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The techniques for oceanographic observation have made great progress in both space-time coverage and quality,
which make the observation data present some characteristics of big data. We explore the essence of global ocean dynamic
via constructing a complex network with regard to sea surface temperature. The global ocean is divided into discrete
regions to represent the nodes of the network. To understand the ocean dynamic behavior, we introduce the Gaussian
mixture models to describe the nodes as limit-cycle oscillators. The interacting dynamical oscillators form the complex
network that simulates the ocean as a stochastic system. Gaussian probability matching is suggested to measure the behavior
similarity of regions. Complex network statistical characteristics of the network are analyzed in terms of degree distribution,
clustering coefficient and betweenness. Experimental results show a pronounced sensitivity of network characteristics to
the climatic anomaly in the oceanic circulation. Particularly, the betweenness reveals the main pathways to transfer thermal
energy of El Niño–Southern oscillation. Our works provide new insights into the physical processes of ocean dynamic, as
well as climate changes and ocean anomalies.
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1. Introduction
Data analysis has always been one of the most important

foundations in marine science research. There are multitudi-
nous ways to collect a variety of marine hydrological observa-
tion data in the area of marine and meteorological science,[1]

such as sea surface temperature, sea surface wind, waves and
currents. It is wonderful to know what we can get from these
observation data. Data analysis and mining could provide us
some insight information and patterns for discovering and pre-
dicting the ocean phenomenon and climate abnormities. Re-
cent years, the techniques for oceanographic observation have
made great progress in both spatial/temporal coverage and
quality.[2] Nowadays, ocean observation data are acquired and
stored at an unprecedented scale and speed,[3] which presents
some characteristics of big data and poses a great challenge
for data analysis.[4] A pivotal problem of applications of com-
puter science for marine science research is how to effectively
extract valuable knowledge from such a huge amount of ob-
servation data.[5–7]

One classical research topic in the artificial intelligence,
i.e., complex network analysis, recently has attracted more
and more attention to analyze the complex big data. It gives
new perspective of understanding the massive data by network
topology modeling and analysis.[13] The modelled network is

a complex system composed of nodes and edges. Currently,
there are extensive applications of complex network theory
due to its universality. More and more interdisciplinary re-
search between complex network and various traditional fields
have been seen with significant success. Can complex network
analysis methods be used in the areas of environment data
analysis, such as global climate and ocean dynamic? Encour-
agingly, research in terms of introducing the complex theory
into climate areas has already been carried out. Climate plays
an important role to the survival and development of human
beings, therefore it always draws huge attention of researchers
from different areas. As a tool for data analysis, complex net-
work has made great achievements among climatology field
in recent years. The relationship between dynamic character-
istics and topological structure of the climate network has been
widely studied, especially the synchronization of climate phe-
nomena has become a hot research topic.[8,9]

Ocean dynamic is highly related and influences the global
climate change. Exploring and understanding the ocean en-
ergy and mass exchange are important research issues about
ocean and climate. Complex network separates the complex
system into a plenty of dynamical subsystems, which can be
represented by a limit-cycle oscillator. Meanwhile, the in-
teraction of oscillators is considered as the edge of network.
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This work focuses on modeling the dynamic ocean system as
a complex network to investigate its statistical patterns. We in-
vestigate global ocean dynamic via constructing the complex
network with regard to sea surface temperature. The global
ocean is divided into discrete regions to represent the nodes
of the network. In probability theory, the central limit the-
orem (CLT) establishes that the distribution of most natural
data conforms to the Gaussian distribution. To model the ran-
dom and dynamic of the ocean physical process, we introduce
the Gaussian mixture models to describe the nodes as limit-
cycle oscillators. What’s more, the ocean can be simulated as
a stochastic system by forming a complex network with the in-
teracting among these dynamical oscillators. The interacting
behavior can be regarded as the edge of the network. Gaussian
probability matching is suggested to measure the interacting
behavior, i.e., similarity of regions. The statistical character-
istics of the ocean network model are investigated in terms
of degree distribution, clustering coefficient and betweenness.
From the experimental results, we give a preliminary analy-
sis for ocean phenomena with the complex network statistical
characteristics. It provides new insights into the physical pro-
cesses of ocean dynamic, as well as climate changes and ocean
anomalies.

