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Quantum sensing has been receiving researcher’s attention these years due to its ultrahigh sensitivity and precision.
However, the bandwidth of the sensors may be low, thus limiting the scope of their practical applications. The low-
bandwidth problem is conquered by feedback control methods, which are widely utilized in classic control fields. Based on
a quantum harmonic oscillator model operating near the resonant point, the bandwidth and sensitivity of the quantum sensor
are analyzed. The results give two important conclusions: (a) the bandwidth and sensitivity are two incompatible perfor-
mance parameters of the sensor, so there must be a trade-off between bandwidth and sensitivity in practical applications;
(b) the quantum white noise affects the signal to be detected in a non-white form due to the feedback control.
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1. Introduction

Quantum sensing has emerged as a distinct and rapidly
growing branch of research, which employs quantum mechan-
ical systems as sensors to detect various physical quantities
ranging from magnetic and electric fields, to time, frequency
and rotations. Aiming at ultra-high sensitivity and preci-
sion, researchers have devised various of quantum sensors in-
cluding atomic vapors sensors,[1–4] trapped ions sensors,[5–7]

solid-state spins sensors,[8–11] and so on. By using quan-
tum entanglement[12–14] and squeezing,[15–17] the sensitivity
or precision of the quantum sensors have reached or even gone
beyond the standard quantum limit, which is unreachable by
classical measurement method. Undoubtedly, quantum sens-
ing has opened a new door to the measurement areas.

The sensitivity of a quantum sensor scales as[18]

sensitivity ∝
1

κ
√

Tχ

, (1)

where κ is a transduction parameter related to the response
of the quantum sensor to the signal to be measured, and Tχ

is the coherence time of the quantum sensor. Better sensitiv-
ity requires longer coherence time besides a large transduction
parameter. However, longer coherence time, which reflects
greater immunity of the quantum sensor to its environment,
indicates a narrower bandwidth of the sensor. This may be a
intractable issue when applying the quantum sensors to prac-
tical applications.

A well-known method in classical control theory to in-
crease the bandwidth of a dynamical system is to the close-
loop feedback control. In this paper, a simple model based on

the analysis of feedback control of a quantum sensor is pre-
sented to show the relationship between bandwidth and sensi-
tivity. The results indicate that bandwidth and sensitivity are
two competing factors of the quantum sensor, when intrinsic
noise of the sensor system due to its quantum characteristics
is taken into consideration. This means that there must be a
trade-off between bandwidth and sensitivity of the quantum
sensor system.

2. Model of the quantum sensor
In this section, we give a simple model revealing the basic

physics underlying the operational principles of the quantum
sensor. At the same time, this model shows an unconquerable
sensitivity limit imposed by the quantum feature of the sensor.
The Hamiltonians of the sensor and the environment read

H0 = h̄ω0a†a+ h̄gcos(ωt)(a+a†), (2)

Hbath = h̄∑
j

ω jb
†
jb j, (3)

HI = h̄∑
j

g j(a†b j +h.c.), (4)

where H0 describes a harmonic oscillator driven by a classical
driving field with frequency ω and coupling strength g. The
environment is modeled by an ensemble of harmonic oscil-
lators with j specifying different oscillator mode. The inter-
action of the oscillator with its environment, HI, will exert a
fluctuating force on the oscillator, resulting in the dissipation
of the harmonic oscillator.

The quantum Langevin equation for the harmonic oscil-
lator is

ȧ(t) =−iω0a(t)− igcos(ωt)− γ

2
a(t)+ fa(t), (5)
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where

fa(t) =−i ∑
j

g jb j(0)e−iω jt (6)

is the noise operator and γ = 2πg2(ω0)D(ω0) is the decay
rate of the oscillator induced by the environment.[19] Here
D(ω0) =V ω2

0/π2c3 is the density of the bath states at ω0, V is
the quantization volume and c is the velocity of light. Then the
average values of the two quadrature amplitudes of the oscilla-
tor X1 = (a+a†)/2 and X2 = (a−a†)/2i follow the equations:

