When R1 � 1, the orientational persistence time τr is very
short compared to 1/µk, and the active term vA𝑛 plays the
role of white noises effectively. This leads to a Boltzmann-
type distribution of ABP given by gB (r) ∝ exp

(
−µkr2/2DE

)
,

with the effective temperature given by kBTE = DE/µ where
DE is the effective diffusivity. The width of this distribution
is about

√
DE/µk. Another dimensionless parameter R2 can

be introduced to measure the ratio of
√

DE/µk to rB. Using
DE = DT +DA ≈ DA and DA ≈ αv2

Aτr, we have

R2 ≈

√
v2

Aτr

µk

/ vA

µk
=
√

µkτr, (17)

which is
√

R1. It follows that when R1 � 1, R2 � 1 as well.
This means that the Boltzmann-type distribution gB (r) can be

realized and accommodated within the boundary r = rB.

The fact that R1� 1 leads to R2� 1 can be regarded as
a self-consistency check. From R1 � 1, the particle activity
can be effectively taken as white noises with τr→ 0. As a re-
sult, the Boltzmann-type distribution is expected to occur at
the effective temperature TE. This distribution is then found to
be much narrower than the boundary set by the confinement
potential and the particle activity, and hence it is realizable.

The self-consistency check above also indicates that the
Boltzmann-type distribution gB (r) will be invalidated by the
increase of R1. For R1 ∼ 1, this distribution would meet the
confinement boundary r = rB and hence can no longer be real-
ized. In fact, when τr becomes comparable to 1/µk, the PDF
g(r) shows a plateau rather than a peak around r = 0. When τr

becomes much larger than 1/µk, the ABP spends a short time
(∼ 1/µk) traveling in the potential field but a long time (∼ τr)
staying near the boundary r = rB before turning around. This
corresponds to the accumulation of probability at the confine-
ment boundary, with the PDF g(r) showing a bimodal distri-
bution peaked near r = ±rB. The larger R1 is, the sharper the
peak is.
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Fig. 9. Evolution of the PDF g(r) with the increase of R1. (a) The Boltzmann-type distribution for R1 = 0.125. (b) A distribution slightly deviating from
the Boltzmann-type for R1 = 0.25. (c) A distribution exhibiting a plateau in the central region for R1 = 0.5. (d) A bimodal distribution for R1 = 1 with
the accumulation of probability near r =±rB. Here the red line represents a fitting of the Boltzmann-type and the gray region is bounded by r =±rB.

In consistency with the above discussion, our MD simu-
lations have shown how the stationary PDF g(r) evolves with
the change of R1. The same τr = 25τ0 is used for all the
four cases presented below. Figures 9(a)–9(c) are produced
for an ABP with vA = 0.09σffτ

−1
0 using different values of

k. Limited by the computational capability, it is unrealis-
tic to have a confinement potential with a very small value
of k and hence a very wide distribution. Figure 9(a) shows
the case for k = 0.5εffσ

−2
ff , from which we have R1 = 0.125

and rB = 18σff using the drag coefficient γ = 100mfτ
−1
0 and
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µ = 1/γ . This is the smallest value of R1 we can access. The
Boltzmann-type distribution is well maintained at this value of
R1. Here the red line represents a fitting of the Boltzmann-
type and the gray region is bounded by r = ±rB. In this
case, the particle distribution is completely within the confine-
ment boundary. Figure 9(b) shows the case for k = εffσ

−2
ff ,

R1 = 0.25, and rB = 9σff. In this case, the particle distribution
touches the confinement boundary and hence slightly devi-
ates from the Boltzmann-type distribution. Figure 9(c) shows
the case for k = 2εffσ

−2
ff , R1 = 0.5, and rB = 4.5σff. In this

case, the particle distribution is appreciably different from the
Boltzmann-type and exhibits a plateau in the central region.
Finally, figure 9(d) shows the case for k = 4εffσ

−2
ff , R1 = 1,

and rB = 4.5σff. Here a larger active velocity vA = 0.18σffτ
−1
0

is used to ensure that rB is not too small. This is to avoid the
domination of thermal noises in a very narrow region. In this
case, the particle distribution is bimodal, corresponding to the
accumulation of probability near r =±rB.