2. Related work
Complex networks have been frequently used to represent

relationships between entities in many complex systems, and
have achieved fruitful results in climatological application.
Donges et al.[10,11] carried out the pioneering works of intro-
ducing the complex network theories and technologies to ex-
plore characteristics of spatial and temporal climate data. They
constructed a complex climate network model to investigate
characteristics of global climate, and pointed out the scale-
free properties of the earth’s climate system. Charakopou-
los et al.[12] examined the performance of two different ap-
proaches for identification of underlying patterns and under-
standing complex characteristics of climate dynamics among
atmospheric and oceanic variables. Their research findings
suggested that the network characteristics reveal significant in-
formation and are strongly dependent on the underlying sys-
tem dynamics. Moreover, their methodologies can also be
applied reliably in spatiotemporal pattern identifications and
data classifications among global climate observations. Stein-
haeuser et al.[14] proposed six-dimensional features consid-
ering the relationship among temperature, pressure, humidity
and precipitation to establish a network model. They further
explored different function areas with similar climatic charac-
teristics in 2010. Alexander et al.[15] founded that complex
networks meet the need for innovation of climate research fac-
ing quickly increasing data volumes which were produced by
growing observational networks and model inter-comparison

exercises. Furthermore, higher-order complex network mea-
sures may contain complementary statistical information that
is invisible to other methods like EOF analysis. To precisely
forecast El Niño events, Meng et al.[16] approached a percola-
tion framework based on time-delayed cross correlation as an
alarm which forecasts 7 out of 10 El Niño events from 1980
and 2016. Kurths et al.[17] found a unique wave structure asso-
ciated with ocean currents related to the transmission of high
energy flow. Boers et al.[18,19] identified the temporal and spa-
tial characteristics of extreme precipitation events in the South
American monsoon climate region. Ludescher et al.[20] fore-
casted the next El Niña phenomenon ahead of a year’s time.
Tsonis et al.[21] firstly used degree centrality to identify super-
nodes and associated them with teleconnection patterns in the
atmosphere. Furthermore, they found that the climate network
shows “small-world” properties due to long-range connections
existing in the global climate. The complex network model
of global climate provides clues about the collective dynam-
ics of the Earth’s climate system.[22] For instance, researchers
have found that the change of climate network topology can be
used for predicting the El Niño events.[23,24] Iglesias et al.[25]

developed a multitask deep fully connected neural network
trained on historical time series data for heat waves prediction.
Climate research is an interdisciplinary science that offers
many exciting opportunities and challenges for physicists.[26]

From the perspective of complex network theory, the above
researches help us get a good illuminating insight into the
climate.[27] Wang et al.[28] constructed a novel ocean obser-
vation complex network (OOCN) with a multilayer structure,
based on the continuous observation data, which obtains the
hierarchical structure of the mesoscale eddy. Feng et al.[29]

presented new network based measures of stability of the Pa-
cific climate state. Their studies indicated that climate network
based properties can be very useful analysis tools in ENSO
dynamics and prediction. Another recent research[30] con-
structed a network relying on the linear Pearson correlation
and evolving the network transitivity as a parameter to distin-
guish two types of climate, i.e., El Niño and La Niña. The
work confirmed the classification of years that all references
have in common and provide a discrimination for those years
that have been so far ambiguously defined.

However, linear approaches cannot bring out some prop-
erties in nonlinear dynamics (i.e., EOF analysis and Pearson
correlation). Tsonis et al.[31] argued that scale-free phenom-
ena which are associated with nonlinear dynamics cannot be
brought out by linear approaches, such as EOF analysis. They
also pointed out a limitation that nonlinear correlation measure
like mutual information’s accurate estimation requires much
more data beyond available. Zerenner et al.[32] indicated that
the climate system does not consist of a structure with identifi-
able nodes. Hence, they interpreted observation data in ocean
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fields as the realizations of Gaussian random fields (GRFs) in
both grid point and spectral space. Their network showed or-
dered structure and nodes only connect to first or second or-
der neighbors, which reached a conclusion that multivariate
climate variable should be taken into account when construct-
ing the climate network. However, their networks still derived
by linear approaches, i.e. Pearson correlation coefficients and
partial correlations.