〈Ẋ1〉 = ω0〈X2〉−
γ

2
〈X1〉,

〈Ẋ2〉 = −ω0〈X1〉−
γ

2
〈X2〉−gcos(ωt). (7)

In deriving Eq. (7), the density operator of the composite sys-
tem is assumed to be ρc = ρS⊗ρB at t = 0, where the harmonic
oscillator and the bath are both in the thermal states

ρS =
1

ZS
e−

h̄ω0a†a
kBT , (8)

ρB =
1

ZB
e−

Hbath
kBT . (9)

The normalization factors ZS and ZB are the partition functions
of the quantum harmonic oscillator and the bath, respectively.
T refers to the temperature and kB is the Boltzmann constant.

We now turn to the rotating frame and define two di-
mensionless amplitudes: X̄1 = cos(ωt)X1−sinωtX2, and X̄2 =

sinωtX1 + cos(ωt)X2. The equations of motion for the aver-
age values of X̄1 and X̄2 can be derived from Eqs. (7):

〈 ˙̄X1〉= ∆ω〈X̄2〉−
γ

2
〈X̄1〉, (10)

〈 ˙̄X2〉=−∆ω〈X̄1〉−
γ

2
〈X̄2〉−

g
2
, (11)

where the terms that are oscillating at 2ω have been dropped,
and ∆ω = ω0 −ω denotes the frequency detuning. In the
regime of near resonance ∆ω � γ , the steady average of
〈X̄1〉s =−2g∆ω/[γ2+4(∆ω)2] is much smaller that of 〈X̄2〉s =
−gγ/[γ2 +4(∆ω)2]. This implies the average phase of the os-
cillator

〈φ〉= arctan
(
〈X̄1〉
〈X̄2〉

)
(12)

has a small steady-state phase shift from the resonant point
〈φ〉r = 0. Furthermore, the frequency shift is nearly linear in
the frequency detuning

〈φ〉s ≈
∆ω

γ/2
≡ T2∆ω, (13)

where T2 = 2/γ is the coherence time of the harmonic oscilla-
tor. Therefore, the oscillator can be used as a sensor to measure
the input frequency ω by monitoring the phase shift 〈φ〉s.

The time evolution of the average phase 〈φ〉, when the os-
cillator is operating near the resonant point, satisfies the equa-
tion

〈φ̇〉 ≈ ∆ω− 1
T2
〈φ〉. (14)

Equations (13) and (14) show that longer coherence time T2

results in higher sensitivity at the expense of slower response
(narrower bandwidth).

Apart from the technique noise in the detection system,
the phase measurement precision is ultimately limited by the
fundamental uncertainty principle of quantum mechanics. In
the oscillator model considered above, the phase shift 〈φ〉s
cannot be measured with arbitrary precision. A key quantity
characterizing how well we can determine the phase shift is
the variance of the phase

〈∆φ〉s ≈
∣∣∣∣ (∆X̄1)s

〈X̄2〉s

∣∣∣∣= √2n̄+1
T2g

, (15)

where n̄ is the average quanta number in the frequency ω0 and
(∆X̄1)s is the steady-state variance of X̄1. At absolute zero
temperature,

〈∆φ〉s =
1

T2g
(16)

gives the minimum phase uncertainty imposed by quantum
fluctuations.

3. Feedback control and bandwidth improve-
ment
The bandwidth of a quantum sensor can be analyzed with

the method of transfer functions.[20] The model is presented in
Fig. 1 with a proportional-integral controller (PI-controller),
which is widely used in classic control field. The quantum
sensor G, as discussed in the above section, representing an
oscillator operating near its resonance point, is described by
the transfer function according to Eq. (14):

G(s) =
T2

1+T2s
, (17)

where s is the complex variable. The transfer function G(s)
relates the frequency detuning ∆ω(s) to the phase shift signal
φ(s), where ∆ω(s) and φ(s) are the Laplace transformation of
the corresponding time-domain signals.

