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Simulation of anyons by cold atoms with
induced electric dipole moment∗
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We show that it is possible to simulate an anyon by a trapped atom which possesses an induced electric dipole moment
in the background of electric and magnetic fields in a specific configuration. The electric and magnetic fields we applied
contain a magnetic and two electric fields. We find that when the atom is cooled down to the limit of the negligibly small
kinetic energy, the atom behaves like an anyon because its angular momentum takes fractional values. The fractional part
of the angular momentum is determined by both the magnetic and one of the electric fields. Roles electric and magnetic
fields played are analyzed.
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1. Introduction
Simulation of physical phenomena which occur origi-

nally in charged particles by neutral ones is an interesting
subject. An example is the simulation of Aharononv–Bohm
(AB) effect by neutral particles. The AB effect predicts that a
charged particle will accumulate a geometrical phase when it
moves around a long-thin magnetic-flux carried solenoid.[1]

The simulation of AB effect by a neutral particle which
possesses a permanent magnetic dipole moment was proposed
by Aharonov and Casher. In Ref. [2], they predicted that
a neutral particle with a permanent magnetic dipole moment
would acquire a geometrical phase if it moved around a uni-
formly electric charged long filament with the direction of the
magnetic dipole moment parallel to the filament. It is the
Aharonov–Casher (AC) effect.

The simulation of AB effect by a neutral particle with per-
manent electric dipole moment was proposed in Refs. [3,4]. It
was predicted that a neutral particle with a permanent elec-
tric dipole moment would receive a geometrical phase if it cir-
cled around a uniformly magnetic charged long filament. It is
named He–Mckellar–Wilkens (HMW) effect. The observation
of HMW effect in experiments is difficult since the magnetic
field in HMW effect is produced by magnetic monopoles.[5,6]

In order to avoid this difficulty, the authors in Ref. [7] pro-
posed an alternative method to observe the HMW effect. In-
stead of using a neutral particle which possesses a permanent
electric dipole moment, they proposed to use a neutral parti-
cle with an induced electric dipole moment interacting with an

electric field and a magnetic field. Compared with HMW ef-
fect, the magnetic field in the proposal[7] is easily prepared in
experiments.

Another example is Landau levels. Landau levels are
eigenvalues of a charged planar particle interacting with a uni-
form perpendicular magnetic field. In Ref. [8], the authors
showed that Landau levels could be simulated by an atom
which possesses a permanent magnetic dipole moment in the
background of an electric field. Since then, there are many re-
search works concerning the analogy between Landau levels
and spectra of neutral particles which possess permanent elec-
tric or magnetic dipoles interacting with electric and magnetic
fields.[9–21]

We shall show that anyons,[22,23] which were mostly re-
alized by charged particles before, can also be simulated by
a neutral particle with an induced electric dipole moment.
As is known, eigenvalues of the canonical angular momen-
tum must be quantized in the three-dimensional space.[24,25]

However, in the two-dimensional space, eigenvalues of the
canonical angular momentum can take fractional values.[26,27]

The reason is that the rotation group in three-dimensional
space is a non-Abelian one while it is Abelian in the two-
dimensional space. Particles which have the fractional angu-
lar momentum (FAM) are named anyons.[22,23] Anyons play
important roles in understanding quantum Hall effects[28] and
high Tc superconductivity.[29] There are several ways to real-
ize anyons. Because of the dynamical properties of the Chern–
Simons gauge field, in the absence of the Maxwell term, one
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can realize anyons by coupling charged particles to the Chern–
Simons gauge field in (2+ 1)-dimensional space–time.[30–33]

Recently, anyons receive renewed interests.[34–36]

Reference [37] proposed an alternative approach to real-
ize anyons. The author coupled an ion to two magnetic fields.
One is a uniform magnetic field and the other is generated
by a long-thin magnetic solenoid. Provided the kinetic en-
ergy of this ion is cooled down to its lowest level by using the
cold atomic technologies, the author found that eigenvalues of
the canonical angular momentum of this charged particle can
take fractional values. The fractional part is determined by the
magnetic flux inside the magnetic solenoid.

