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Effects of postselected von Neumann measurement on
the properties of single-mode radiation fields*
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Postselected von Neumann measurement characterized by postselection and weak value has been found to possess
potential applications in quantum metrology and solved plenty of fundamental problems in quantum theory. As an applica-
tion of this new measurement technique in quantum optics and quantum information processing, its effects on the features
of single-mode radiation fields such as coherent state, squeezed vacuum state and Schrödinger cat sate are investigated by
considering full-order effects of unitary evolution. The results show that the conditional probabilities of finding photons,
second-order correlation functions, Qm-factors and squeezing effects of those states after the postselected measurement is
significantly changed are comparable with the corresponding initial pointer states.
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1. Introduction
Most researches in von Neumann type quantum measure-

ment in recent years has focused on postseleceted weak mea-
surement with sufficiently weak coupling between the mea-
sured system and pointer since it is useful to study the nature of
the quantum world. This kind of postsselected weak measure-
ment theory is originally proposed by Aharonov, Albert, and
Vaidman in 1988,[1] and considered as a generalized version
of standard von Neumann type measurement.[2] The result of
weak coupling postselected weak measurement is called the
“weak value”, and generally is a complex number. One of the
special feature of the weak value is that it can take the values
which lie beyond the normal eigenvalue range of correspond-
ing observable, and this effect will be very clear if the pre- and
post-selected states are almost orthogonal. This feature of the
weak value is called the signal amplification property of post-
selected weak measurement and its first weak signal amplifi-
cation property experimentally demonstrated in 1991.[3] After
that, it has been widely used to elucidate tremendous funda-
mental problems in quantum mechanics. For details about the
weak measurement and its applications in signal amplification
processes, we refer the readers to the recent overview of the
field.[4,5] As we mentioned earlier, in postselected weak mea-
surement the interaction strength is weak, and it is enough to
consider up to the first-order evolution of a unitary operator
for the whole measurement processes. However, if we want
to connect the weak and strong measurement, check to clear
the measurement feedback of postselected weak measurement
and analyze experimental results obtained in nonideal mea-
surements, the full order evolution of a unitary operator will

be needed.[6–8] We call this kind of measurement the posts-
elected von Neumann measurement. We know that in some
quantum metrology problems, the precision of the measure-
ment depends on measuring devices and requires to optimize
the pointer states. The merits of postselected von Neumann
measurement can be seen in pointer optimization schemes.

Recently, the state optimization problem in postse-
lected von Neumann measurement has been presented widely,
such as taking the Gaussian states,[4,9] Hermite–Gaussian or
Laguerre–Gaussian states, and non-classical states.[10,11] The
advantages of non-classical pointer states in increasing posts-
elected measurement precision have been examined in recent
studies.[10,12,13] Furthermore, in Ref. [14], the authors stud-
ied the effects of postselected measurement characterized by a
modular value[15] to show the properties of semi-classical and
non-classical pointer states considering the coherent, coherent
squeezed, and Schrödinger cat state as a pointer. Since in their
scheme the pointer operator is a projection operator onto one
of the states of the basis of the pointer’s Hilbert space and in-
teraction strength only has taken one definite value, it cannot
completely describe the effects of postselected measurement
on the properties of the radiation field. However, to the knowl-
edge of the author, the issue related to the study of the effects
of postselected von Neumann measurement considering all in-
teraction strengths to the inherent properties such as photon
distribution, photon statistics, and squeezing effects of radia-
tion field have not been handled and need to be investigated.

Furthermore, the above-mentioned properties of quantum
radiation fields have many useful technological applications
in quantum optics and quantum information processing such
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as single photon generation and detection,[16] gravitational
wave detection,[17,18] quantum teleportation,[19–22] quantum
computation,[23] generation and manipulation of atom–light
entanglement,[24–26] and precision measurements,[27] etc. We
know that the realization of these processes depends on the op-
timization of the related input quantum states such as coherent
state,[28] squeezed state[29,30] and Schrödinger cat state.[31–33]

As introduced in previous part, the postselected weak mea-
surement technique has more advantages on signal optimiza-
tion problem[34] and precision metrology[35–43] than tradi-
tional measurement theory. Thus, the investigation of the ef-
fects of postselected von Neumann measurement on the sta-
tistical and squeezing properties of radiation fields is worth
studying to optimize the related quantum states to provide
more effective methods for the implementation of the above-
mentioned technological processes.

In this paper, motivated by the above-listed problems, we
describe and examine the effects of postselected von Neumann
measurement characterized by postselection and weak value
on the properties of single-mode radiation fields. In order
to achieve our goal, we choose the three typical states such
as coherent state, squeezed vacuum state, and Schrödinger
cat state as pointers and consider their polarization degree of
freedom as a measured system, respectively. By taking full-
order evolution of the unitary operator of our system, we sepa-
rately study the photon distributions, statistical properties and
squeezing effects of radiation fields and compare those with
the initial state cases. To give more details about the effects of
postselected von Neumann measurement on radiation fields,
we plot more figures by considering all parameters that are re-
lated to the properties of those radiation fields, respectively.
This study shows that the postselected measurement changes
the properties of single-mode radiation fields dramatically for
strong and weak measurement regimes with specific weak val-
ues. Especially the photon statistics and squeezing effect of
coherent pointer state is too sensitive for the postselected von
Neumann measurement processes.

This paper is organized as follows: In Section 2, we de-
scribe the model of our theory by brief reviewing the posts-
elected von Neumann measurement and outline the tasks we
want to investigate. In Section 3, we separately calculate ex-
act analytical expressions of photon distribution, second-order
correlation function, Mandel factor and squeezing parameter
of those three-pointers by taking into account the full-order
evaluation of unitary operator under final states given after
postselected measurement finished and present our main re-
sults. Finally, we summarize our findings of this study in Sec-
tion 4.