In the open-loop operation condition, the detection of the
signal ∆ω can be described as follows. When the input fre-
quency ωi is off-resonant from the resonant frequency of the
oscillator G, the phase of the oscillator increases from zero
value at the resonant point to a nonzero value φ . By mon-
itoring the phase shift φ , the frequency detuning is deduced
according to Eq. (13). Finally, equation (17) shows that the
open-loop bandwidth is limited by the coherence time T2.
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Although long coherence time brings about high sensitiv-
ity [see Eq. (1)], it significantly limits the measurement band-
width. Small bandwidth will limit practical applications of the
quantum sensors. Fortunately, the problem of small open-loop
bandwidth can be resolved by feedback control method.

In the close-loop system depicted in Fig. 1, a PI-controller
is utilized for frequency ωo feedback, whose performance is
characterized by two parameters: the proportional term Kp and
the integral term Ki. The central idea of the feedback is to
keep the system in resonance by feedback controller. When
the input frequency ωi deviates from the resonant point of the
oscillator system (∆ω 6= 0), the quantum sensor will gener-
ate nonzero phase output φ . According to the value of the
nonzero phase, the PI-controller takes action and updates the
frequency ωo, which determines the new input detuning of G
together with the input frequency ωi. In this way, the feedback
control system continuously monitors the phase of the oscil-
lator, and maintains its value as close as possible to zero by
adjusting the frequency detuning. As ∆ω is close to zero with
a feedback loop, ωi can be detected by the feedback frequency
ωo.

⊕⊕
T2

⇁T2s
G/


F/ C/Kp⇁

−

⊕

ωi ωoDω

Dφ

φ φ~

(1+τs)2
Ki
s

Fig. 1. The block diagram of the close-loop control of a quantum sen-
sor system. The open-loop transfer function of the oscillator is denoted
by G. A second order filter F with filter time constant τ is applied to
suppress high frequency noise. A PI-controller C is used to adjust the
output frequency ωo so as to trace the variation of the input frequency
ωi. The control parameter Kp represents the proportional term and Ki
stands for the integral term. The quantum phase white noise ∆φ will be
a disturbance to the output of the PI-controller. Finally, the phase shift φ

is the output of the sensor, followed by the high-frequency-noise-filtered
phase shift φ̃ .

The principle of bandwidth improvement by feedback
method is demonstrated in the following. In the absence of
noise, the close-loop transfer function of the system is given
by

Φc(s) =
G(s)F(s)C(s)

1+G(s)F(s)C(s)
, (18)

related to input ωi(s) and output ωo(s). We first focus on the
limit where the filter time constant τ → 0. In this limit, the
transfer function F(s) ≈ 1, and the close-loop transfer func-
tion

Φc(s)≈
C(s)

1+G(s)C(s)
G(s) = A(s)G(s), (19)

where

A(s) =C(s)/[1+C(s)G(s)]. (20)

The function A(s) is a key quantity that is responsible for in-
creasing the bandwidth ωB from the open-loop one, 1/T2, to a
much larger one.

The close-loop frequency response can be separated into
two parts:

|Φc( jω)|2 = Ã(ω̄)AḠ(ω̄), (21)

where

Ã(ω̄) =
k2

pω̄4 +
(
k2

p + k2
i
)

ω̄2 + k2
i

ω̄4 +
[
−2ki +

(
1+ kp

)2
]

ω̄2 + k2
i

, (22)

AḠ(ω̄) =
1

1+ ω̄2 . (23)

Here, we have introduced three dimensionless parameters:
ω̄ = ωT2, kp = KpT2 and ki = KiT 2

2 .
In the region ki < (1+ kp)

2/2, the function Ã(ω̄) can be
analyzed in the log-log coordinate, and the numerator and de-
nominator of Ã(ω̄) can be well approximated by several bro-
ken lines representing terms proportional to ω̄4, ω̄2 and the
constant terms k2

i as shown in Fig. 2. There are four boundary
points characterizing the dominant contributions of constant,
ω̄2, ω̄4 terms in different ω̄ regions:

ω̄
(n)
2 =

ki√
k2

p + k2
i

, (24)