In this paper, we propose to simulate anyons by coupling
neutral particles, for example, atoms, which possess an in-
duced electric dipole moment to electric and magnetic fields.
The electric and magnetic fields we applied contain a magnetic
field and two electric fields. The organization of this paper is
as follows: in the next section, we introduce our model. Then,
we quantize the model canonically and pay attention to its ro-
tation property. Although the canonical angular momentum
of this model only can take integer values, we show that the
canonical angular momentum of the reduced model, which is
obtained by cooling down the kinetic energy of the atom to the
negligibly small, takes fractional values. The fractional part of
the angular momentum depends on the intensity of the mag-
netic and only one of the electric fields explicitly. In Section
3, we analyze the roles two electric fields played in the simu-
lation of anyons. We prove that both of the electric fields are
necessary to simulate anyons. Summations and conclusions
will be given in the last section.

2. Fractional angular momentum
The model we considered is an atom which possesses an

induced electric dipole moment (with no permanent electric or
magnetic dipole moments) interacting with electric and mag-
netic fields. The electric and magnetic fields we applied con-
sist of a pair of electric fields 𝐸(1), 𝐸(2) and a uniform mag-
netic field 𝐵.

The atom moves in a cylinder in which a uniform vol-
ume charge density ρ is distributed. A long filament with uni-
form electric charge per length is along the symmetry axis of
the cylinder. The magnetic field is uniform and parallel to the
symmetry axis of the cylinder which we take to be the z-axis.

The electric fields 𝐸(1) and 𝐸(2) are produced by the long
electric charged filament and the uniformly distributed electric
charges interior the cylinder, respectively. As a result, these
two electric fields are in the radial direction. Explicitly, the
electric and magnetic fields we considered are

𝐸(1) =
k
r
𝑒r, 𝐸(2) =

ρ

2
r𝑒r, (1)

𝐵 = B𝑒z, (2)

where k and ρ are parameters which are characters of these
two electric fields, and 𝑒r is the unit vector along the ra-
dial direction on the plane. Besides the electric and magnetic
fields (1) and (2), the atom is trapped by a harmonic potential
simultaneously. The harmonic potential and electric as well as
magnetic fields are designed to make the motion of the atom
be rotationally symmetric.

In Ref. [7], the authors showed that a neutral atom with
an induced electric dipole moment would receive a topological
phase if it moves around this uniformly electric charged fila-
ment in the presence of the magnetic field (2). By confining
the atom on a rigid circle, the authors of Ref. [38] investigated
the eigenvalue problem of the model considered here.

Due to the electric fields, the atom will be polarized, i.e.,
it will induce an electric dipole moment

𝑑= α

(
𝐸+

𝑣

c
×𝐵

)
, (3)

where α , 𝑣, and c are the dielectric polarizability, velocity of
the atom, and speed of light in the vacuum, respectively, and 𝐸

is the summation of the two electric fields, 𝐸 = 𝐸(1)+𝐸(2).
The second term on the right-hand side of the above equa-
tion actually is the relativistic effect, it reflects the fact that a
moving particle in a magnetic field will feel an electric field
∼ 𝑣

c ×𝐵.[39]

Taking the electric and magnetic fields (1) and (2) into
account and trapping the atom by a harmonic potential, we get
the Lagrangian which describes the dynamics of the atom. It
is

L =
1
2

m𝑣2 +
1
2
𝑑 ·
(
𝐸+

𝑣

c
×𝐵

)
− 1

2
K𝑟2, (4)

where the last term is the harmonic potential provided by a
trap.

Substituting the expression 𝑑 = α(𝐸+ 𝑣
c ×𝐵) into the

above Lagrangian and confining the motion of the atom in the
plane perpendicular to the magnetic field inside the cylinder,
we simplify the Lagrangian (4) to the form (the Latin indexes
i, j take values 1, 2 and the summation convention is applied
throughout the present paper)

L =
1
2

Mẋ2
i −

αB
c

εi j ẋiE j +
1
2

αE2
i −

1
2

Kx2
i , (5)

where M = m+αB2/c2 is the effective mass.
We should quantize the model (5) before studying its

quantum properties. To this end, we define the canonical mo-
menta with respect to variables xi

pi =
∂L
∂ ẋi

= Mẋi−
αB
c

εi jE j. (6)

The classical Poisson brackets among canonical variables
xi, pi are

{xi, x j}= {pi, p j}= 0, {xi, p j}= δi j. (7)

Then the canonical Hamiltonian is achieved by the Legendre
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transformation

H =
1

2M

(
pi +

αB
c

εi jE j

)2

− 1
2

αE2
i +

1
2

Kx2
i . (8)

The canonical quantization is accomplished when the replace-
ments

xi→ xi, pi→−ih̄
∂

∂xi
, { , }→ 1

ih̄
[ , ]

in the classical Hamiltonian (8) and the Poisson brackets (7)
are complete.

