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We present the recent new developments of time-dependent Schrödinger equation and time-dependent density-
functional theory for accurate and efficient treatment of the electronic structure and time-dependent quantum dynamics
of many-electron atomic and molecular systems in intense laser fields. We extend time-dependent generalized pseudospec-
tral (TDGPS) numerical method developed for time-dependent wave equations in multielectron systems. The TDGPS
method allows us to obtain highly accurate time-dependent wave functions with the use of only a modest number of spa-
tial grid point for complex quantum dynamical calculations. The usefulness of these procedures is illustrated by a few
case studies of atomic and molecular processes of current interests in intense laser fields, including multiphoton ionization,
above-threshold ionization, high-order harmonic generation, attosecond pulse generation, and quantum dynamical pro-
cesses related to multielectron effects. We conclude this paper with some open questions and perspectives of multiphoton
quantum dynamics of many-electron atomic and molecular systems in intense laser fields.

Keywords: multiphoton ionization, above-threshold ionization, high-order harmonic generation, attosecond
pulse generation

PACS: 32.80.Rm, 33.80.Rv, 42.50.Hz, 42.65.Re DOI: 10.1088/1674-1056/ab9c0f

1. Introduction
The fundamental phenomena from a laser beam fo-

cused on a atomic or molecular target, such as multipho-
ton ionization (MPI), above-threshold ionization (ATI), high-
order harmonic generation (HHG), attosecond pulses gener-
ation (APG), etc., have been largely studied over the last
decade. Driven by the experimental works, theoretical non-
perturbative methods and various models have been proposed
for the atomic and molecular dynamical behaviors in intense
laser fields. The semiclassical three-step model developed by
Corkum[1] and Kulander[2] has shown a fairly clear physi-
cal picture of laser-driven electronic rescattering and has been
successfully extended to include some quantum effects.[3]

However, with rapidly developing laser techniques, a number
of very-high-order nonlinear optical processes, such as many-
electron correlation effects, non-sequential double ionization,
etc., have been observed from many-electron systems in in-
tense laser pulses.[4] To study such strong nonlinear optical
phenomena observed in many-electron systems, a quantitative
description of the dynamics of the system will be most reli-
ably obtained from integration of the full-dimensional time-
dependent Schrödinger equation (TDSE) based on the full
many-body Hamiltonian.

For the simplest many-electron system, such as helium
atom with two electrons, theoretical description of this pro-
cess is a six-dimensional numerical integration of the TDSE,
several approaches have been proposed.[5,6] However, fully
converged N-electron systems (N > 2) calculation with 3N-
dimensional TDSE is still difficult to achieve and remains
a major computational challenge in the study of strong-field
atomic, molecular, and optical physics today. One of the
approximations commonly used for the treatment of strong-
field processes in the past decade is the single-active-electron
(SAE) model with frozen nuclei.[7] The SAE approach is a
theoretical model frequently employed to investigate scenar-
ios in which inner-shell electrons may productively be treated
as frozen spectators to a physical process of interest, providing
useful insights regarding strong-field systems dynamics. How-
ever, within the SAE approach, the effects of many-electron
correlation and the individual spin–orbital contribution can not
be explicitly treated.

In current frontiers of laser sciences, studies of inter-
actions between a highly-intense, ultrashort laser pulse and
many-electron systems have been attracting much attention.
It is desirable to explore more comprehensive formalisms for
detailed treatment of strong-field processes, taking into ac-
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count both the electron correlation and the structure of the ex-
cited states, and at the same time allowing for the core excita-
tion of the many-electron systems. Density functional theory
(DFT) provides a first-principles approach for the quantum-
mechanical description of electrons and bypasses the need
for direct calculation of a many-electron wavefunction, which
is based on the earlier fundamental work of Hohenberg and
Kohn[8] and Kohn and Sham.[9] It is one of the most widely
used methods for ab initio calculations of the structure of
atoms, molecules, and crystals.[10–14] In Kohn–Sham DFT for-
malism, 3N-dimensional numerical integration problem is de-
composed into a set of orbitals by the electron density, leading
to a set of one-electron Schrödinger-like equations to be solved
self-consistently. The Kohn–Sham equations are structurally
similar to the Hartree–Fock equations but include in princi-
ple exactly the many-body effects through a local exchange–
correlation (xc) potential. Thus DFT is computationally much
less expensive than the traditional ab initio many-electron
wavefunction approaches and this accounts for its great suc-
cess for large systems.[15,16]

The central theme of DFT is possible and beneficial to
obtain the xc-energy functional for electronic systems, its for-
mally exact expression is unknown. The xc-energy func-
tional can be approximated by the local density approxima-
tion (LSDA)[17] or the generalized gradient approximation
(GGA).[18–21] Such approximations are widely and success-
fully used to predict, understand, and design physical and
chemical phenomena associated with molecules and materials.
However, the xc potentials derived from these GGA energy
functionals suffer similar problems as in LSDA and do not
exhibit the asymptotically correct long-range Coulombic tail
−1/r behavior that is expected from general considerations.
The problem of the incorrect long-range behavior of the LSDA
and GGA energy functionals is so-called self-interaction er-
ror (SIE).[22] Thus, whereas widely used GGA approxima-
tions allow for rather accurate predictions of the total energies
of the ground states of atoms and molecules, but the excited-
state energies and the ionization potentials obtained from the
highest occupied orbital energies of atoms and molecules are
far from satisfactory.[23] For quantitative treatment of mul-
tiphoton ionization processes, it is necessary to extend the
DFT to properly account for the long-range xc potential such
that both the ionization potential and the excited-state proper-
ties can be described more accurately. A Krieger–Li–Iafrate
(KLI)[24,25] semianalytic treatment of the optimized effective
potential (OEP)[26,27] formalism along with the use of an ex-
plicit self-interaction-correction (SIC)[22] term has been pro-
posed independently by Chen et al.,[28] but it has been applied
to the study of ground-state energies and ionization potentials
only. In our previous works,[23] we have extended such a KLI-
SIC technique to the time-dependent domain. In this proposed
KLI-SIC procedure, similar to the original KLI method, it also

allows the construction of a self-interaction-free effective po-
tential that is orbital independent. This avoids the problems
associated with the conventional SIC procedure discussed ear-
lier in Ref. [22].