4.3. A quantitative analysis for the stationary distribution

In order to measure the active diffusion coefficient in con-
finement potential, a quantitative analysis is carried out by fo-
cusing on the stochastic dynamics of the x coordinate. The x

component of Eq. (14) can be written as

ẋ(t) =−µkx(t)+
√

2DAφ (t)+
√

2DTξx, (18)

where φ is a colored noise due to the active motion and ξx

is the zero-mean unit-variance Gaussian white noise in the x
direction, with

〈φ (t2)φ (t1)〉=
1

2τr
e−|t2−t1|/τr , (19)

〈ξx (t2)ξx (t1)〉= δ (t2− t1) . (20)

At sufficiently large t, the mean square displacement of x
with respect to r = 0 can be analytically expressed as

〈
x2〉= DA

µk (µkτr +1)
+

DT

µk
, (21)

in which the contribution of the colored noise shows a de-
pendence on R1 = µkτr. In the limit of R1 → 0, φ is effec-
tively a white noise and we have

〈
x2
〉
= (DA +DT)/µk =

DE/µk, which is in agreement with the Boltzmann-type dis-
tribution gB (r) ∝ exp

(
−µkr2/2DE

)
discussed above. How-

ever, when τr becomes comparable to 1/µk, the correction by
1/(µkτr +1) needs to be taken into consideration.

-8 -4 0 4 8

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

-8 -4 0 4 8

0

0.05

0.10

0.15

0.20 from g↼r↽

simulation

-4 -2 0 2 4

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

-4 -2 0 2 4
-0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R1/.

R1/.

r/σff x/σff

r/σff x/σff

f
↼x
↽/
σ

-
1
  

ff

(a) (b)

(c)
(d)

g
↼r
↽/
σ

-
3

ff
g
↼r
↽/
σ

-
3

ff

f
↼x
↽/
σ

-
1
  

ff

Fig. 10. The PDF g(r) and marginal PDF f (x). (a) g(r) for R1 = 0.5. (b) f (x) for R1 = 0.5. (c) g(r) for R1 = 2.5. (d) f (x) for R1 = 2.5. In
(b) and (d), f (x) directly measured in simulations (represented by solid circles) is compared to that obtained from g(r) by the use of Eq. (23)
(represented by solid line), with good agreement.

In our MD simulations,
〈
x2
〉

is computed according to its
definition 〈

x2〉= ∫ ∞

0
x2 f (x)dx, (22)

where f (x) is the stationary marginal PDF of the x coordinate,

which can be measured directly. It can also be obtained by

measuring the stationary PDF g(r) and performing the inte-
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gration as

f (x) =
∫

∞

−∞

∫
∞

−∞

g
(√

x2 + y2 + z2
)

dydz

=
∫

∞

0
g
(√

x2 +ρ2

)
2πρdρ. (23)

Figure 10 shows the marginal PDF for R1 = 0.5 and 2.5. The
two sets of data are in good agreement, one directly measured
in simulations, and the other obtained from g(r) by the use of
Eq. (23).

We can easily compute
〈
x2
〉

by measuring f (x) and
using Eq. (22). We then substitute the value of

〈
x2
〉

into
Eq. (21) to deduce the value of DA. This involves the use of
DT = 0.015σ2

ffτ
−1
0 measured in Section 3, µ = 1/γ with γ =

100mfτ
−1
0 such that γDT = kBT = 1.5εff, and τr = 1/2Dr =

25τ0 with Dr = 0.02τ
−1
0 used in Eq. (4) for the orientational

dynamics. The value of DA so deduced from
〈
x2
〉

in the con-
finement potential is denoted by DAC here. On the other hand,
the active part of the diffusion coefficient DA ≡ DE−DT, ob-
tained by measuring DE in free space (presented in section 3),
is denoted by DAF here. A comparison between DAC and DAF

is made in Table 1 for six different values of R1 from 0.125
(� 1) to 10 (� 1). It is readily seen that DAF is always less
than DAC by about 15% to 29%. It is also interesting to note
that the values of DAC show a better agreement with the rela-
tion DA ∝ v2

A, with 0.29/0.07≈ (0.18/0.09)2.