The canonical angular momentum is

J = εi jxi p j, (9)

which is proved to be conserved, i.e., [J, H] = 0. It can also be
written as J =−ih̄∂/∂ϕ , where ϕ is the azimuth angle. Obvi-
ously, eigenvalues of this canonical angular momentum must
be quantized,

Jn = nh̄, n = 0,±1,±2, . . . . (10)

Besides this, the rotation symmetry of the model (5) on the
plane can also be verified since [J, xi] = ih̄εi jx j.

Now, we consider the reduced model which is the limit
of taking the kinetic energy in Eq. (5) to be negligibly small.
This may be realized in experiments by cooling down the atom
to a slower velocity so that the effective kinetic energy can be
neglected (in an experiment carried out in the early of 1990s,
the velocity of atoms can be cooled down to ∼ 1 m·s−1 [40]).
This kind of reduction is first considered in Ref. [41] during
the studies of the Chern–Simons quantum mechanics.

The reduced model is described by the Lagrangian

Lr =−
αB
c

εi j ẋiE j +
1
2

αE2
i −

1
2

Kx2
i , (11)

from which we get canonical momenta with respect to vari-
ables xi. They are

pi =
∂Lr

∂ ẋi
=−αB

c
εi jE j. (12)

The Hamiltonian of the reduced model can be read directly
from the Lagrangian (11). It is

Hr =
K
2

x2
i −

1
2

αE2
i . (13)

The righthand side terms of Eq. (12) do not contain ve-
locities, thus, they are in fact the primary constraints in the
terminology of Dirac.[42] We label them as

φ
(0)
i = pi +

αB
c

εi jE j ≈ 0, (14)

in which ‘≈’ means equivalent on the constraint surface. The
existence of primary constraints shows that there are depen-
dent degrees of freedom in the reduced model (11). The clas-
sical Poisson brackets among these two primary constraints
can be obtained by a straightforward calculation. They are{

φ
(0)
i , φ

(0)
j

}
=

αρB
c

εi j. (15)

Since {φ (0)
i , φ

(0)
j } 6= 0, the primary constraints φ

(0)
i belong to

the second class and there are no secondary constraints. There-
fore, the constraints φ

(0)
i can be used to eliminate the depen-

dent degrees of freedom in the reduced model (11).
The canonical angular momentum in this reduced model

has the same expression as Eq. (9), i.e., J = εi jxi p j. Since
there are constraints φ

(0)
i ≈ 0 which lead to the dependence

among canonical variables xi, pi, we rewrite the canonical
angular momentum by substituting the constraints (14) into
J = εi jxi p j, and obtain

Jr = εi jxi p j =
αB
c

xiEi. (16)

Considering the explicit form of electric field (1), we get the
canonical angular momentum of the reduced model. It is

Jr =
αB
c

xi

(
E(1)

i +E(2)
i

)
=

αB
c

(
k+

ρ

2
x2

i

)
. (17)

It is more convenient to get eigenvalues of the angular momen-
tum (17) by algebraic method. In doing so, we must determine
the commutator between xi before further proceeding. The
classical version of the commutator, i.e., the Dirac bracket,
can be calculated by the definition[42]

{xi, x j}D = {xi, x j}−{xi, φ
(0)
k }{φ

(0)
k , φ

(0)
l }

−1{φ (0)
l , x j}.

(18)
Upon straightforward algebraic calculation, we arrive at

{xi, x j}D =−
cεi j

αρB
. (19)

Thus, the commutators between xi are

[xi, x j] =−
ih̄cεi j

αρB
. (20)

In view of these commutators and the angular momentum
as well as the Hamiltonian of the reduced model (13), (17), we
can get

[Jr, Hr] = 0, [Jr, xi] = ih̄εi jx j, (21)

which show that the angular momentum of the reduced model
Jr is still conserved and the rotation symmetry of the reduced
model is still held.