The SIC is very much needed in time-dependent den-
sity functional theory (TDDFT) for proper treatment of atomic
and molecular time-dependent dynamics such as collisions or
MPI processes, etc. The TDDFT is a nontrivial extension of
the steady-state DFT of Hohenberg, Kohn, and Sham[8,9] to
the time domain. The Runge–Gross (RG) theorem[29] pro-
vides the formal foundation of TDDFT. In RG theorem, for
any interacting many-particle quantum system subject to a
given time-dependent potential, all physical observables are
uniquely determined by knowledge of the time-dependent den-
sity and the state of the system at any instant in time.[30]

The central result of the TDDFT is a set of time-dependent
Kohn–Sham equations that are structurally similar to the time-
dependent Hartree–Fock (HF) equations but include in princi-
ple all the many-body effects through a local time-dependent
xc potential. Telnov et al.[31] have presented an alternative
nonperturbative formulation of TDDFT based on the extension
of the generalized Floquet formalism,[32,33] allowing exact
transformation of the time-dependent Kohn–Sham equations
into an equivalent time-independent Floquet matrix eigenvalue
problem. Such a TDDFT-Floquet formalism provides a time-
independent approach for nonperturbative treatment of mul-
tiphoton processes of many-electron systems in the presence
of intense periodic or multicolor laser fields. Tong et al.[34]

have extended this time-dependent approach to the numerical
solution of time-dependent Kohn–Sham-like equations in ar-
bitrarily time-dependent fields.

In this paper, we briefly describe several new develop-
ments in TDSE and TDDFT for nonperturbative treatment
of multiphoton dynamics and nonlinear optical processes of
many-electron atoms and molecules in intense laser fields. In
Section 2, we introduce the basic concepts and theorems of
TDSE, DFT, and TDDFT. In Section 3, the multiphoton quan-
tum dynamics of many-electron atoms and molecules are dis-
cussed, including MPI, ATI, HHG, and APG. Section 4 con-
tains the concluding remarks. Atomic units are used in this
paper.

2. Theoretical methods
2.1. Time-dependent Schrödinger equation

Consider an N-electron atom (ion) in an electromagnetic
field described by the Coulomb gauge obeys the TDSE, if we
neglect relativistic effects and nuclear effects when the atoms
interact with strong laser fields, the TDSE can be written in
the dipole approximation as (in atomic units)[35]

i
∂Ψ(X , t)

∂ t
=

[
H0 +𝐴(t) ·𝑃 +

1
2

N𝐴2(t)
]

Ψ(X , t), (1)
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where X ≡ (q1,q2, . . . ,qN) denotes the ensemble of the coor-
dinates of the N electrons and qi ≡ (𝑟i,σi) are the space and
spin coordinates of the i-th electron, 𝐴(t) is the vector poten-
tial, and

𝑃 =
N

∑
i=1

𝑝i (2)

is the total momentum operator. H0 is the time-independent
Hamiltonian of the N-electron atom (ion) in the absence of the
electromagnetic field, and given by

H0 =−
1
2

N

∑
i=1

𝑝2
i +V =−1

2

N

∑
i=1

∇
2
𝑟i
+V, (3)

where V denotes the sum of all the interactions within the
atomic system in the absence of the radiation field. How-
ever, the property of gauge invariance allows us to simplify
the TDSE by an appropriate choice of gauge. In the velocity
gauge (VG), the TDSE can be be written as[35]

i
∂Ψ V(X , t)

∂ t
= [H0 +𝐴(t) ·𝑃 ]Ψ V(X , t). (4)

In the length gauge (LG), the TDSE can be be written as

i
∂Ψ L(X , t)

∂ t
= [H0 +𝐸(t) ·𝑅]Ψ L(X , t), (5)

where 𝐸(t) is the electric field and

𝑅=
N

∑
i=1

𝑟i (6)

is the sum of the coordinates of the N electrons. The formal
theoretical identity of results obtained in the two gauges does
not necessarily mean that such an identity can be obtained in
practical numerical calculations. Since quantum mechanics is
gauge invariant, the results obtained from the two gauges after
the end of the induced electron motion should be the same, but
two formulations may impose different demands on computa-
tions in terms of basis size and cost of CPU time, the previous
study[36] demonstrates that the propagation of TDSE solved in
the LG for nonperturbative treatment of atoms and molecules
in intense laser fields is faster than the case in the velocity
gauge, and the VG is the optimal gauge for the ATI calcu-
lation. Consider hydrogenic atoms and ions in intense laser
fields, corresponding to the case N = 1, we can respectively
rewrite the TDSE in the LG and the VG in the forms

i
∂Ψ L(𝑟, t)

∂ t
= [H0 +𝐸(t) ·𝑟]Ψ L(𝑟, t), (7)

i
∂Ψ V(𝑟, t)

∂ t
= [H0 +𝐴(t) ·𝑝]Ψ V(𝑟, t), (8)

where
H0 =−

1
2

∇
2− Z

r
. (9)

In recent years, advances in computer technology have al-
lowed the numerical solution of the TDSE for two-electron

atoms to be obtained, but the generalization of this approach to
the solution of the TDSE for multielectron atoms is beyond the
present computer capabilities.[5,6] One of the approximations
commonly used for the treatment of strong-field processes of
the complex atom is the SAE model with frozen core.[7] The
SAE approach has been successfully applied to the investiga-
tion of HHG of atoms and molecules in intense laser fields,
providing useful insights regarding strong-field atomic and
molecular dynamics. In the SAE model, the time-independent
Hamiltonian H0 can be written in the form

H0 =−
1
2

∇
2 +V (r), (10)

where V (r) is the atomic model potential. The SAE model
is capable of describing the physics of multiphoton single
ionization and more generally multiphoton processes involv-
ing single one-electron transitions. For the complex atom
with a nucleus of atomic number Z and N electrons, a stan-
dard approximation used to perform time-independent calcula-
tions for many-electron atomic systems is the time-dependent
Hartree–Fock (TDHF) approximation method, based on the
independent particle model, in which each of the atomic elec-
trons moves in a self-consistent field that takes into account the
attraction of the nucleus and the average effect of the repulsive
interactions due to the other electrons.