Therefore, it is a tricky task to seek a way that can bet-
ter discover the characteristics of a nonlinear system. For this
purpose, we use the uncertain probability model, i.e., a Gaus-
sian mixture model (GMM), for nonlinear approximation of
ocean hydrological dynamics. Meanwhile the oceanographic
satellites provide decades of sea surface temperature (SST)
data,[33] which gives us opportunity to approximate the non-
linear dynamics by GMMs. This work presents a frontier re-
search on pattern analysis and discovery of ocean dynamics.

3. The data – sea surface temperature
Sea surface temperature (SST) is the water temperature

close to the ocean surface. SST is one of the first oceano-
graphic variables to be measured as a most important charac-
teristic of seawater. It plays an important role in the process
of interaction between sea surface and atmosphere, and affects
the behavior of the Earth’s atmosphere and global climate. The
formation of some special ocean phenomena is related with the
change of sea surface temperature, such as tropical cyclogen-
esis and ocean front. A variety of techniques can be utilized to
measure this vital parameter, of which weather satellites have
the ability to provide the SST both in a synoptic view of the
ocean and in a high frequency of repeat views.

The Global Ocean Data Assimilation Experiment high-
resolution sea surface temperature pilot project[34] provides a
new generation of global high resolution SST data to the op-
erational oceanographic, meteorological, climate and general
scientific community. The sea surface temperature data used
in this work comes from this project, and downloaded from
NOAA (National Oceanic and Atmospheric Administration)
who implements its data stewardship and reanalysis facility.
To construct the complex network model of the ocean temper-
ature dynamic, we investigate the daily global SST data dur-
ing the years of 2010, 2014 and 2015. El Niño and La Niña
are two complex weather patterns resulting from variations in
ocean temperatures. As known to all, La Niña phenomena oc-
curred in 2010, which contributed to extreme weather around
the globe during the first half of the next year. Meanwhile, the
El Niño event which occurred in September 2014 strongly in-
fluenced on the 2015 El Niño phenomenon. That El Niño can
be regarded as one of the strongest on record and made the
year 2015 to be the hottest year since 1998. Therefore, we pay
more attention to the SST data of those three year.

4. The complex network model of the ocean

At the beginning, some definitions of the network model
concerned in this work are given in the following.

The topology of the complex network can be defined as
N = (V,E, f ). The set V = {v1,v2, . . . ,vn} is the set of nodes
(vertices), where n is the number of vertices. E = {ei j, . . .} is
the set of edges, where ei j denotes the edge from node vi to
v j. A weight wi j ≥ 0 is attached to each edge ei j, and wi j = 0
if vi to v j are not directly connected. For modeling, we con-
sider only undirected networks where ei j = e ji and wi j = w ji,
employ a mapping function f to calculate the wi j between the
node vi and v j.

A well-defined complex network model can show some
amazing discoveries from the trivial data. In this section, we
will give the node and edge definitions of our ocean network.
Specifically, we propose the Gaussian approach to model each
node as dynamical oscillators, in order to reflect the stochastic
behavior of the ocean.

4.1. The node-subsystem of the global ocean

Generally, a node of an ocean network represents a spe-
cial region of the ocean. The best way to define the region
should be realized by oceanographers according to the ma-
rine function and the geological structure. However, the ocean
is dynamically changing, which results in hundreds of unpre-
dictable ocean phenomena. The region can hardly be found
and located by its function. Climatologists simply arrange the
global climate data on a grid with a given resolution.[30,31] For
example, Tsonis et al.[31] chose a resolution of 5◦ latitude ×
5◦ longitude, and Wiedermann et al.[30] designated the spatial
resolution of their study in 2.5◦ longitudinal and latitudinal. In
our work, the global ocean is divided into discrete regions in
the form of grids according to the latitude and longitude. The
remote sensing data of the sea surface temperature approxi-
mately homogeneously cover the earth in 3600 pixels × 7200
pixels. We divide the global data into 90× 180 grids where
each grid is arranged with a resolution of 2◦ latitude × 2◦ lon-
gitude. Each grid represents a node of network. The reason
of choosing the resolution of 2◦ latitude × 2◦ longitude as the
size of grid is that ocean mesoscale and sub-mesoscale phe-
nomena could be encircled. By removing the continent and
islands, 11769 nodes are created for our ocean network model.