Taking into account the above commutator, it is clear to
see that apart from the term αBk, the canonical angular mo-
mentum (17) is equivalent to a one-dimensional harmonic os-
cillator. With the help of the commutators (20), one can write
down the eigenvalues of the canonical angular momentum (12)
immediately. They are

Jrn =
αBk

c
+

(
n+

1
2

)
h̄. (22)

Therefore, it shows that eigenvalues of the canonical an-
gular momentum will take fractional values when its kinetic
energy is cooled down to the negligibly small. The fractional
part is determined by both the intensity of the applied mag-
netic field and the electric field 𝐸(1).
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From the eigenvalues of the canonical angular momen-
tum (22), it seems that the electric field 𝐸(2) does not have
any influences on the FAM since the parameter ρ does not ap-
pear in Eq. (22) explicitly. In fact, the electric field 𝐸(2) also
plays important roles in producing the FAM. In the next sec-
tion, we analyze the roles that two electric fields 𝐸(1) and 𝐸(2)

played.

3. Roles two electric fields played

As we showed that besides the intensity of the magnetic
field, the fractional part of the canonical angular momentum
only contains the parameter k. Thus it seems that only the
electric field 𝐸(1) contributes to the FAM. In the following,
we show that the electric field 𝐸(2) also plays important roles
in producing the FAM since the FAM will not appear in the
absence of either of the electric fields.

First of all, we consider the case that the electric field 𝐸(1)

is turned off. In this case, the dynamics is determined by the
Lagrangian

L̄ =
1
2

Mẋ2
i −

αB
c

εi j ẋiE
(2)
j +

1
2

α

(
E(2)

i

)2
− 1

2
Kx2

i . (23)

Compared with Lagrangian (5) in which both of the electric
fields are present, we find that the only difference is that the
term Ei = E(1)

i +E(2)
i is replaced by E(2)

i .
The canonical momenta with respective to xi are given by

pi =
∂ L̄
∂ ẋi

= Mẋi−
αB
c

εi jE
(2)
j . (24)

The model (23) can be quantized directly. The canonical an-
gular momentum is defined as usual J̄ = εi jxi p j = −ih̄∂/∂ϕ

and its eigenvalues are Jn = nh̄, 0,±1,±2, . . .. It seems that as
far as the rotation property is concerned, there is no difference
between the models (5) and (23).

However, when the atom is cooled down to the negligi-
bly small kinetic energy, their difference appears. To see it
clearly, we set the effective kinetic energy term to zero in La-
grangian (23) in this limit. Therefore, the Lagrangian (23)
reduces to

L̄r =−
αB
c

εi j ẋiE
(2)
j +

1
2

α

(
E(2)

i

)2
− 1

2
Kx2

i . (25)

Introducing the canonical momenta with respective to xi, we
get two primary constraints as

φ̄
(0)
i = pi +

αB
c

εi jE
(2)
j ≈ 0. (26)

The Poisson brackets between constraints (26) are{
φ̄
(0)
i , φ̄

(0)
j

}
=

αB
c

ρεi j, (27)

which are equivalent to Eq. (15). Therefore, they are the sec-
ond class and can be used to eliminate the dependent degrees
of freedom. Substituting the constraints (26) into canonical

angular momentum J̄ = εi jxi p j, we find that the canonical an-
gular momentum takes the from

J̄ =
αB
c

xiE
(2)
i =

αρB
2c

x2
i (28)

in this limit. Its eigenvalues can be obtained once we get the
commutators between xi. It can be checked that the Dirac
brackets between xi are nothing but Eq. (19). Thus, eigen-
values of the angular momentum are J̄n = (n + 1

2 )h̄, n =

0,±1,±2, . . .. Therefore, the electric field 𝐸(2) alone can not
produce the FAM.