2. Model setup
To build up our model, we begin to review some ba-

sic concepts of the von Neumann measurement theory. The
standard measurement consists of three elements; measured
system, pointer (measurement device or meter) and environ-
ment, which induce the interaction between the system and
the pointer. The description of the measurement process can
be written in terms of Hamiltonian, and the total Hamiltonian
of a measurement composed of three parts:[44]

H = Hs +Hp(m)+Hint, (1)

where Hs and Hp(m) represents the Hamiltonian of measured
system and measuring device, respectively, and Hint is the in-
teraction Hamiltonian between the measured system and the
pointer. By considering the measurement efficiency and accu-
racy, in standard quantum measurement theory the interaction
time between the system and the meter required to be too short
so that the Hs and Hp(m) do not affect the final readout of the
measurement result. Thus, in general, a measurement can only
be described by the interaction part Hint of the total Hamilto-
nian, and it is taken to the standard von Neumann Hamiltonian
as[2]

Hint = g(t)ÂP̂,
∫ t

t0
g(t)dt = gδ (t − t0), (2)

where Â represents the Hermitian operator corresponding to
the observable of the system that we want to measure with
Â|φn⟩= an|φn⟩, and P̂ is the conjugate momentum operator to
the position operator X̂ of the pointer, i.e., [X̂ , P̂] = i Î. The
coupling g(t) is a nonzero function in a finite interaction time
interval t − t0.

One can express the position X̂ and momentum operator
P̂ of the pointer using the annihilation â and creation operator
â† (satisfying [â, â†] = 1) as[45]

X̂ = σ(â† + â), (3)

P̂ =
i

2σ
(â† − â), (4)

where σ is the width of the beam. The Hamiltonian Hint can
be rewritten in terms of a and a† as Hint =

ig(t)
2σ

Â(a† − a). If
the Hermitian operator Â satisfies the property Â2 = Î, then the
unitary evolution operator e−i

∫ t
t0

Hint dτ of our coupling system
can be given by

e−igÂ⊗P̂ =
1
2
(Î + Â)⊗D

(
s
2

)
+

1
2
(Î − Â)⊗D

(
− s

2

)
, (5)

where s is defined by s :≡ g/σ , and D
( s

2

)
is a displacement

operator and its expression can be written as D( s
2 ) = e

s
2 (â

†−â).
We must note that s characterizes the measurement strength,
and s ≪ 1 (s > 1) corresponds to weak (strong) measurement
regimes.
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Assume that the system initially prepared in the state |ψi⟩
and the initial pointer state is |φ⟩, then after interaction we

project the state e−i
∫ t
t0

Hint dτ |ψi⟩|φ⟩ onto the postselected sys-
tem state |ψf⟩, we can obtain the final state of the pointer.
Furthermore, the normalized final state of the pointer can be
written as

|Φ⟩ = 𝒩
[

1
2
(Î + ⟨A⟩w)⊗D

(
s
2

)
+

1
2
(Î −⟨A⟩w)⊗D

(
− s

2

)]
|φ⟩. (6)

Here 𝒩 is the normalization coefficient of |Φ⟩, and

⟨A⟩w =
⟨ψf|Â|ψi⟩
⟨ψf|ψi⟩

(7)

is called the weak value of Hermitian operator Â. From Eq. (6),
we know that when the preselected state |ψi⟩ and the postse-
lected state |ψf⟩ of the system are almost orthogonal, the ab-
solute value of the weak value can be arbitrarily large and can
be beyond the eigenvalue region of observable A. This feature
leads to weak value amplification of weak signals and solving
a lot of important problems in physics.

In this study, we take the transverse spatial degree of free-
dom of single-mode radiation field as pointer and its Hamil-
tonian Hm(p) is related to the generating processes of single
mode radiation fields such as coherent state, squeezed vacuum
state and Schrödinger cat state, etc. The polarization degree
of freedom of single mode radiation field is taken to be the
measured system, and its Hamiltonian Hs is related to the po-
larization of the beam. Based on the basic requirements of
quantum measurement theory,[44] the Hs and Hm(p) do not af-
fect our measurement results. Thus, in our current research,
it is not necessary to give the explicit expressions of the sys-
tem and meter in hereafter. We suppose that the operator to be
observed is the spin x component of a spin-1/2 particle, i.e.,

A = σx = | ↑z⟩⟨↓z |+ | ↓z⟩⟨↑z |, (8)

where | ↑z⟩ and ⟨↓z | are eigenstates of the z-component of spin,
σz, with the corresponding eigenvalues 1 and −1, respectively.
We assume that the pre- and post-selected states of measured
system are

|ψi⟩= cos
θ

2
| ↑z⟩+ e iϕ sin

θ

2
| ↓z⟩, (9)

and

|ψf⟩= | ↑z⟩, (10)

respectively, and the corresponding weak value, Eq. (6), reads

⟨σx⟩w = e iϕ tan
θ

2
, (11)

where θ ∈ [0,π] and ϕ ∈ [0,2π). In our system, the post-
selection probability is Ps = cos2 θ

2 . Note that throughout the
rest of this study we will use this weak value for our purposes.