Each grid contains the observation data from 1600 geo-
graphic coordinate points, which raises a crucial question how
to express the property of a node from the nonlinear volumi-
nous data. Traditionally, researchers can directly calculate the
average value of the data in certain geographic region as the
feature of the node.[15,30,31] However, simply taking the aver-
age of the observations of the region to simulate the dynami-
cal subsystem is not justified statistically. The average would
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not be an elaborate feature of a region (node) due to dynam-
ical behavior of the sea surface temperature. In probability
theory, the central limit theorem states that the distribution of
most natural data conforms to the Gaussian distribution. To
model the random and dynamic of the natural fluctuations in
the ocean temperature, we suggest the Gaussian mixture mod-
els (GMMs) to describe the nodes as limit-cycle oscillators.
GMMs have outstanding performance in numerous research
fields because of the talent of approximating the distribution of
many complex probabilities. In the pivotal part of this work,
we interpret the node as realizations of Gaussian mixture mod-
els to contain the dynamic of the global ocean.

Regardless of knowing which subpopulation a data point
belongs to, mixture models allow the model to learn the sub-
populations automatically. Generally, a Gaussian mixture
model consists of K components, which are parameterized by
the mixture component weights, component means and vari-
ances/covariances. In a univariate case, there is only one Gaus-
sian distribution in the model denoted by mean µ and variance
σ2. The model also called the single Gaussian model. Its
probability density function can be written as

pµ,σ2(x) =
1

σ
√

2π
exp
(
− (x−µ)2

2σ2

)
. (1)

The single Gaussian model is also known as the normal
distribution. When K is greater than 1, the k-th component is
parameterized by mixture component weights ϕk, a mean of
𝜇k and covariance matrix of ∑k. The sum of weights con-
verges to 1 so that the total probability distribution normalizes
to 1. In this multivariate case, Gaussian mixture models read

p(x) =
K

∑
i=1

ϕiN(x|µi,σi), (2)

N(x|µi,σi) =
1

σi
√

2π
exp
(
− (x−µi)

2

2σ2
i

)
, (3)

K

∑
i=1

ϕi = 1. (4)

The distribution of sea surface temperature can be greatly
influenced by many ocean and climate behaviors including sea
breeze, ocean current and illumination, which cause sea sur-
face temperature to exhibit highly random and dynamical be-
havior. The distribution of SST may not completely converge
to a Gaussian distribution. We thus apply the trivariate model
to fit the distribution of SST.

4.2. The edge-interaction of subsystems

The edge of the network is used to connect a pair of nodes
and indicates a certain relationship between them. In gen-
eral, an edge of the ocean network represents the similarity of
the temperature dynamic between two ocean regions. In this
study, we investigate the ocean network using the undirected

network model. The undirected network only has at most one
edge between any pair of nodes and self-loops are not allowed.
The adjacency matrix can be written as

A = (ai j) =

{
1, if ei j ∈ E,

0, otherwise,
(5)

where E is the edge set of the network and Ai j indicates
whether connection between node vi and v j exists or not. In
this work, we argue that the ocean hydrological dynamics
should be regarded as a stochastic system. Instead, the nodes
should be modelled as Gaussian distributions. Therefore, we
introduce the Gaussian matching probability as the mapping
function f to measure the similarity between two nodes.

Matching probability (MP) is a kind of similarity mea-
sures with closed-form expressions for GMMs.[35] Single
Gaussian matching probability measures the probability of a
Gaussian distribution P belonging to the other one named as Q,
which can be comprehended as the similarity of two indepen-
dently distributed Gaussian models. The similarity can be cal-
culated as joint probability of two Gaussian distributions[35]

p(p|q) =
∫ +∞

−∞

Nµq,σp(x) ·Nµq,σq(x)dx, (6)

where q and p are the probability density functions of Gaus-
sian models P and Q respectively. Formula (6) can be further
simplified to

p(p|q) = Nµq,σp+σq(µp). (7)