2.2. Time-dependent density function theory

The TDDFT is an extension of the DFT[8,9] to the time
domain, providing an alternative approach for nonperturbative
treatment of multiphoton processes of many-electron systems
in intense laser fields. The central theme of modern TDDFT is
a set of time-dependent Kohn–Sham (TDKS) equations which
are structurally similar to the TDHF equations but include
in principle all the many-body effects through a local time-
dependent xc potential. Most applications of TDDFT[37,38]

fall in the regime of linear or nonlinear response in weak fields
for which the perturbation theory is applicable. In our previous
works,[34] we have proposed a TDDFT with optimized effec-
tive potential (OEP) and SIC developed for nonperturbative
treatment of intense-field atomic multiphoton processes of the
atomic and molecular systems. The TDDFT/OEP-SIC formal-
ism takes into account both the electron correlation effect and
the structure of the excited states, and at the same time allows
for the core excitation of the many-electron systems in intense
laser pulses. The method takes into account the dynamic re-
sponse of all the electronic shells to the external fields and
has been applied successfully to the nonperturbative study of
MPI and HHG of atoms and diatomic molecules[39,40] in in-
tense laser fields. In the TDDFT/OEP-SIC frame, the TDKS
equations of N-electron systems in intense laser fields can be
written as

i
∂

∂ t
ψiσ (𝑟, t) = H(𝑟, t)ψiσ (𝑟, t)
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=

[
−1

2
∇

2 +V OEP
SIC,σ (𝑟, t)

]
ψiσ (𝑟, t),

i = 1,2, . . . ,Nσ , (11)

where V OEP
SIC,σ (𝑟, t) is the time-dependent OEP with SIC de-

pending upon the total electron density ρ(𝑟, t), Nσ (= N↑ or
N↓) is the total number of electrons for a given spin σ , and the
total number of electrons in the system is N = ∑σ Nσ . The to-
tal electron density ρ(𝑟, t) is determined by the single-electron
orbital wave functions ψiσ (𝑟, t) as

ρ(𝑟, t) = ∑
σ

Nσ

∑
i=1

ρiσ (𝑟, t) = ρ↑(𝑟, t)+ρ↓(𝑟, t). (12)

The time-dependent effective potential V OEP
SIC,σ (𝑟, t) can be

written in the following general form:

V OEP
SIC,σ (𝑟, t) = υH(𝑟, t)+υext(𝑟, t)+V SIC

xc,σ (𝑟, t), (13)

where

υH(𝑟, t) =
∫

ρ(𝑟′, t)
𝑟−𝑟′

d𝑟′ (14)

is the electron–electron Coulomb interaction energy, υext(𝑟, t)
is the external potential due to the interaction of the electron
with the external laser field and the nucleus, and V SIC

xc,σ (𝑟, t) is
the time-dependent exchange–correlation potential with SIC.
It has the following form:

V SIC
xc,σ (𝑟, t) = ∑

i

ρiσ (𝑟, t)
ρσ (𝑟, t)

{
υiσ (𝑟, t)+

[
V̄ SIC

xc,iσ (t)− ῡiσ (t)
]}

,

(15)
where

υiσ (𝑟, t) =
δESIC

xc [ρ↑,ρ↓]

δρiσ (𝑟, t)
, (16)

V̄ SIC
xc,iσ (t) = 〈ψiσ

∣∣V SIC
xc,iσ (𝑟, t)

∣∣ψiσ 〉, (17)

ῡiσ (t) = 〈ψiσ |υiσ (𝑟, t)|ψiσ 〉. (18)

2.3. Generalized pseudospectral method

The generalized pseudospectral (GPS) method can be ap-
plied to the calculation of multiphoton dynamics and nonlin-
ear optical processes of many-electron atoms and molecules
in intense laser fields.[41,42] The essence of the GPS method
is to map the semi-infinite domain [0, ∞] or [0, rmax] into
the finite domain [−1,1] using a non-linear mapping r =

r(x), followed by the Legendre or Chebyshev pseudospectral
discretization.[43] This allows for denser grids near the origin,
leading to more accurate eigenvalues and eigenfunctions and
the use of a considerably smaller number of grid points than
those of the equal-spacing grid methods. For example, in Ta-
ble 1, we show the bound state energies of H+

2 calculated by
the GPS method,[44] only 72× 24 grid points for the spatial
coordinates were used, we were able to obtain the energies of
the first several bound states of H+

2 with very high accuracy.

Thus the GPS method with the parameters given above can re-
produce the initial states for the time propagation procedure as
well as the propagation matrices with sufficiently high accu-
racy.

Table 1. High-precision bound state energies of H+
2 at internuclear sepa-

ration 2 a.u.

State Energy/a.u.
1σg −1.1026342144949464615089689a

−1.1026342144949b

1σu −0.6675343922023829303619702a

−0.6675343922024b

1πu −0.4287718198958564363139601a

−0.4287718198959b

2σg −0.3608648753395038450386998a

−0.3608648753383b

2σu −0.2554131650864845614172502a

−0.2554131650857b

aPresent work. bRef. [46].