Table 1. Comparison between DAC and DAF.

R1 vA/(σffτ
−1
0 )

〈
x2〉/σ2

ff DAC/(σ
2
ff/τ0) DAF/(σ

2
ff/τ0) Error/%

0.125 0.09 15.77 0.072 0.058 19.4
0.25 0.09 7.29 0.072 0.058 19.4
0.5 0.09 3.05 0.069 0.058 15.9
1 0.18 3.98 0.288 0.208 27.7

2.5 0.18 0.98 0.291 0.208 28.5
10 0.18 0.10 0.275 0.208 24.4

Finally, to comment on this comparison and the relation
DA ∝ v2

A being better satisfied by DAC, we would like to point
out the following:

(i) As discussed at the end of Section 3, the ABPs in our
MD simulations involve additional complexities that are be-
yond the description by Eqs. (3), (4), and (14), from which
DAC = DAF is expected.

(ii) The relative difference between DAC and DAF is al-
ways smaller than 29%. This means that the minimal model
based on Eqs. (3), (4), and (14) is semi-quantitatively accu-
rate to describe the ABPs, for R1 varying over two orders of
magnitude (from 0.125 to 10).

(iii) In the confinement potential, the particle trajectories
show better statistical convergence than in free space. This
could be the reason for DA ∝ v2

A being better satisfied by DAC.

5. Conclusions
ABP model consisting of a solid body and a forced fluid

body has been implemented in MD simulations. Each active
particle consists of a head particle and a spherical phantom re-
gion of fluid where the flagellum takes effect. The stochastic
dynamics of particle orientation is controlled by the rotational
Gaussian white noises, and the orientational persistence time
τr is solely determined by the rotational diffusivity Dr through
the relation τr = 1/2Dr. Due to the frequent collisions of the
active particle with surrounding fluid particles, the axial ve-
locity wA of the active particle exhibits a Gaussian distribu-
tion. The mean value of wA is defined as the active velocity
vA, which increases with the active force FA linearly but shows
no dependence on Dr.

For the active diffusion coefficients measured in free
space and in confinement with this newly implemented ABP
model, our MD simulations show the following results. (i) The
active diffusion coefficient DA measured in free space supports
the relation DA ∝ v2

Aτr although the proportionality constant
deviates from 1/3 predicted by the minimal model. (ii) From
the stationary particle distribution in the confinement poten-
tial, the active diffusion coefficient is measured and then com-
pared to that measured in free space, with the relative differ-
ence always less than 29%. (iii) This semi-quantitative agree-
ment is fairly good because the comparison has been carried
out for µkτr varying over two orders of magnitude.

These results demonstrate that the modeling realized in
our MD simulations is able to capture the salient features of
the overdamped ABPs described by the minimal model. The
common and convenient use of the minimal model is therefore
justified on the one hand. On the other hand, the validity of the
dumbbell model as an ABP is also confirmed in our MD sim-
ulations, which consider the effects of both momentum trans-
port and thermal fluctuations in the surrounding liquids. We
understand that the simulation method is yet to be improved
in applying the thermostat[47] (with the consideration of lo-
cal momentum conservation) and computational efficiency (in
comparison with, e.g., dissipative particle dynamics[48]). As
the dumbbell-modeled active particles can interact with each
other via hydrodynamic coupling, many interesting collective
phenomena may emerge in a fluctuating environment. This
represents a direction to be pursued that requires further im-
provement of the simulation method.
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