Mix-Gaussian matching probability measures the similar-
ity between two independent GMMs P and Q with the same
number of Gaussian distribution. According to previous de-
scription, the similarity between two Gaussian distributions is
calculated as the joint probability of them. Inherit the thought
of single Gaussian probability matching, the similarity be-
tween two independent GMMs can be counted as the product
of joint probabilities between every two Gaussian components
in disparate GMMs. Therefore, the formula of similarity be-
tween two independent GMMs P and Q can be written as

P(P|Q) =
K

∏
i=1

K

∏
j=1

D

∏
n=1

p(pi|q j), (8)

where qi and p j are i-th and j-th Gaussian distribution in Q
and P, respectively. D represents the dimension of time series
on each node.

Exhaustively calculating the similarity between two
GMMs is intractable since there are multiple components that
lie in GMMs. Multiple multiplication will cause floating-point
underflow. Thus, the theorem of likelihood estimation can
give us help. This theorem allows us to avoid computational
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floating-point underflow by taking the logarithm of a polyno-
mial product. Consequently, the mix-Gaussian matching prob-
ability can be rewritten as

logP(P|Q) =
K

∑
i=1

K

∑
j=1

D

∑
n=1

log p(pi|q j). (9)

After taking the logarithm of a polynomial product, we
can obtain the similarity between two GMMs from summat-
ing the joint probability of every two Gaussian distributions.

Gaussian distributions provide the opportunity of mod-
elling the ocean as a stochastic system. Different regions are
the nodes which display as dynamical oscillators. MP con-
structs the network edges by measuring the behavior similarity
between two nodes.

4.3. Methodology from similarity to networks

Climatologists are committed to finding powerful analyt-
ical tool to study the statistical correlation of climatic factors
in different geographic areas and simulate the dynamics of
the climate system in a large scale (temporally and spatially).
Techniques and theories of complex networks can gain a good

understanding of the mutation and affiliation of a climate phe-
nomenon in a statistical perspective.

Compared with previous studies, we introduce the Gaus-
sian mixture models to achieve a nonlinear approximation of
the SST data, and simulate the nodes as limit-cycle oscilla-
tors. Unlike the climate observations, ocean dynamical be-
haviors show much more stochastic characters due to the sea
breeze, ocean current and illumination, etc. As shown in
Fig. 1, we proposed to model the dynamical behavior of the
ocean node as Gaussian distributions, and simulate the ocean
as a stochastic system. After defining the node and edge, we
construct the ocean network as a global similarity matrix of
size 11769×11769. Then a threshold should be suggested as
the basis for retaining or removing edges so as to form the ad-
jacency matrix A. If the similarity between two nodes i and
j higher than the threshold, the edge ei j can be constructed
as A(i, j) = 1, otherwise as A(i, j) = 0. Here the threshold
is pivotal to network construction. We apply link density ρ

to guarantee the statistical significance of the network model.
For instance, ρ = 0.01 keeps the most pivotal links to emerge
the architecture of the networks.

Gaussian mixed model

degree

clustering coefficient

betweenness

form node similarity measure network construct network topology and analysis
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Fig. 1. Process of complex network modeling based on surface sea temperature (SST).

Finally, we can analyze network topology systematically
in the complex network perspectives including degree distri-
bution, clustering coefficient and betweenness.

5. Results and analyses
In this section, we analyze and explore the relationship

between the topological characteristics of the climate network
and the ocean phenomena using the characteristics of the com-
plex network theory, such as degree distribution, aggregation
coefficient and betweenness. We model the ocean network as a
Gaussian stochastic system with probability matching includ-
ing single Gaussian probability matching (SG-network) and
mix-Gaussian probability matching (MG-network).

5.1. Degree distribution

The degree of node Vi refers to the number of neighbors
that are directly connected to node Vi, which is denoted as Ki:

Ki =
N

∑
j=1

Ci j, (10)

where N is the total node number of the network and Ci j is
the binary cross-correlation matrix. Intuitively, the higher the
degree of the node is, the more important the node is in the
network system.[36] The degree distribution provides a macro
perspective to study the correlation between the individuals in
a network and presents the nature of the network. To get an
intuitive view of the distribution, we investigate it in a scatter
diagram and global map combining geographical location.