ω̄
(n)
24 =

√
k2

p + k2
i

kp
, (25)

ω̄
(d)
2 =

ki√
−2ki +

(
1+ kp

)2
, (26)

ω̄
(d)
24 =

√
−2ki +

(
1+ kp

)2
, (27)

where ω̄
(n)
2 is the cross point between k2

i and the ω̄2 terms
in the numerator, and ω̄

(n)
24 is the cross point between the ω̄2

terms and the ω̄4 terms in the numerator. The ω̄
(d)
2 and ω̄

(d)
24

are corresponding cross points in the denominator of Ã(ω̄). In
the regimes kp� ki and kp� 1,

ω̄
(n)
2 ≈ ω̄

(d)
2 ≈ ki

kp
, (28)

ω̄
(n)
24 ≈ 1, (29)

ω̄
(d)
24 ≈ kp. (30)

Under this condition, the numerator terms A(n)(ω̄), the denom-
inator term A(d)(ω̄) and Ã(ω̄) are well approximated by Fig. 2.
The close-loop frequency response |Φc( jω)|2 is the product of
Ã(ω̄) and AḠ(ω̄). As demonstrated by Fig. 2, the bandwidth
has been increased from the open-loop value ω̄B = 1 to the
close-loop value ω̄B = kp.

Figure 2 shows that the close-loop frequency response is
maximum in the zero frequency and decreases with ω̄ when
ki� kp. As ki grows and exceeds a critical point

kc
i = kp +1/2, (31)
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the close-loop frequency response will exhibit resonant behav-
ior. In this case it acquires a maximum value at some positive
frequency ω̄ as demonstrated in Fig. 3. This resonant behavior
corresponds to the condition that

∂

∂ki
|Φc( jω)|2 = 0 (32)

has a positive frequency solution.
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Fig. 2. Schematic diagram of bandwidth improvement by PID feed-
back. These curves are depicted in the log–log coordinates, where
A(n)(ω̄) and A(d)(ω̄) represent the numerator and denominator of Ã(ω̄),
respectively. The numbers +2 and +4 indicate that the terms propor-
tional to ω̄2 and ω̄4 are dominant in those frequency intervals. The
number −2 indicates that the functions decay as 1/ω̄2 in those fre-
quency intervals.
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Fig. 3. Demonstrations of the resonant and non-resonant behaviors of
the close-loop frequency responses Aclose(ω). The black curve repre-
sent the regime ki � kp, while the red curve present resonant behavior
with ki > kc

i . In this graph, kp = 100 and ki = (1+ kp)
2.

The above discussion shows that the bandwidth of the
close-loop system can be improved without a limit by increas-
ing kp, keeping ki � kp at the same time. When finite fil-
ter time constant τ is taken into consideration, the close-loop
bandwidth will be ultimately limited by τ . However, in practi-
cal applications the filter time constant τ can be adjusted to a
value such that 1/τ�ωB ≈ kp/T2. In this case, the bandwidth
can still be improved by the method we discussed above. Fig-
ure 4 shows that when the bandwidth ωB is much smaller than
1/τ , ωB is still determined by kp. The filter F begins to take
effect at frequency 1/τ and suppresses high-frequency noise.
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Fig. 4. Comparisons of frequency responses with filter F present or not.
The black curve represents the frequency response of the open-loop sys-
tem G. The pink and green curves describe the close-loop frequency re-
sponses of Φ1(s) =CGF/(1+CGF) and Φ2(s) =CG/(1+CG) when
the filter F is present or not, respectively. The blue and red curves
correspond to the frequency responses of A1(s) = CF/(1+CGF) and
A2(s) = A(s), respectively. The parameters used in this graph are
T2 = 10 s, τ = 10−4 s, kp = 1000 and ki = 100.

4. Competition between bandwidth and sensitiv-
ity
As discussed above, the feedback method indeed im-

proves the bandwidth of the sensor, when PI parameters are
properly chosen. In this section, we consider the effect of the
noise on the performance of the quantum sensor. The noise
under consideration is assumed to be due to purely quantum
mechanical origin, which roots in the quantum characteristic
of the sensor, as given by Eq. (16).