To the time propagation of the wave function, we have
extended the GPS method to the time-dependent generalized
pseudospectral (TDGPS).[45] The numerical scheme of the
TDGPS method consists of two essential steps: (i) The spa-
tial coordinates are optimally discretized in a nonuniform fash-
ion by means of the denser grids near the nuclear origin and
sparser grids for larger distances. (ii) A second-order split-
operator technique in the energy representation, which allows
the explicit elimination of undesirable fast-oscillating high-
energy components, is used for the efficient and accurate time
propagation of the wave function. To introduce the numerical
process of TDGPS in detail, we consider a hydrogen atom case
which is convenient due to the similar procedure for many-
electron atomic and molecular systems in intense laser fields.
The solution of TDSE in Eq. (7) can be written as

Ψ(𝑟, t) = ∑
l,m

Rm
l (r, t)

r
Y m

l (θ ,φ), (19)

where Y m
l (θ ,φ) are the spherical harmonics and Pm

l (cosθ) are
the associated Legendre polynomials. The TDSE becomes

i
∂

∂ t
Rm

l (r, t) = [H0 +V (r, t)]Rm
l (r, t). (20)

Based on the GPS numerical technique, we employ the fol-
lowing coordinate transformation r ∈ [0,rmax] to x ∈ [−1,1], a
suitable algebraic mapping for atomic structure calculations is
provided by the following form:

r(x) = L
1+ x

1− x+α
, (21)

where L and α = 2L/rmax are the mapping parameters. The
radial function Rm

l (r, t) in Eq. (21) is interpolated at the
Legendre–Lobatto collocation point {x} ,[

x j :
(
1− x2

j
)

P′N (x j) = 0
]
, ( j = 0,1,2, . . . ,N) , (22)
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where P′N is the first derivative of the N-th order Legendre
polynomial PN , and its quadrature weight is

w j =
2

N(N +1)
1

[PN(x j)]2
. (23)

Let us introduce the following discretized wavefunction:

φ
m
l (x j, t) = Rm

l (r(x j), t)

√
r′(x j)√
PN(x j)

√
2

N(N +1)
,

( j = 1,2, . . . ,N−1), (24)

where

r′(x) = L
[

2+α

(1− x+α)2

]
. (25)

We have extended the second-order split-operator technique
in spherical coordinates[47–49] for the time propagation of the
TDSE

φ
m
l (x j, t +∆t) = e−iH l

0∆t/2 e−iV (𝑟,t)∆t e−iH l
0∆t/2

φ
m
l (x j, t).

(26)
The stationary part of the Hamiltonian is operated as

e−iH l
0∆t/2

φ
m
l (x j, t) = ∑

i
Si j(l)φ m

l (xi, t), (27)

where the evolution matrix Si j(l) is constructed from the
eigenstates

{
χ l

k(x j)
}

of the Hamiltonian,

∑
i
[H l

0]i jχ
l
k(xi) = ε

l
kχ

l
k(x j), (28)

such that

Si j(l) = ∑
k

χ
l
k(xi)χ

l
k(x j)e−iε l

k∆t/2. (29)

Once the time-dependent wave function Ψ(𝑟, t) is available by
solving the TDSE or TDDFT/OEP-SIC equations, it allows
us to observe the multiphoton quantum dynamics of many-
electron atomic and molecular systems in intense laser fields.

3. Multiphoton quantum dynamics of atoms and
molecules

3.1. MPI

Traditionally many theoretical studies of MPI, ATI, and
HHG processes in many-electron atoms and molecules are
based on the strong-field approximation (SFA),[3] this ap-
proach has its origin in earlier works of Keldysh, Faisal,
and Reiss[50–52] as well as in the semiclassical rescattering
model.[1,2] While SFA-based models result in rather sim-
ple theoretical expressions and produce electron spectra that
qualitatively resemble those obtained with accurate numeri-
cal wave functions, they fail to give quantitative agreement
with more accurate theories. Many attempts have been made
recently to improve SFA,[53–55] it has intrinsic restrictions
and cannot compete with ab initio calculations for accuracy

of the results. On the other hand, SFA-based theories ne-
glect the multielectron dynamics of the target systems. How-
ever, the multielectron effects due to the electron exchange
and correlation may be significant even when the inner elec-
trons are strongly bound and are not excited by the driving
laser field.[56,57] In our previous work,[34,39,40,58] we have ex-
tended the TDDFT with proper long-range potential to an all-
electron three-dimensional (3D) ab initio study of the MPI
of atoms and molecules in intense laser fields, a subject of
much current experimental interests.[59–61] Consider a many-
electron Ar atom, the time-dependent wave function ψiσ (𝑟, t)
in Eq. (11) is obtained by the TDGPS method, so the total
electron density ρ(𝑟, t) can also be determined. The time-
dependent muitiphoton ionization probability of the i-th spin
orbital can be calculated according to

Piσ = 1−Niσ , (30)

where

Niσ = 〈ψiσ (𝑟, t)|ψiσ (𝑟, t)〉 (31)

is the time-dependent population survival probability of the
i-th spin-orbital. The molecular muitiphoton ionization prob-
ability calculated by the TDDFT has a similar definition.[39]

In Fig. 1(a) we present the time-dependent ionization
probabilities of the Ar atom from individual valence elec-
tron orbital 3s, 3p0, and 3p1 calculated by solving the
TDDFT/OEP-SIC equations. In calculation, the laser wave-
length is 800 nm with the laser peak intensity I = 8.0×
1013 W/cm2, and the pulse length is 20 optical cycles with
sin2 pulse shape. It is clear that the ionization probability of
3p0 is the maximum one, and the 3p1 subshell ionization rate is
higher than that of the 3s subshell. According to our previous
works,[62] the np0 valence electron will always be the easiest
one to ionize, while the ionization probability of the ns and
np1 electrons will depend upon the relative importance of the
binding energy and orientation factors, as well as the possible
enhancement due to accidental multiphoton resonant excita-
tion. Since the laser peak intensity plays an important role in
the ionization behavior of the valence electrons and the gen-
eration of harmonic spectrum, we present the time-dependent
ionization probabilities of the Ar atom from individual valence
electron subshells 3s, 3p0, and 3p1 by driving laser pulse with
the laser peak intensity I = 3.0× 1014 W/cm2, as shown in
Fig. 1(b), other laser parameters used are the same as those in
Fig. 1(a). The results show that the time-dependent ionization
probabilities of the Ar atom from individual valence electron
subshells 3s, 3p0, and 3p1 are increased, and it is clear that the
total time-dependent ionization probability is larger than 20%.
The results indicate that the time-dependent ionization proba-
bility plays an important role in the propagation dynamics of
the laser pulse.
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Fig. 1. (a) Time-dependent ionization probability of 3s, 3p0, and 3p1
valence electrons of Ar atom in intense ultrashort laser fields with the
laser peak intensity I = 8.0× 1013 W/cm2. The laser wavelength is
800 nm, and the pulse length is 20 optical cycles with sin2 pulse shape.
(b) Same as (a) for the laser peak intensity I = 3.0×1014 W/cm2.