Furthermore, we take the initial pointer state |φ⟩ as a co-
herent state, squeezed vacuum state and Schrödinger cat state
to study the effects of postselected measurement on the prop-
erties of those pointers, respectively. To achieve our goal:

(1) We study the conditional probability of finding n pho-
tons after postselected measurement. For the state |Φ⟩, the
conditional probability of finding n photons can be calculated
by

Ppost(n) = |⟨n|Φ⟩|2, (12)

and we compare it with the probability P(n) = |⟨n|φ⟩|2 of ini-
tial pointer state |φ⟩.

(2) We investigate the second-order correlation function
g(2)(0) and Mandel factor Qm for the |Φ⟩ state. The second-
order correlation function of a single-mode radiation field is
defined as

g(2)(0) =
⟨a†a†aa⟩
⟨a†a⟩2 , (13)

and the Mandel factor Qm of the radiation field can be ex-
pressed in terms of g(2)(0) as

Qm = ⟨n⟩
[
g(2)(0)−1

]
. (14)

If 0 ≤ g(2)(0)< 1 and −1 ≤Qm < 0 simultaneously, the corre-
sponding radiation field has sub-Poissonian statistics and more
nonclassical. We have mention that the quantity Qm can never
be smaller than −1 for any radiation field, and negative Qm

values, which are equivalent to sub-poissonian statistics, can-
not be produced by any classical field.[46]

(3) We check the squeezing parameter of single-mode ra-
diation field for the |Φ⟩ state. The squeezing parameter of the
single-mode radiation field reads[47]

Sφ = ⟨: X2
φ :⟩−⟨Xφ ⟩2, (15)

where

Xφ =
1√
2

(
ae−iφ +a† e iφ

)
, [Xφ ,Xφ+ π

2
] = i (16)

is the quadrature operator of the field, and :: stands for the nor-
mal ordering of the operator defined by : aa† := a†a, whereas
aa† = a†a+1. We can see that Sθ is related to the variance of
Xθ , i.e.,

Sφ =
(
∆Xφ

)2 − 1
2
, (17)

where ∆Xφ =
√
⟨X2

φ
⟩−⟨Xφ ⟩2. The minimum value of Sφ is

−1/2 and for a nonclassical state Sφ ∈ [−1/2,0).
In the next section, we will study the above properties of

three typical radiation fields by taking into the postselected
measurement with arbitrary interaction strengths and weak
values, respectively.
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3. Effects of postselected measurement to typical
single-mode radiation fields
In this section, we study the statistical properties and

squeezing effects of typical single-mode radiation fields such
as a coherent state, squeezed vacuum state and Schrödinger
cat state, respectively, and compare the results with the corre-
sponding initial state’s case.

3.1. Coherent state

The coherent state is typical semi-classical, quadrature
minimum-uncertainty state for all mean photon numbers. The
coherent state was originally introduced by Schrödinger in
1926 as a Gaussian beam to describe the evolution of a har-
monic oscillator,[48] and the mathematical formulation of co-
herent state (also called Glauber state) has been introduced by
Glauber in 1963.[28] Coherent states play an important role in
representing quantum dynamics, especially when the quantum
evolution is close to classical.[49,50] Here we take the coherent
state as initial pointer state[51]

|α⟩= D(α) |0⟩ , (18)

where D(α) = eαa†−α*a, and α = r e iϑ is an arbitrary com-
plex number. After unitary evolution given in Eq. (4), the total
system state is post-selected to |ψf⟩, then we obtain the fol-
lowing normalized final state of coherent pointer state:

|Ψ⟩ =
λ√

2

[
(1+ ⟨A⟩w)e−i s

2 Im(α)

∣∣∣∣α +
s
2

〉
+(1−⟨A⟩w)e i s

2 Im(α)

∣∣∣∣α − s
2

〉]
, (19)

where the normalization coefficient is given as

λ
−2 = 1+ |⟨A⟩w|2 + e−

1
2 s2

(1+ |⟨A⟩w|2

+2Re⟨A⟩w)cos(2s Im(α)), (20)

and Im (Re) represents the imaginary (real) part of a complex
number.

The conditional probability of finding n photons after tak-
ing a postselected measurement for state |Ψ⟩ is obtained from
Eq. (11) by changing |Φ⟩ to a specific normalized state |Ψ⟩.
We plot the conditional probability of finding n photons under
the normalized state |Ψ⟩ and the analytical results are shown
in Fig. 1. As indicated in Fig. 1, the black solid line represents
the photon distribution probability for the initial state of coher-
ent pointer state before postselected measurement, and it has a
Poisson probability distribution. However, as shown in Fig. 1
the postselected measurement can change the photons Pois-
son distribution with increasing the weak value and changing
the interaction strength s. Furthermore, from Fig. 1(a) we can
know that Pcoh(n) is larger, in the postslected case for some
small photon number regions rather than the no interaction
case.
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Fig. 1. Photon distribution Pcoh(n) of coherent state as a function of
photon number n for ϑ = π/3, ϕ = π/4, r = 1. (a) Pcoh(n) plotted for
s = 2, and for various weak values (⟨σx⟩w = e iπ/3 tanθ/2) in the no
interaction case (black curve). (b) Pcoh(n) plotted for θ = 7π/9, and for
various coupling strength s.