Figure 2 shows the degree distribution of ocean networks
under different link densities in the scatter diagram. Appar-
ently, although super-nodes have increased with link density,
the degree distribution of the network does not change with the
edge density. This means that the edge density cannot change
the shape of the network topology. Moreover, the power-law
properties of SG-network and MG-network are not evident. It
is also worth noting that some super-nodes in such networks
are very steady with the change of link density. Particularly,
the distribution of SG-network is bimodal distribution that the
distribution peaks at both ends. According to Galtung’s clas-
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sification system,[37] it can be classified as a U-type bimodal
distribution. The bimodal distribution indicates that we can
obtain two different groups of nodes in the network which may
be resulted from the climate anomaly.
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Fig. 2. Degree distribution of nodes in (left) SG-network (right) MG-
network.

We investigate the degree distribution combined with ge-
ographic location to further understand the network structure.
As shown in Fig. 3, the super-nodes are clustered around the
tropics areas and high latitudes in southern and northern hemi-
sphere. This means that certain nodes in the tropics and high
latitudes in southern and northern hemisphere possess more
connections than the rest. An intriguingly observation is that
super-nodes may map some multiple-studied teleconnection
patterns. The super-nodes in the equatorial Pacific and in the
district around the dateline coincide with the well-known La
Niña that happened in 2010, which is defined as CP-type La
Niña.[30] In the northern hemisphere we also see that super-
nodes are located in the north Atlantic, especially surrounded
by Canada and close to the eastern United States and Iceland,
which is consistent with the salient characters of the North
Atlantic oscillation (NAO). It has been proved that there is ev-
ident association between two major inter-annual variabilities
in the atmospheric circulation, which are the El Niño-Southern
oscillation (ENSO) and the NAO.[38]

Atmospheric teleconnection is a subject in climatology
field. The mathematical terminology of networks possesses
compact connection with the physics of the complex system,
though it is abstract. Thus, the complex network science is
superior to delineate teleconnection patterns without ignoring
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(b) MG network matching based
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Fig. 3. Degree logD distributions with geographic locations in the
global ocean: (a) SG-network, (b) MG-network.
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Fig. 4. Degree distributions in the northern hemisphere.

long-range links and clustering information. In thermodynam-
ics field, the changes of the degree of each node reflects the
conjugated flows and the Onsager relations,[21] which give
a magnificent answer to why even small perturbations of a
parameter can induce fluctuations of other parameters. The
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limit-cycle oscillators which are represented by nodes in the
network may synchronize or experience bifurcations when the
amplitude or frequency varies. Therefore, the network statis-
tical characteristic named degree can signify the climate syn-
chronization of two long-distance regions. Figures 3(a) and
3(b) bring out two major teleconnection patterns according to
the high-degree property of nodes. To reveal the feature of
NAO meticulously, we further consider the degree distribu-
tion of network with only nodes in the northern hemisphere.
From the viewing angle of 90◦N as illustrated in Fig. 4, we
intuitively find that locations of super-nodes in the network
are consistent with the characters of NAO. Super-nodes are
mostly clustered in the Arctic Ocean. Moreover, those super-
nodes overlaid in the north Atlantic ocean should worth more
attentions as it maps the affected area of NAO. The teleconnec-
tion between ENSO and NAO has been widely studied to pro-
tect ecological environment, e.g., water quality management
by predicting total organic carbon load.[39]

5.2. Clustering coefficient

Clustering coefficient is a measure of the degree which
nodes in a graph tend to cluster together. The local clustering
coefficient Ci of node Vi is the radio of the numbers of subsis-
tent edges between Vi’s neighboring nodes to the numbers of
possible edges between Vi’s neighbor nodes, which is given by

Ci = 2Ei/Ki(Ki−1), (11)

where Ki is the degree of Vi, and Ei represents the numbers
of subsistent connections of Vi’s neighbor nodes. It is evi-
dent that the range of clustering coefficients is [0,1], only in
the situation that the network is connectionless, the cluster-
ing coefficients achieve the minimum value. It is worthy em-
phasized that in a random network, the clustering coefficient
would naturally take a very low value but not come to 0. In the
dynamic process of information transmission, clustering coef-
ficients characterize the macro-control of network. The larger
average aggregation coefficient of the network, the more ro-
bust of the network structure.