In Figs. 2(a) and 2(b), we present the time-dependent ion-
ization probability of the different molecular orbital electrons
of N2 and CO in 800 nm, sin2 laser with 20 optical cycles in
pulse duration, and the peak intensities of laser fields used are
I = 8× 1013 W/cm2 and I = 5.0× 1013 W/cm2, respectively.
The laser field is assumed to be parallel to the internuclear
axis, and the internuclear distance for the N2 (R = 2.072 a.u.)
and CO (R = 2.132 a.u.) molecules is fixed at its equilib-
rium distance. The orbital structure and ionization potentials
of the two molecules under consideration are close to each
other. That is why one can expect similar behavior in the laser
field with the same wavelength. The ground state electronic
configuration of N2 and CO is 1σ2

g1σ2
u2σ2

g2σ2
u1π4

u 3σ2
g and

1σ22σ23σ24σ21π45σ2, respectively. The multiphoton ioniza-
tion in the laser field is dominated by HOMO, that is 3σg in
N2 and 5σ in CO. The smaller the ionization potential of the
electronic shell is, the easier it can be ionized. That is why
HOMO is generally expected to give the main contribution
to the MPI probability. However, the orbital probabilities of
HOMO-1 (1π) of N2 and CO have different behaviors with the
laser intensity. The reason is that the N2 molecule is symmet-
ric with respect to inversion. On the contrary, the CO molecule
has a permanent dipole moment, the multiphoton ionization

depends on the direction of the external field with respect to
the position of the carbon and oxygen nuclei.
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Fig. 2. Time-dependent ionization probability of the different molecu-
lar orbitals electrons of N2 and CO in 800 nm, sin2 laser pulse with 20
optical cycles in pulse duration. (a) N2 molecule, for the peak intensity
of laser field I = 8×1013 W/cm2. (b) CO molecule, for the laser peak
intensity I = 5.0×1013 W/cm2.

In Figs. 3(a) and 3(b), we present the orientation-
dependent MPI probabilities for N2 molecule and Ar atom at
the peak intensities of 1× 1014 W/cm2 and 5× 1014 W/cm2,
respectively. We used the laser wavelength 800 nm and the
sine-squared envelope with 20 optical cycles. The orientation
dependence of the total MPI probability is in a good accord
with the experimental observations.[59,60] The maximum MPI
probability for N2 molecule corresponds to the parallel orien-
tation and reflects the symmetry of the HOMO of N2. How-
ever, multielectron effects are quite important for N2, particu-
larly at intermediate orientation angles.[39] Despite the orbital
probabilities have local minima and maxima, the total prob-
ability shows monotonous dependence on the orientation an-
gle. With increasing the peak intensity of the laser field, the
orientation angle distribution of the total ionization probabil-
ity becomes more isotropic. For comparison, we also show
the ionization probability of the Ar atom, whose ionization
potential is similar to that of N2 (HOMO). As one can see
from Figs. 3(a) and 3(b), the absolute values of the ionization
probabilities of N2 and Ar are close to each other. However,
the inner shell contributions are less important for Ar, the to-
tal probability is dominated by the highest-occupied (3p) shell
contribution.
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Fig. 3. The orientation-dependent MPI probabilities for N2 molecule
and Ar atom at the peak intensity (a) I = 1× 1014 W/cm2 and (b) I =
5×1014 W/cm2.

3.2. ATI

The investigation of above-threshold ionization (ATI)[63]

has benefited from the rapid progress of the laser technology.
Grasbon et al.[64] have measured ATI photoelectron spectra for
noble gas atoms ionized with intense few-cycle laser pulses.
Resolutions of the photoelectron momentum distribution in
experiments are unprecedentedly high, which has made de-
tailed comparison with theoretical calculations possible. Since
the orbital-dependent measurements of the p-state photoelec-
tron momentum distribution are already available,[65] theoret-
ical calculations beyond the SAE approximation are urgently
needed.

We have extended the TDDFT/OEP-SIC for the calcu-
lation of the photoelectron momentum distribution of the
noble gas atoms driven by linearly polarized laser fields.
For the ATI calculation, the wave function ψiσ (𝑟, t) is split
into inner and outer regions by a smooth masking func-
tion, and the photoelectron momentum distribution is found
from the outer-region wave function that is propagating in
the momentum space with the Volkov Hamiltonian in the ve-
locity gauge.[66–68] We study the photoelectron-momentum-

distribution of each individual electron at the end of the time
evolution t = tf, given by

Diσ (p,θp) =
∣∣ψ̃V

iσ (𝑝, tf)
∣∣2 , (32)

where ψ̃V
iσ (𝑝, tf) is the Fourier transform of the outer-region

wave function, as well as the photoelectron-momentum-
distribution of all electrons, which can be written as

D(p,θp) =

∣∣∣∣∣∑
σ

Nσ

∑
i=1

ψ̃
V
iσ (𝑝, tf)

∣∣∣∣∣
2

. (33)

Figures 4(a) and 4(b) show the photoelectron-momentum-
distributions of the 2p and 3p states of Ne and Ar, re-
spectively. In calculation, the noble gas atoms are driven
by the 800-nm, linearly polarized, cos2 pulse envelope, 20-
cycle laser pulse along the z axis with a peak intensity of
I = 1.0× 1014 W/cm2. The results indicate that the low-
energy photoelectron-momentum-distributions of the p-state
electrons of Ne and Ar are different along the z axis, and the
bound states and subshell structures play an important role in
the photoelectron-momentum distributions.
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Fig. 4. The p-state photoelectron-momentum-distribution cross section of
(a) Ne and (b) Ar driven by the 800-nm, linearly polarized, 20-cycle laser
pulse along the z axis with a peak intensity of I = 1.0×1014 W/cm2.