For coherent state |α⟩ (Eq. (17)) the second-order corre-
lation function g(2)(0) is equal to one, i.e., g(2)(0) = 1 and
the Mandel factor is equal to zero. Now we will calculate the
g(2)coh(0) and Qm,coh considering the final pointer state |Ψ⟩ for
the coherent pointer state. The expectation value of the photon
number operator n̂ = a†a under the state |Ψ⟩ is

⟨n⟩Ψ =
|λ |2

4

{
|1+ ⟨A⟩w|2

∣∣∣∣α +
s
2

∣∣∣∣2 + |1−⟨A⟩w|2
∣∣∣∣α − s

2

∣∣∣∣2
+2e−

s2
2 Re[e2is Im(α)(1−|⟨A⟩w|2 −2i Im⟨A⟩w))

×
(

α +
s
2

)*(
α − s

2

)]}
. (21)

If we take s = 0, then ⟨n⟩s=0 = |α|2. This is the photon num-
ber for the initial coherent state |α⟩. We can also obtain the
expectation value of ⟨a†2a2⟩ as

⟨a†2a2⟩Ψ =
|λ |2

4

{
|1+ ⟨A⟩w|2

∣∣∣∣α +
s
2

∣∣∣∣4 + |1−⟨A⟩w|2
∣∣∣∣α − s

2

∣∣∣∣4
+2e−

s2
2 Re

[
e2is|α|sinφ (1+ ⟨A⟩*w)(1−⟨A⟩w)

×
(

α +
s
2

)*2(
α − s

2

)2]}
. (22)

If we take s = 0, it will give the value under the initial state
|α⟩, i.e., ⟨a†a†aa⟩s=0 = |α|4. By substituting the above ex-
pressions to Eqs. (12) and (13), we obtain the concrete ex-
pressions of g(2)coh(0) and Qm,coh. To investigate the effect of
postselected measurement on the photon statistical properties
of coherent state we plot the analytical figures of g(2)coh(0) and
Qm,coh, and the results are shown in Fig. 2.
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From Fig. 2 we can deduce that in postselected weak
measurement region with large weak values (see the curves
in Figs. 2(b) and 2(c)), the final state of the pointer state pos-
sesses sub-Poisson statistics (0 < g(2)(0)< 1 and −1 < Qm <

0). From Fig. 2(d), we can see that in strong postselected mea-
surement, the system has super Poisson statistics (g(2)(0)> 1
and Qm > 0). Thus, the results summarized in Fig. 2 confirm

that the postselected measurement can change the statistical
properties of the coherent state significantly.

Since the coherent state is a minimum uncertainty state,
there is no squeezing effect for coherent state |α⟩, i.e., Sφ = 0.
Next, we investigate the squeezing parameter Scoh

φ
for |Ψ⟩ of

the coherent pointer state. The expectation value of Xφ ,coh un-
der the state |Ψ⟩ is given by

⟨Xφ ,coh⟩Ψ =
|λ |2√

2

{
(1+ |⟨A⟩w|2)|α|cos(φ −θ)+ scosφ Re[⟨A⟩w]+

1
2

e−
1
2 s2

Re[e2is Im(α)(1−⟨A⟩w)(1+ ⟨A⟩*w)

×(2r cos(ϑ −φ)+ issinφ)]. (23)
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state |α⟩) and for (a) θ = π/3, or (b) θ = 7π/9. The Mandel factor Qm,coh plotted as a function of the weak value for different r of coherent
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If s = 0, then the above expression will reduce to the ex-
pectation value of Xφ under the initial coherent pointer state
|α⟩, i.e., ⟨Xφ ,oh⟩s=0 = Re[α e−iφ ]. The expectation value of
X2

φ ,coh with |Ψ⟩ is given by

⟨X2
φ ,coh⟩Ψ =

1
2
⟨(ae−iφ +a† e iφ )(ae−iφ +a† e iφ )⟩

=
1
2

[
⟨a2⟩e−2iφ + ⟨a†2⟩e2iφ +2⟨a†a⟩+1

]
=

1
2

[
2Re[⟨a2⟩e−2iφ ]+2⟨n⟩+1

]
, (24)

where

⟨a2⟩ =
|λ |2

4

{
|1+ ⟨A⟩w|2

(
α +

s
2

)2

+ |1−⟨A⟩w|2
(

α − s
2

)2

+ e2is Im(α) e−
s2
2 (1−⟨A⟩w)(1+ ⟨A⟩*w)

(
α − s

2

)2

+ e−2is Im(α) e−
s2
2 (1+ ⟨A⟩w)(1−⟨A⟩*w)

(
α +

s
2

)2}
.

(25)

The squeezing parameter Sφ ,coh of state |Ψ⟩ can be ob-
tained by substituting Eqs. (23) and (24) into Eq. (17), and its
analytical results are given in Fig. 3.

We can observe from Fig. 3 that after postselected mea-
surement the squeezing parameter of the initial coherent state
changes dramatically, and we can see the phase-dependent
squeezing effect. The X quadrature (φ = 0) of the final state
is not squeezed (see Fig. 3(c)), but P quadrature (φ = π

2 ) of
the final state has a squeezing effect for moderate interaction
strengths (see Figs. 3(a), 3(b), and 3(d)) with any weak values.

3.2. Squeezed vacuum state

Our second pointer state is the squeezed vacuum state.
Squeezed states of the radiation field are generated by degen-
erate parametric down-conversion in an optical cavity.[52] The
squeezed state have important applications in many quantum
information processing tasks, including gravitational wave
detection,[17,18] quantum teleportation.[19,20] Suppose that a
measuring device can be initially prepared in the squeezed
vacuum state[51] defined by

|ξ ⟩= S(ξ ) |0⟩ , (26)

where S(ξ ) = exp( 1
2 ξ *a2 − 1

2 ξ a†2), and ξ = η e iδ is an ar-
bitrary complex number with modulus η and argument δ ∈
[0,2π]. As indicated in Eq. (26), the squeezed vacuum state is
generated by the action on the vacuum state |0⟩ of the squeez-
ing operator S(ξ ). After the postselected measurement pro-
cesses as outlined in Section 2, the normalized final pointer
state can be written as

|ϕ⟩= κ

2

[
(1+ ⟨A⟩w)

∣∣∣∣ξ , s
2

〉
+(1−⟨A⟩w)

∣∣∣∣ξ ,− s
2

〉]
, (27)

where the normalization coefficient κ is given by

κ =
√

2
[

1+ |⟨A⟩w|2 +(1−|⟨A⟩w|2)

× exp
(
−1

2
s2|coshη + e iδ sinhη |2

)]− 1
2

(28)

and we note that |ξ ,± s
2 ⟩ = D(± s

2 )S (ξ ) |0⟩ is a squeezed co-
herent state.