On the contrary, if we turn off the electric field 𝐸(2) and
let 𝐸(1) alone, the Lagrangian (5) becomes

L̃ =
1
2

Mẋ2
i −

αB
c

εi j ẋiE
(1)
j +

1
2

α

(
E(1)

i

)2
− 1

2
Kx2

i . (29)

We introduce the canonical momentum pi = ∂ L̃/∂ ẋi = Mẋi−
αB
c εi jE

(1)
j and quantize the model (29) canonically. Then

eigenvalues of the canonical angular momentum J̃ = εi jxi p j =

−ih̄∂/∂ϕ must be quantized as J̃n = nh̄, n = 0, ±1, ±2, . . ..
The reduced model of the Lagrangian (29) turns out to be

L̃r =−
αB
c

εi j ẋiE
(1)
j +

1
2

α

(
E(1)

i

)2
− 1

2
Kx2

i . (30)

The Hamiltonian corresponding to this Lagrangian can be read
directly from the above Lagrangian.[43] It is

H̃r =−
1
2

α

(
E(1)

i

)2
+

1
2

Kx2
i . (31)

We define canonical momenta from the Lagrangian (30). They
are

pi =
∂ L̃r

∂ ẋi
=−αB

c
εi jE

(1)
j . (32)

Once again, the introduction of canonical momenta leads to
two primary constraints

φ̃
(0)
i = pi +

αB
c

εi jE
(1)
j ≈ 0. (33)

Different from Eqs. (15) and (27), the Poisson brackets be-
tween constraints φ̃

(0)
i ≈ 0 in the present case are vanishing,

i.e., {φ̃ (0)
i , φ̃

(0)
j } = 0. It means that there are secondary con-

straints. Each of the primary constraints (33) will lead to sec-
ondary constraints.

By applying the consistency condition to the primary con-
straints φ̃

(0)
i ≈ 0, we get

φ̃
(1)
i =

{
φ̃
(0)
i , H

}
=−αk

r2 E(1)
i −Kxi ≈ 0. (34)

We label the primary constraints (33) and the secondary con-
straints (34) in a unified way as ΦI =(φ̃

(0)
i , φ̃

(1)
i ), I = 1,2,3,4.

It can be verified that Det{ΦI , ΦJ} 6= 0. Thus, there are no
further constraints and all the constraints ΦI are second class.

It means that when we turn off the electric field 𝐸(2), the
reduced model (29) does not have dynamical degrees of free-
dom. Thus, the electric field 𝐸(2) plays important roles in pro-
ducing the FAM: although it does not contribute to the frac-
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tional part of the angular momentum directly, the FAM will
not appear in its absence.

4. Conclusions and remarks
In this paper, we propose to simulate an anyon which was

usually realized by a charged particle originally by using a
trapped cold atom. This atom possesses an induced electric
dipole moment interacting with electric and magnetic fields.
The electromagnetic fields we applied contain a uniform mag-
netic field and two electric fields.

We prove that the canonical angular momentum of the
model (4) can only take integer values. However, its reduced
model which is obtained by cooling down the atom to the limit
of the negligibly small kinetic energy produces the FAM. The
magnitude of the FAM can be modulated by two parameters,
i.e., the intensity of the applied magnetic field and the electric
field 𝐸(1). Apart from the fractional part, it is also interesting
to observe that the differences between eigenvalues of canoni-
cal angular momentum are half integers. It is one of the char-
acteristics of Chern–Simons quantum mechanics. In Ref. [44]
the author proposed to realize the Chern–Simons quantum me-
chanics model by a cold Rydberg atom.

All the electric and magnetic fields play important roles in
the simulation of FAM. The effect of the electric field 𝐸(1) is
evident since the magnitude of the FAM is proportional to the
parameter k, which is the strength of electric field 𝐸(1). Roles
the electric field 𝐸(2) played are subtle. At the first glance, the
electric field 𝐸(2) does not contribute to the fractional part of
the angular momentum. However, it does influence the results
since the FAM will not appear in its absence.

Besides the contribution to the effective mass, roles the
magnetic field played will be more transparent if we introduce
the effective gauge potentials Aeff

i = εi jE j and rewrite the La-
grangian (5) as

L =
1
2

Mẋ2
i −

αB
c

Aeff
i ẋi +

1
2

αE2
i −

1
2

Kx2
i .

The interaction term is similar with a charged particle mini-
mally coupling a gauge field. The magnetic field (2) acts as
the coupling strength. Therefore, the magnetic field not only
contributes to the mass of the atom, but also is the coupling
strength of the interaction between the atom and the electric
fields which is of fundamental importance in producing the
FAM.
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