3.3. HHG
3.3.1. Resonant enhancement

Consider a helium atom, to obtain the accurate calcula-
tion of the harmonic spectra of He, an angular-momentum-
dependent model potential is constructed in the following
form:[69–71]

Vl =−
1
r
− α

2r4 W6

(
r
rc

)
−
(

N−S
r

+A1

)
e−B1r

−
(

S
r
+A2

)
e−B2r,

(34)

where α is the He+ core dipole polarizability, W6 is a core
cutoff function[72] given by

Wn(x) = 1−
[

1+nx+
(nx)2

2!
+ · · ·+ (nx)n

n!

]
e−nx, (35)

and rc is an effective He+ core radius.
We assume that the laser polarization is along the z-axis.

The TDSE in Eq. (21) becomes

i
∂ψ(𝑟, t)

∂ t
= [H0 +V (𝑟, t)]ψ(𝑟, t), (36)
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where V (𝑟, t) is the time-dependent atom–field interaction,
and H0 represents the unperturbed atom Hamiltonian, which
is

H0 =−
1
2

∇
2 +∑

l

∣∣Y 0
l 〉Vl〈Y 0

l

∣∣ , (37)

where Y 0
l is the spherical harmonic. In the present work

we find that it is sufficient to use five different angular-
momentum-dependent model potentials, namely, all for states
with l = 0,1,2,3 and l≥ 3. The values of the parameters deter-
mined are listed in Table 2. Table 3 presents a comparison of
the bound-state energies predicted by this model potential and
the experimental values. The agreement is well satisfactory in
all cases.

Table 2. Model potential parameters for He (in a.u.).

l α rc S N A1 A2 B1 B2

0 0.28125 2.0 −7.9093912 1 −10.899664 0.0 1.7 3.8

1 0.28125 2.0 1.50094970 1 0.11297684 0.0 1.3 3.8

2 0.28125 2.0 0.88294766 1 −0.032043029 0.0 1.3 3.8

3 0.28125 2.0 0.41193110 1 −0.129391180 0.0 1.3 3.8

≥ 3 0.28125 2.0 0.0 1 0.0 0.0 1.3 0.0

Table 3. Comparison of the calculated He atomic energies with the ex-
perimental values (in a.u.). For each angular momentum l, two rows of
energies En,l are listed: the upper row refers to the calculated model-
potential energies, and the lower row refers the experimental values.[73]

Energy En,l
n

l = 0 l = 1 l = 2 l = 3

1 −0.90369

−0.90356

2 −0.14589 −0.12384

−0.14595 −0.12382

3 −0.06152 −0.05515 −0.05562

−0.06126 −0.05513 −0.05556

4 −0.03372 −0.03107 −0.03128 −0.03125

−0.03358 −0.03125 −0.03127 −0.03125

5 −0.02125 −0.01990 −0.02001 −0.02000

−0.02117 −0.01990 −0.02001 −0.02000

6 −0.01461 −0.01383 −0.01390 −0.01389

−0.01456 −0.01383 −0.01389 −0.01388

The TDSE is solved accurately and efficiently by means
of the TDGPS. Once the time-dependent wave function
ψ(𝑟, t) is available, we can calculate the expectation value of
the induced dipole moment,

d(t) =
∂ 2

∂ t2 〈ψ(𝑟, t)|z|ψ(𝑟, t)〉

=−〈ψ(𝑟, t)
∣∣[Ĥ, [Ĥ,z]

]∣∣ψ(𝑟, t)〉.
(38)

From Ehrenfest theorem, the single-atom harmonic spectra
can be calculated by the Fourier transformation of the time-
dependent dipole moment. We employ the widely-used semi-
classical approach, where the basic expressions come from
classical electrodynamics. The spectral density of the radia-
tion energy emitted is given by the following expression:[74]

S(ω) =
2

3πc2

∣∣∣D̃(ω)
∣∣∣2 , (39)

where c is the speed of light, and D̃(ω) is the Fourier transform
of the time-dependent dipole acceleration d(t).

In Figs. 5(a) and 5(b), the HHG of He atom driven by
a few-cycle 760-nm laser pulse as a function of the laser in-
tensity and the photon energy in the single atom response are
shown. To simulate the experimental condition reported in
Ref. [75], we use the sine-squared envelope, and 4 optical cy-
cles (FWHM pulse duration is ∼ 5 fs). The main pulse sits on
a pedestal of a weaker field (4% of the peak intensity) which
also has a sine-squared shape and duration of 20 optical cy-
cles. Thus the stronger field with 4 optical cycles is preceded
by 8 optical cycles and also followed by 8 optical cycles of the
weaker field. The result shows that the yields of the resonance-
enhanced harmonic spectra strongly depend on the laser peak
intensity, and the yield of the 13th harmonic with the 760-nm
laser frequency, which is just on resonant with the transition of
the 1s2-1s2p 1P (21.22 eV), is always largely enhanced, and
the yields of the 15th harmonic only have a slight enhance-
ment with the laser intensity. Furthermore, a maximum yield
of HHG is located at I = 9.0×1013 W/cm2.
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Fig. 5. (a) Resonance-enhanced structures of the HHG from He as a function of the laser intensity and the photon energy in the
single atom response. (b) Same as (a) but for I = 7.0×1013 W/cm2, I = 8.0×1013 W/cm2, and I = 9.0×1013 W/cm2, respectively.
The black dashed lines in (a) and (b) indicate the transition energy of the 1s2-1s2p 1P (21.22 eV), and the black solid lines indicate
ionization potential Ip.
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The He atom only has two electrons, all occupying s
states, the resonance-enhanced HHG described by the TDSE
with an angular-momentum-dependent model potential is suf-
ficient for the single-atom response. For the complex atoms
and molecules, the TDDFT can obtain more accurate calcu-
lation of the harmonic spectra. In the following, we extend
the TDGPS procedure to the numerical solution of the TDKS
equations for N-electron atomic systems in intense laser fields.
Once the time-dependent wave function ψiσ (𝑟, t) in Eq. (11)
is obtained, the total electron density ρ(𝑟, t) can also be deter-
mined. The induced dipole moment can be expressed as

d(t) =
∫

zρ(𝑟, t)d𝑟 = ∑
iσ

niσ 〈ψiσ (𝑟, t)|z|ψiσ (𝑟, t)〉, (40)

where niσ is the electron occupation number. However, the
laser field interacts with the atoms or molecules, a full de-
scription of experimentally observed HHG spectra requires not
only the theoretical treatment of the nonlinear laser–atom in-
teraction but also the macroscopic propagation of the radiation
through the nonlinear optical medium. The propagation of the
laser-field EL and harmonic-field EH in a macroscopic medium
is described by 3D Maxwell wave equation, it can be written
in the following form:[76–80]