The probability amplitude of finding n photons in a
squeezed coherent state is given by

⟨n|± s
2
,ξ ⟩

=
1√

coshη
exp
[
− 1

2

∣∣∣∣± s
2

∣∣∣∣2 − 1
2

(
± s

2

)*2

e iδ tanhη

]

×

(
1
2 e iδ tanhη

) n
2

√
n!

Hn

[
χ

(
e iδ sinh(2r)

)− 1
2
]

(29)

with χ =± s
2 coshη +(± s

2 )
* e iδ sinhη . To find the condi-

tional probability of n photons under the state |ϕ⟩, we can use
Eq. (12) by changing |Φ⟩ to |ϕ⟩, and use Eq. (29). The effects
of postselected measurement to the probability of finding n
photons for state |ϕ⟩ is displayed in Fig. 4. The black thick
curve in Fig. 4(a) corresponds to the conditional photon prob-
ability for the initial pointer state |ξ ⟩. As illustrated in Fig. 4,
the postselected measurement can change the photon distri-
bution of the field, and in fewer photon number region the
Psq(n) with the state |ϕ⟩ is larger than the no interaction case
(see Fig. 4(a)). For definite squeeze parameter η and weak
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Fig. 4. Photon distribution Psq(n) of squeezed vacuum state after post-
selected measurement as a function of n. Here δ = π/3, ϕ = π/3,
η = 0.5. (a) Psq(n) is plotted for s = 1, and for the no interaction
case (black curve) and various weak values. (b) Psq(n) is plotted for
θ = 7π/9, and for various interaction strength s.
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measurement region (s < 1) with large weak values, Pqs is
larger than strong measurement region (s > 1), but its occur-
rence probability is small.

The second-order correlation function g(2)(0) and the
Mandel factor Qm of the initial squeezed vacuum pointer state
|ξ ⟩ is given by

g(2)(0) = 3+
1

sinh2
η

(30)

and

Qm = 1+2sinh2
η , (31)

respectively. It is clear that the number fluctuations of the
squeezed vacuum pointer state initially are super-Poissonian,
and for all values of η both g(2)(0) and Qm cannot take the
values to possess the sub-Poissonian statistics, which is a non-
classical property of the field. Now, we study the effect of
postselected measurement to g(2)(0) and Qm of the squeezed
vacuum pointer state under the normalized final pointer state
|ϕ⟩. The expectation value of the photon number operator
a†a and the (a†a)2 under the final state |ϕ⟩ can be calculated,
and their explicit expressions are given in Appendix A (since
the expressions are too cumbersome to write here, we display
them in the Appendix).

The analytical results for g(2)sq (0) and Qm,sq under the state
|ϕ⟩ are presented in Fig. 5. It can be observed from Figs. 5(a)
and 5(c) that both g(2)sq (0) and Qm,sq can take the values, in
which only sub-Poisson radiation field can possess the re-
gion s & 0.5 for large weak values. For definite measurement
strength s and larger weak value, the value g(2)sq (0) is lower

than one and the value of Qm,sq is less than zero when the
squeezed state parameter η is less than one (see Figs. 5(b) and
5(d)). Thus, it is apparent that the postselected measurement
dramatically changes the photon statistical properties of the
initial squeezed pointer state |ξ ⟩.

The squeezing parameter Sφ of the initial squeezed vac-
uum state |ξ ⟩ can be calculated using Eqs. (14)–(16) and (33),
and written as

Sφ =
1
2
[
cosh2

η−sinh(2η)cos(2φ−δ )+sinh2
η
]
−1

2
. (32)

It is evident from Eq. (32) that the squeezing effect of the
squeezed vacuum state is phase-dependent: (i) If φ = δ

2 , then
Sφ = − 1

2 (1− e−2η), it has squeezing effect for η > 0. (ii) If
φ = δ

2 +
π

2 , then Sφ = 1
2 (e2η −1), there is no squeezing effect.

This reveals that it spreads out the quadrature X
φ= δ

2
and at the

same time squeezes the quadrature X
φ= δ

2 +
π
2

.
The squeezing parameter Sφ ,sq of the final normalized

state |ϕ⟩ after postselected von-Nuemann measurement can be
calculated as the same processes of the initial state |ξ ⟩, and the
analytical results are shown in Fig. 6. According to Figs. 6(a)
and 6(b), the postselected measurement would have a negative
effect on the squeezing effect of the squeezed vacuum state
since Sφ ,sq gradually becomes larger with increasing the mea-
surement strength s. However, as indicated in Fig. 6(c), in
weak measurement regime where 0 < s < 1, the postselected
measurement still has the effects on squeezing of the squeezed
vacuum pointer state. As mentioned above the squeezing ef-
fect of the squeezed vacuum state is phase-dependent, and the
postselected measurement has no positive effect on the squeez-
ing of Xφ= π

2
quadrature (see Fig. 6(d)).
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Fig. 5. Second-order correlation function g(2)sq (0) and the Mandel factor Qm,sq of the squeezed vacuum state after postselected measurement. Here