In Fig. 5, nodes of strong clustering coefficient are con-
centrated in the equatorial region, especially the Arctic ocean
and the oceans around the Antarctica. The maximum cluster-
ing coefficients of two networks are orientated in the north At-
lantic ocean, precisely in Hudson Bay beset by Canada. This
observation means that the neighbors of nodes in Hudson Bay
tend to be a clique, and testifies the synchronicity and rele-
vance of climate in Hudson Bay. Though the maximum clus-
tering coefficient of SG-network is 0.3 larger than the MG-
network, the clustering coefficients of the two networks in the
tropics are basically the same.
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Fig. 5. Clustering coefficient distribution of the network model at geo-
graphic location.

5.3. Betweenness

Nodes in the network can play considerable roles in the
process of energy transmission for the dynamic system. As-
sume that the energy is always propagated along the shortest
path from the node Vi to the non-neighbor node Vt in the pro-
cess of propagating. The betweenness of node can quantify the
importance of the node to determine the node’s role in energy
transmission. The betweenness of node Vi is defined as

BC(i) = ∑
i6=s,i6=t,s6=t

li
st

lst
, (12)

where lst denotes the total number of the shortest paths be-
tween Vs and Vt , and li

st the number of the paths which pass
through Vi among all the shortest paths between Vs and Vt .
High betweenness of the node indicates that the node can reach
others on shortest paths, i.e., node of high betweenness lies on
many shortest paths. If a node with a large betweenness value
is removed, it will lengthen the paths between many pairs of
nodes and reduce the energy transfer efficiency in network.
As a high order characteristic of the network, betweenness is
considered to be the most appropriate structural properties of
networks to approximate the flow of energy in the network
dynamic. Especially, betweenness is suitable to identify ex-
ceptional climate events that are susceptible to perturbations
such as volcanic eruptions or anthropogenic influences. Ordi-
narily, it is used to describe the influence of the consequence
of network dynamic changing.

From Fig. 6, it is evident that high betweenness nodes of
SG-network and MG-network are concentrated in the western
Pacific and the Atlantic ocean. Active regions in equatorial
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pacific between 120◦W and 180◦W longitude match the en-
ergy flow inspired by a La Niña event. During the La Niña
event, the dry sinking of the Walker circulation moves west-
ward to the mid-equatorial Pacific. In addition, there are two
wet updrafts near 120◦W in the western Pacific and near 90◦E
in the eastern Pacific respectively. The teleconnection between
the positive phase NAO and La Niña at the lower and upper
troposphere causes a significant increase of jet stream in the
subtropical Atlantic. Plenty of warm and humid air transport
from the Atlantic resulted in an unusually warm winter tem-
perature in Western Europe and an increase of precipitation in
most parts of Europe. Abnormal climate events are usually ac-
companied by massive transfers of heat and energy. Although
the process of energy transfer is invisible to us, we can use the
betweenness to illustrate the transmission accurately. In other
words, betweenness has the potential ability to unfold the in-
visible ocean phenomena in a statistics way.

(a) SG network matching based

(b) MG network matching based
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Fig. 6. Betweenness distribution of the network model at geographic
location.
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Fig. 7. Scatter plots of betweenness against degree of SG-network

As a statistics property, betweenness may possess some
correlations with the basic network character, such as degree.

Figure 7 shows the correlation between degree and between-
ness of the SG-network. Although there are no obvious pat-
terns between the distributions of betweenness and degree, we
can still see that high degree nodes tend to have high between-
ness. This phenomenon suggests that super-nodes act as bot-
tlenecks of energy flow in the network. Nodes with low degree
but high betweenness in Fig. 7 locate in special geographical
locations where the exchange of energy does not depend on
other regions.

Table 1. Average clustering coefficient, distance and diameter for the
networks constructed by Gaussian approach in three periods.