The noise transfer in the closed-loop sensor system is
shown in Fig. 5(a). The noise will cause an output frequency
fluctuation ωn(s) in the PI controller, thus limiting the sensitiv-
ity of the sensor. The transfer function relating ωn(s) to ∆φ(s)
is

Φn(s) =
ωn(s)
∆φ(s)

=
CF

1+CGF
. (33)

The output frequency fluctuation ωn(t) thus has a power spec-
tral density (PSD)[21]

Sn(ω) = |Φn( jω)|2S0, (34)

where S0 is the power spectral density of the input phase noise.
The magnitude of S0 can be estimated as follows. The Wiener–
Khinchin theorem shows that the variance of the phase white
noise equals the integral of the corresponding PSD over the
frequency domain. Thus we can estimate S0 by

S0 =
1

(T2g)2
1
B
, (35)

where B refers to the largest bandwidth in the measurement
system, and can be taken as 1/τ , since τ is the minimum time
constant under consideration. Then Sn(ω) has the form

Sn(ω) = |Φn( jω)|2 τ

(T2g)2 . (36)
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The plot of S1/2
n (ω) versus the dimensionless angular fre-

quency ω̄ is depicted in Fig. 5(b) with different PI parameters.
As the proportional constant Kp increases, the noise is further
amplified by the feedback loop. The increased noise power
will degrade the performance of the sensor, because the signal
to be detected is determined by the frequency increment ∆ω

and ωn will contaminates the output of ωo. This reveals the
competitive relationship between bandwidth and sensitivity,
since increasing Kp will improve the bandwidth and degrade
the sensitivity inevitably at the same time.

The competitive relationship between bandwidth and sen-
sitivity can also be perceived qualitatively and visually. Equa-
tion (33) shows that the transfer function Φn(s) is identical to
Φc(s)/G(s), and Fig. 4 indicates that the function of Φn(s) is
to increase the bandwidth of the sensor from the open-loop
value 1/T2 to the closed-loop value kp/T2. For the sake of
achieving large bandwidth, the frequency response of Φn(s)
must compensate for the drop of G(s) when ω > 1/T2, which
indicates the amplification of the noise with frequency in this
frequency range. Therefore, the sensitivity of the sensor is fur-
ther reduced when larger kp is chosen.
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Fig. 5. (a) The block diagram of the noise transfer. The noise ∆φ(s),
which is here the Laplace transformation of ∆φ(t), causes a output fre-
quency fluctuation in the PI controller, as represented by ωn(s) in the
above diagram. (b) The power spectral density S1/2

n (ω) of the noise out-
put ωn(t). The red curve is depicted with kp = 2000, which is twice over
that of the black one. Other parameters used are ki = 100, T2 = 10 s,
τ/T2 = 10−5, and T2g = 103.

Another point to be emphasized is that the original quan-
tum phase noise ∆φ can influence the sensor’s sensitivity in
a non-white form by means of frequency output fluctuation
ωn(t), since the sensor’s sensitivity is determined by S1/2

n (ω).
As shown in Fig. 5, S1/2

n (ω) has a positive slope 1, which in-
dicates a f 2 noise contribution in the noise spectrum Sn(ω).

In higher frequency intervals, the noise spectrum S1/2
n (ω) be-

comes more complex, and is not white noise as well.

5. Conclusions
In summary, we have investigated the relationship be-

tween bandwidth and sensitivity of a quantum sensor based
on the transfer function method. The results indicate that the
bandwidth of sensor are greatly increased by feedback when
choose proper PI parameters. The proportional term Kp is
the key parameter in improving bandwidth. Unfortunately,
the quantum noise inherent to the quantum sensor system will
be further amplified when larger bandwidth is achieved. The
bandwidth and sensitivity are two competing performance pa-
rameters. Therefore, there must be a trade-off between band-
width and sensitivity in applying the quantum sensor into prac-
tical application. In addition, an original quantum white noise
may present itself in form of f 2-noise due to the feedback con-
trol.
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