ϕ = π/3, δ = π/3: (a) g(2)sq (0) vs. interaction strength s for different weak values and for η = 0.2; (b) g(2)sq (0) plotted as a function of squeezed vacuum
state parameter η for various interaction strengths and for θ = 7π/9; (c) Qm,sq vs. interaction strength s for different weak values and for η = 0.2; (d)
Qm,sq plotted as a function of squeezed vacuum state parameter η for various interaction strengths and for θ = 7π/9. Inset: the enlarged curves in the
interval η ∈ [0,0.5].
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Fig. 6. Squeezing parameter Sφ ,sq of the squeezed vacuum state after postselected measurement. Here ϕ = π/3. (a) Sφ vs. η of the squeezed
vacuum state for different interaction strength s and for δ = φ = 0, θ = π/9. (b) Sφ ,sq plotted as a function of φ for various interaction strength
s and for η = 0.5,δ = π/3, and θ = π/9. Sφ ,sq vs. interaction strength s for different weak values and for δ = 0 and η = 0.5, but with different
φ : (c) φ = 0, (d) φ = π

2 . Inset: the enlarged curves in the interval s ∈ (0,1].

3.3. Schrödinger cat state

In the above two subsections, we have already con-
firmed that postselected measurement characterized by a weak
value can really change the statistical and squeezing effect
of single-mode radiation fields. To further increase the reli-
ability of our conclusions, in this subsection, we check the
same phenomena by taking the Schrödinger cat state as a
pointer. Schrödinger’s cat is a gedanken experiment in quan-
tum physics, proposed by Schrödinger in 1935,[53] and its
corresponding state is called the Schrödinger cat state. The
Schrödinger cat state plays significant roles not only in funda-
mental tests of quantum theory,[54–57] but also in many quan-
tum information processing such as quantum computation,[23]

quantum teleportation,[21,22] and precision measurements.[27]

The Schrödinger cat state is composed by the superposition of
two coherent correlated states moving in the opposite direc-
tions, and defined as[47]

|Θ⟩= K
(
|α⟩+ e iω |−α⟩

)
, (33)

where

K =
[
2+2e−2|α|2 cosω

]− 1
2

(34)

is the normalization constant and α = r e iδ is a coherent state
parameter with modulus r and argument δ . The normalized
final state of the Schrödinger cat state after the postselected
weak measurement is given by taking |φ⟩ = |Θ⟩ in Eq. (6),
i.e.,

|χ⟩ =
κ

2

[
(1+ ⟨A⟩w)D

( s
2

)

+ (1−⟨A⟩w)D
(
− s

2

)]
|Θ⟩ (35)

with the normalization coefficient

κ
−2 =

1
2
(1+ |⟨A⟩w|2)+K2(1−|⟨A⟩w|2)cos(2s Im[α])e−

s2
2

+
K2

2
Re[(1−⟨A⟩w)(1+ ⟨A⟩*w)

×(e iω e−
1
2 |2α+s|2 + e−iω e−

1
2 |2α−s|2)]. (36)
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Fig. 7. Photon distribution Psh(n) of the squeezed state as a function of
photon number n. Here δ = π/3, ϕ = π/3, ω = 0, r = 0.5: (a) Psh(n)
is plotted for s = 1, and for various weak values; (b) Psh(n) is plotted
for θ = 7π/9, and for various interaction strength s.

Here we must mention that ω ∈ [0,2π], and when ω = 0
(ω = π) it is called the even (odd) Schrödinger cat state. Simi-
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lar to the previous two cases, the conditional probability Psh(n)
of the Schrödinger cat state can be obtained by replacing the
|φ⟩ in Eq. (5) to |χ⟩, and the analytical results of the even
Schrödinger cat state is presented in Fig. 7. As shown in
Fig. 7, the postselected measurement can change photon dis-
tribution of the field, and in fewer photon regions with large
weak values, Psh(n) is larger than the initial photon distribu-
tion of the Schrödinger even cat state. By comparing Fig. 7
and Fig. 4 we can also obtain the same common sense that the
even Schrödinger cat state has similar properties as a squeezed
state.

The Mandel factor and second-order correlation function
for the Schrödinger cat state are given by

Qm =
4|α|2 e−2|α|2 cosω

1− e−4|α|2 cos2 ω
(37)

and

g(2)(0) = 1+
4e−2|α|2 cosω

(1− e−2|α|2 cosω)2
, (38)

respectively. It is apparent that both g(2)(0) and Qm have sub-
Poisson statistics when cosω < 0 ( π

2 < ω < 3π

2 ).
The g(2)sh (0) and Qm,sh of the Schrödinger cat state can

be calculated using Eqs. (13) and (14) with the normalized
final pointer state |χ⟩. As indicated in Fig. 8, after postse-
lected measurement, the statistical property of the Schrödinger
cat state changes from sub-Poisson to super-Poisson gradually
with increasing the interaction strength and weak value. How-

ever, as we can see from Figs. 8(b) and 8(d), in the postse-
lected weak measurement regime, where 0 < s < 1, we can
achieve the best performance for nonclassicality of the odd
Schrödinger cat state with small coherent state modulus r.

The squeezing parameter of the initial Schrödinger cat
state |Θ⟩ reads[47]

S in
φ

=
|α|2 e−4|α|2

(1+ e−2|α|2 cosω)2

×
[
1+
(

cos2φ(e2|α|2 + cosω)2

+ sin2
ω cos2

φ −1
)]
. (39)

From this expression, we can deduce that the squeezing effect
of the initial Schrödinger cat state is also phase-dependent,
similar to the squeezed vacuum state. The quadrature of
the field will be squeezed only when the inequality cos2φ <
sin2 ω cos2 φ−1
(cosω+e2|α|2 )2

is satisfied. The details of this squeezing effect
are presented in Fig. 9(a) (see the black solid curve).