∇
2EL(𝑟, t)−

1
c2

∂ 2EL(𝑟, t)
∂ t2 = µ0

∂Jabs(𝑟, t)
∂ t

+
ω2

0
c2

(
1−η

2
eff
)

EL(𝑟, t), (41)

∇
2EH(𝑟, t)−

1
c2

∂ 2EH(𝑟, t)
∂ t2 = µ0

∂ 2[Pl(𝑟, t)+Pnl(𝑟, t)]
∂ t2 , (42)

where Pl(𝑟, t) is the linear polarization, which has the follow-
ing form:

Pl(𝑟, t) = χEH(𝑟, t), (43)

here the linear susceptibility χ includes the dispersion δ and
absorption effects β in the medium. The dispersion δ can
be obtain from Ref. [17] and particularly it is respectable for
the main contributions of macroscopic resonance-enhanced
HHG. The absorption effect is not important in phase-matched
below-threshold harmonic generation, so it is neglected. The
nonlinear polarization component Pnl(𝑟, t) can be written as

Pnl(𝑟, t) =
[
n0−ne(𝑟, t)

]
d(𝑟, t), (44)

where n0 is the neutral atom density, ne(𝑟, t) is the free-
electron density, and d(𝑟, t) is the single-atom induced dipole
moment calculated according to Eq. (11). Equations (42) and
(43) are solved in the frequency domain.

In fact, when the pressure and the laser intensity are low
enough, the incident laser field is not modified in the medium,
and only the harmonic field has to be propagated. Once equa-
tion (43) is solved, the macroscopic HHG spectrum can be ob-
tained by integration of the signal in the plane perpendicular
to the propagation direction

PM(ω) ∝

∫
∞

0
d2r⊥ |EH(r⊥,ω)|2 . (45)

Since the TDDFT calculation for single-atom response for
feeding the macroscopic propagation equations is very time
consuming, the fast and efficient computing is desirable. For
this purpose, we design a parallel algorithm based on the
graphics processing unit (GPU) machines for the calculation
of the TDDFT plus Maxwell wave equation.

In Fig. 6(a), we present the phase-matching of resonance-
enhanced structures (RESs) from Ar atom simulated by the
TDDFT/OEP-SIC including the propagation effects. The laser
peak intensity in the center of gas jet is I = 3.0×1013 W/cm2,
the confocal parameter of the laser beam is 35 mm, the length
of gas jet is 2.0 mm, the pressure is 40 Torr, and the target
is set at the laser focus −2 mm. The harmonic spectrum is
characterized by coherent line emissions which are located at
the energy range of the labeled 3p6 to 3p5ns and 3p5nd res-
onance states near the 9th harmonic. The harmonic emission
in argon indicates that the phase-matching process results in
spectrally narrow, energy-shifted RESs when compared with
the single-atom emission. The result shows that the phase-
matching occurs primarily in the vicinity of the resonances,
in good agreement with the experiment.[75] Figure 6(b) shows
the phase-matching of resonance-enhanced structures from Ar
atom for the 60 Torr pressure case. As one can see that the
resonance-enhanced structure appears more fine peaks near
the 9th harmonic order.
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Fig. 6. (a) Phase-matching of resonance-enhanced structures from Ar atom
simulated by the TDDFT/OEP-SIC in a 730-nm laser field. The shift
of the phase-matched RESs relative to the bound state energies is indi-
cated in the inset. The laser peak intensity in the center of gas jet is
I = 3.0×1013 W/cm2, the confocal parameter of the laser beam is 35 mm,
the length of gas jet is 2.0 mm, the pressure is 40 Torr, and the target is set
at the laser focus −2 mm. (b) Same as (a) for the 60 Torr pressure.
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3.3.2. Phase-matching of HHG

Phase matching plays an essential role in determining
the efficiency of macroscopic HHG. The condition for perfect
phase-matching (PM) in HHG is obtained when the wavevec-
tor of the q-th harmonic 𝑘q equals the dipole wavevector 𝑘d,
which can be written as[81]

𝑘q = 𝑘d = q∇φ(r,z, t)−∇Φ(r,z, t), (46)

where φ(r,z, t) and Φ(r,z, t) are the phase accumulated during
propagation and the phase of the driving field, respectively.
Both the phases will finally determine how the HHG emission
coherently builds up so that, in general, in order to achieve
efficient HHG along a defined propagation direction phase,
matching requirements must be fulfilled.[82,83]

As is well known, such a condition is fulfilled in a Gaus-
sian beam, on-axis and after the focus, when both the phase
and intensity decrease along the propagation direction. When
the gas medium is placed before the focus, the PM condition
is only fulfilled in restricted regions off-axis where the phase
and intensity gradients in the radial direction become impor-
tant. In Figs. 7(a) and 7(c), we show the evolution of har-
monic intensities in space for the 7th order harmonic (7H) and
the 15th order harmonic (15H) of H2 molecules obtained from
the mac TDDFT in an 800-nm laser field, the corresponding
phase difference of the HHG is presented in Figs. 7(b) and
7(d), respectively. The laser peak intensity in the center of gas
jet is I = 8.0×1013 W/cm2, the pulse length is 20 optical cy-
cles with cos2 pulse shape, the confocal parameter of the laser
beam is 25 mm, the length of gas jet is 4.0 mm, the pressure is
10 Torr, and the target is set at the laser focus. It is clear that
the 7H and 15H can manipulate the gas jet position to obtain
optimum harmonic yields, and the phase-matching condition
is fulfilled in restricted phase difference from −π/2 to π/2
(see the green solid lines).
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Fig. 7. (a) and (c) Evolution of harmonic intensities in space for the 7th
order harmonic (7H) and the 15th order harmonic (15H) of H2 molecules
obtained from the mac TDDFT in an 800-nm laser field. The laser peak in-
tensity in the center of gas jet is I = 8.0×1013 W/cm2, the pulse length is 20
optical cycles with cos2 pulse shape. (b) and (d) The corresponding phase
difference of the HHG.