Clustering coefficient Distance Diameter

La Niña period
MG-network 0.136 2.083 4
SG-network 0.102 2.905 8

Normal period
MG-network 0.302 1.98 3
SG-network 0.132 2.07 4

El Niño period
MG-network 0.1585 8189 6
SG-network 0.261 1.809 4

We have discussed the distribution of network character-
istics on the earth intuitively. However, the macroscopic prop-
erties of network are still unknown to us. Table 1 compares
the average clustering coefficient, average distance and net-
work diameter of different networks constructed by Gaussian
approach in three periods. It is realized that the diameter mea-
sures the rate of information travels over the network. In the
case of the climate network, the information transferring from
a node to another can be regard as “fluctuations” induced by
a region diffuse to other locations. The transmission of infor-
mation diffuses local fluctuations so then reduces the chance of
prolonged local anomaly and makes the global climate system
more stable. The smaller the diameter, the easier the infor-
mation transfers. Nevertheless, the higher average clustering
coefficient means the lower chance of breaking the network
into non-communicating parts by accidental removing links
from network. In other words, the higher the average clus-
tering coefficient, the greater the robust of the network. The
average clustering coefficient of MG-network is higher than
SG-network in the three special periods, especially in El Niño
period. However, the distance and diameter of MG-network
are slightly smaller than SG-network in 2010 and 2014, while
in 2015 they are equal. The result shows that MG-network is
not only more stable than SG-network, but also more effective
for information transmission than SG-network. The distance
and diameter of MG-network and SG-network are virtually
unchanged over time, while the average clustering coefficient
increased a lot in El Niño period. We wonder which network is
better to describe the real world ocean dynamic. As we men-
tioned above, the 2015 El Niño event was the second strongest
in history. During El Niño period, the increase of long-range
links results in the closest spatial neighborhood of the nodes
associated with rise of super-nodes.[17] Therefore, the cluster-
ing coefficient will increase. It follows the graph theory that
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removal of super-nodes makes the network less connected and
less stable. The results in Table 1 indicate that Gaussian ap-
proach is appropriate to estimate the spatially climate systems.

6. Discussion and conclusion
The techniques for oceanographic observation produce

huge amount of oceanic data, of which sea surface temperature
is a critical element of the global climatological observations.
In this work, we have explored the essence of global ocean
dynamic via constructing a complex network with regard to
the sea surface temperature. The purpose of this research is
providing new insights into dynamic behavior and functional
structure of the ocean for oceanographers. Traditional cases
commonly average the sea surface temperature of each region
as the feature of the node, then apply mutual information and
Pearson correlation coefficient to measure the similarity be-
tween different nodes. To further understand the ocean dy-
namic behavior, we introduce the Gaussian mixture models to
achieve a nonlinear approximation of the SST data, and sim-
ulate the nodes as limit-cycle oscillators. It does not expect
to immediately discover new ocean phenomena, but tries to il-
lustrate some well-known phenomena in the complex network
viewpoint. The complex network theory based statistical pat-
terns could help researchers further comprehend the causes of
ocean phenomena. The interacting dynamical oscillators form
the complex network that simulate the ocean as a stochastic
system. According to the number of Gaussian distribution in
GMMs, we construct different networks, i.e., SG-network and
MG-network. The distributions of the two network are shown
as bimodal distributions, which means that nodes are grouped
by degree. Supernodes are clustered around the tropics areas,
the Arctic ocean and high latitudes in southern. In particu-
lar, supernodes in the equatorial Pacific denote the origin of
ENSO. Nontheless, another climatic anomaly called NAO was
highlighted by hypernodes in the area of north Atlantic, to be
more precisely, which is surrounded by Canada and close to
the eastern United States and Iceland. Furthermore, the su-
pernodes in the most densely distributed range correspond to
areas affected by La Niña and El Niño. The high order char-
acteristics including clustering coefficient and betweenness of
the network illustrate the transformation of energy and heat
between different ocean areas that incur by influential climate
phenomenon such as La Niña. To realize the macroscopic
properties of the networks, we have compared the degree, clus-
tering coefficient and betweenness distributions in 2010, 2014
and 2015. All the methods can recognize the climatic anoma-
lies from normal period. The GMMs not only helps us simu-
late the dynamical subsystem from the statistical perspective,
but also provides sufficient information to describe the physi-
cal processes of ocean dynamic.
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