The analytic expression of Sφ ,sch for the Schrödinger cat
state after postselected measurement can be achieved using the
final normalized state |χ⟩, and the analytical results are sum-
marized in Fig. 9. As indicated in Fig. 9, after postselected
measurement, the squeezing effect of the Schrödinger cat state
still depends on phase φ , and the squeezing effect of both the
even and odd Schrödinger cat states are increased with increas-
ing the interaction strength s and for small weak values (see
Figs. 9(a), 9(b), and 9(d)). However, the odd Schrödinger cat
pointer state has no squeezing effect (see Figs. 9(c) and 9(d)).
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Fig. 8. Second-order correlation function g(2)sh (0) and Mandel factor Qm,sh of the Schrödinger state after postselected measurement. Here ϕ = 0,

δ = 0: (a) g(2)sh (0) plotted as a function ω of the Schrödinger cat state for various interaction strength s and for θ = π/9, r = 0.3; (b) g(2)sh (0) vs.
parameter r of the Schrödinger cat state for different weak values and for s = 0.5, ω = π; (c) Qm,sh plotted as a function ω of the Schrödinger
cat state for various interaction strength s and for θ = π/9, r = 0.3; (d) Qm,sh vs. parameter r of the Schrödinger cat state for different weak
values and for s = 0.5, ω = π .
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4. Conclusion and remarks
In summary, we have investigated the effects of postse-

lected measurement characterized by postselection and weak
value on the statistical properties and squeezing effects of
single-mode radiation fields. To achieve our goal, we take
the coherent state, squeezed vacuum state and Schrödinger cat
state as a pointer, and their polarization degrees of freedom
as the measurement system, respectively. We have derived
analytical expressions of the pointer state’s normalized final
state after postselected measurement considering all interac-
tion strengths between the pointer and the measured system.
We separately present the exact expressions of photon distribu-
tions, second-order correlation functions, Mandel factors and
squeezing parameters of the above three typical single-mode
radiation fields for the corresponding final pointer states, and
plot the figures to analyze the results.

We find that the photon distributions of those three pointer
states change significantly after postelected measurement, es-
pecially the coherent pointer state. It is shown that postse-
lected measurement changes the photon statistics and squeez-
ing effect of coherent state dramatically, and it is noticed that
the amplification effect of weak value plays a major role in
this process. We also show that the postselected measurement
changes the photon statistics of the squeezed vacuum state
from super-Poisson to sub-Poisson for large weak values, and
moderate interaction strengths. However, the photon statis-
tics of the Schrödinger cat state changes from sub-Poisson
to super-Poisson with increasing the interaction strength. In
accordance with previous findings, the squeezing effects of
squeezed vacuum and Schrödinger cat pointer states are still
phase-dependent and the squeezing effect of squeezed vacuum

pointer is decreased with increasing the interaction strength.
On the contrary, the squeezing effect of the even Schrödinger
cat state is increased with increasing the interaction strength
for small weak values compared with the initial pointer state
case.

This work belongs to the state optimization using postse-
lected von Neumann measurement. Those properties of radia-
tion fields we investigated are directly effect on the implemen-
tations of the important quantum information processing men-
tioned in the introduction section. Thus, we anticipate that the
results shown in this research can be useful to provide other ef-
fective methods for studying the related quantum information
processing.

In our current research, we only consider the three typ-
ical single-mode radiation fields to investigate the effects of
postselected von Neuman measurement on their inherent prop-
erties, but real light beams are in fact the time-dependent
and the representation of time dependence requires the use of
two or more modes of the optical systems. Thus, it would
be interesting to check the effects of postselected von Neu-
mann measurement on other useful radiation fields in quan-
tum optics and quantum information processing such as sin-
gle photon-added[58,59] and photon-subtracted[60] states, pair-
coherent state (two-mode field),[61–64] and other multimode ra-
diation fields.[65]

Appendix A: The explicit expressions of some
quantities

(1) For squeezed vacuum pointer state The expectation
value of photon number operator a†a under the state |χ⟩ is
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given by

⟨a†a⟩ϕ =
|κ|2

4

{
2(1+ |⟨A⟩w|2)

(
s2

4
+ sinh2

η

)
+2Re

[
(1−⟨A⟩w)(1+ ⟨A⟩w)

*I
]}

(A1)

with

I = exp
[
− s2

2
|coshη + e iδ sinhη |2

]
×
(

sinh2
η +

s2

4
− s2

2
(1+ isinδ sinh2η)

)
.

In calculating the squeezing parameter, we use ⟨Xφ ⟩ϕ and
⟨X2

φ
⟩ϕ , and their expressions are given by

⟨Xφ ⟩ϕ = s
|κ|2

4
√

2

{
cosφ |1+ ⟨A⟩w|2 − cosφ |1+ ⟨A⟩w|2

+2exp
[
− s2

2
|coshη + e iδ sinhη |2

]
× Re

[
e−iθ (1+ ⟨A⟩w)(1−⟨A⟩w)

*

×
(

cosh2
η +

1
2

e iδ sinh2η − 1
2

)]

−2exp
[
− s2

2
|coshη + e iδ sinhη |2

]
× Re

{
e iθ (1+ ⟨A⟩w)

*(1−⟨A⟩w)

×
[

cosh2
η + e iδ 1

2
sinh2η − 1

2

]}
⟨X2

θ ⟩=
1
2
[2Re(II e−2iφ )+2⟨a†a⟩+1] (A2)

with

II =
|κ|2

4

{(
s2

4
− 1

2
sinh(2η)e−iδ

)
|1+ ⟨A⟩w|2

+

(
s2

4
− 1

2
sinh(2η)e−iδ

)
|1−⟨A⟩w|2

+(1−|⟨A⟩w|2)III
}
,

where

III =
s2

4
+ s2

(
1
2

e−iδ sinh2η + sinh2
η

)
+ s2(coshη + e iδ sinhη)2 e−2iδ sinh2

η

− e−iδ 1
2

sinh2η

}
exp
[
− s2

2
|coshη + e iδ sinhη |2

]
.