Recently, Willner et al.[84] have developed a novel dual-
gas quasiphase matching (QPM) concept based on alternat-
ing a HHG generating medium with passive matching hydro-
gen zones. The choice condition of the dual-gas target pro-
posed by their previous results is that the HHG medium must
have a higher ionization potential than the phase matching
medium. In Fig. 8, we show a scheme of the dual-gas QPM
in HHG, but the helium atom which only acts as the phase-
matching medium has a larger ionization potential than those
argon HHG medium. In Fig. 9, the enhancement of the HHG
calculated by the mac TDDFT is presented due to the dual-gas
QPM. For reference, the corresponding one-gas result (blue
dotted lines) is also presented. In calculation, the laser wave-
length is 800 nm, the laser peak intensity in the center of gas
jet is I = 2.3× 1014 W/cm2. For one-gas jet, each gas jet
d1 = 0.1 mm (Ar), the total gas length is 0.6 mm, and the pres-
sure is 20 Torr. For two-gas jet, each gas jet d1 = 0.1 mm (Ar)
and d2 = 0.1 mm (He), the total gas length is 0.6 mm for Ar
and 0.5 mm for He. The pressure is 20 Torr for Ar and 80 Torr
for He. The gas get is put 2 mm after the focus. The results
show that the HHG in dual-gas QPM is largely enhanced.
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Fig. 8. A scheme of dual-gas QPM.
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Fig. 9. Enhancement of the HHG in dual-gas QPM. For the reference,
the corresponding one-gas result (blue dotted lines) is presented.

3.4. APG

The study of the generation of the APG is a subject of
much interest in ultrafast science and technology in the last
decade.[85] Currently, the production of the APG by means of
the superposition of broadband supercontinuum in HHG is one
of the most promising routes. For the generation of the broad-
band supercontinuum harmonic spectra and ultrashort isolated
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attosecond pulse, several techniques have been proposed, such
as the availability of few-cycle laser pulse,[86,87] double op-
tical gating,[88] multi-cycle driver laser pulses directly from
an amplifier,[89] and two- or multi-color laser scheme.[90–99]

As an example, consider a helium atoms driven by two color
combined laser field, the HHG spectrum can be obtained by
the Fourier transformation of time-dependent dipole moment
d(t), given by

P(ω) =

∣∣∣∣ 1
(tf− ti)ω2

∫ tf

ti
d(t)e−iωt dt

∣∣∣∣2 . (47)

By superposing several harmonics, an ultrashort pulse can be
generated

I(t) =
∣∣∣∣∫ ωf

ωi

P(ω)e iωt dω

∣∣∣∣2 . (48)

Here, we choose two color combined laser fields in the
follow form:

E(t) = E1 f1(t− td)cos[ω1(t− td)+φ ]+E2 f2(t)cos(ω2t),
(49)

where E1 and E2 are the amplitudes with the Gaussian dura-
tions f1(t) and f2(t), respectively, and ω1 and ω2 are the cor-
responding frequencies. φ is the carrier envelope phase, and td
is the time delay between the two laser pulses.
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Fig. 10. (a) High-order harmonic spectra of He atoms driven by two color
combined laser field with the proper time delay td. (b) Attosecond pulse
generation by superposing hundreds of the harmonics shown in (a).

Figure 10(a) shows the HHG spectrum from He atoms
driven by the two-color combined laser field. In our cal-
culation, ω1 = 2400 nm, ω2 = 1200 nm, E1 = 0.119 a.u.,

E2 = 0.053 a.u., and td = −0.38T1 (T1 = 2π/ω1). It is evi-
dent that there is a two-plateau structure with the cutoffs at
the 800th order and 2000th order, respectively, and the second
plateau is smooth, which is advantageous to produce the sin-
gle ultrashort attosecond. In Fig. 10(b), we show an isolated
26 as pulse by superposing the harmonics from the 1500th to
the 2000th order. This attosecond pulse is regular, and the du-
ration is close to one atomic unit of time.

4. Conclusion and outlook
In summary, we have presented TDSE and TDDFT

approaches recently developed for accurate and efficient
treatment of the time-dependent dynamics of many-electron
atomic and molecular systems. Both the TDSE and TDDFT
can be solved by means of the TDGPS methods. The gen-
eralized pseudospectral technique allows the construction of
non-uniform and optimal spatial grids, denser mesh nearby
each nucleus and sparser mesh at longer range, leading to
high-precision solution of both electronic structure and time-
dependent quantum dynamics with the use of only a modest
number of spatial grid points. The TDSE and TDDFT for-
malism along with the use of the time-dependent GPS nu-
merical technique provides a powerful new nonperturbative
time-dependent approach for exploration of the electron cor-
relation and multiple orbital effects on strong field processes.
The procedure is demonstrated by several case studies of MPI,
ATI, HHG, and APG of atomic and molecular systems, such
as He, Ne, and Ar atoms, H2, N2, and CO molecules. The
TDDFT is the primary approach available for the treatment
of time-dependent processes of many-electron quantum sys-
tems in strong fields. Further extension of the self-interaction-
free TDDFT approaches to larger molecular systems will be
valuable and can lead to significant advancement in the un-
derstanding of strong-field chemical physics and atomic and
molecular physics in the future.
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