(2) For Schrödinger cat pointer state The expectation value of photon number operator a†a and a†2a2 under the state |χ⟩
is given by

⟨a†a⟩χ =
|κ|2K2

4

{
|1+ ⟨A⟩w|2

[
|α +

s
2
|2 + |−α +

s
2
|2 + e iω

(
α +

s
2

)*

×
(
−α +

s
2

)
e−2|α|2 + e−iω

(
−α +

s
2

)*(
α +

s
2

)
e−2|α|2

]
+ |1−⟨A⟩w|2

[
|α − s

2
|2 + |α +

s
2
|2 − e iω

(
α − s

2

)*(
α +

s
2

)
e−2|α|2 − e−iω

(
α +

s
2

)*(
α − s

2

)
e−2|α|2

]
−2Re

[(
e iω |α +

s
2
|2 e−2|α+ s

2 |
2
+ e−iω e−2|α− s

2 |
2 |α − s

2
|2 −2e−

s2
2

×Re
[

e2is Im(α)

(
α +

s
2

)*(
α − s

2

)])
(1−⟨A⟩w)(1+ ⟨A⟩w)

*
]}

, (A3)

⟨a†2a2⟩χ =
|κ|2K2

4
{|1+ ⟨A⟩w|2

[
|α +

s
2
|4 + |−α +

s
2
|4 + e iω

(
α
*+

s
2

)2

(
−α +

s
2

)2

e−2|α|2 + e−iω
(
−α

*+
s
2

)2(
α +

s
2

)2

e−2|α|2
]

+ |1−⟨A⟩w|2
[
|α − s

2
|4 + |α +

s
2
|4 + e iω e−2|α|2

(
α
*− s

2

)2(
α +

s
2

)2

+ e−iω e−2|α|2
(

α
*+

s
2

)(
α − s

2

)2
]

+2Re
[(

e iω |α +
s
2
|4 e−2|α+ s

2 |
2
+ e−iω |α − s

2
|4 e−2|α− s

2 |
2

+2e−
s2
2 Re

[
e2is Im(α)(α*+

s
2
)2(α − s

2
)2
])

(1−⟨A⟩w)(1+ ⟨A⟩w)
*
]}

. (A4)

In calculation of the squeezing parameter, we use ⟨Xφ ⟩χ and ⟨X2
φ
⟩χ , and their expressions are given by

⟨Xφ ⟩χ =
√

2Re[⟨a⟩χ e−iφ ]
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with

⟨a⟩χ =
|κ|2K2

4

{
|1+ ⟨A⟩w|2[s+ e iφ

(
−α +

s
2

)
e−2|α|2 + e−iφ

(
α +

s
2

)
e−2|α|2 ]

+ |1−⟨A⟩w|2
[
− s− e iφ

(
α +

s
2

)
e−2|α|2 + e−iφ

(
α − s

2

)
e−2|α|2

]
+(1−⟨A⟩w)(1+ ⟨A⟩w)

*
[
(2iα sin(2s Im[α])− scos(2s Im[α]))e−

1
2 s2

− e iφ
(

α +
s
2

)
e−

1
2 |2α+s|2 + e−iφ

(
α − s

2

)
e−

1
2 |2α−s|2

]
+(1−⟨A⟩w)

*(1+ ⟨A⟩w)

[
(−2iα sin(2s Im[α])+ scos(2s Im[α]))e−

1
2 s2

+ e iφ
(
−α +

s
2

)
e−

1
2 |2α−s|2 + e−iφ

(
α +

s
2

)
e−

1
2 |2α+s|2

]}
,

⟨X2
φ ⟩χ =

1
2
[2⟨a†a⟩χ +2Re[⟨a2⟩χ e−2iφ ]+1],

with

⟨a2⟩χ =
|κ|2K2

4

{
|1+ ⟨A⟩w|2

[
2(α2 +

s2

4
)+ e iω e−2|α|2

(
−α +

s
2

)2

+ e−iω e−2|α|2
(

α +
s
2

)2]
+ |1−⟨A⟩w|2

[
2(α2 +

s2

4
)+ e iω e−2|α|2

(
α +

s
2

)2

+ e−iω e−2|α|2
(

α − s
2

)2]
+(1−⟨A⟩w)(1+ ⟨A⟩w)

*
[

2e−
s2
4 (cos(2s Im[α])

(
α

2 +
s2

4

)
− isα sin(2s Im[α]))

+ e−iω
(

α − s
2

)2

e−2|α− s
2 |

2
+ e iω

(
α +

s
2

)2

e−2|α+ s
2 |

2
]

+(1+ ⟨A⟩w)(1−⟨A⟩w)
*
[

2e−
s2
4 (cos(2s Im[α])

(
α

2 +
s2

4

)
− isα sin(2s Im[α]))

+ e iω
(

α − s
2

)2

e−2|α− s
2 |

2
+ e−iω

(
α +

s
2

)2

e−2|α+ s
2 |

2
]}

. (A5)
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