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TOPICAL REVIEW — Modeling and simulations for the structures and functions of proteins and nucleic acids

Find slow dynamic modes via analyzing molecular dynamics
simulation trajectories™
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It is a central issue to find the slow dynamic modes of biological macromolecules via analyzing the large-scale data of
molecular dynamics simulation (MD). While the MD data are high-dimensional time-successive series involving all-atomic
details and sub-picosecond time resolution, a few collective variables which characterizing the motions in longer than
nanoseconds are needed to be chosen for an intuitive understanding of the dynamics of the system. The trajectory map (TM)
was presented in our previous works to provide an efficient method to find the low-dimensional slow dynamic collective-
motion modes from high-dimensional time series. In this paper, we present a more straight understanding about the principle
of TM via the slow-mode linear space of the conformational probability distribution functions of MD trajectories and more
clearly discuss the relation between the TM and the current other similar methods in finding slow modes.
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1. Introduction

Molecular dynamics (MD) simulation has been widely
used in recent a few decades in very various fields, such as de-
tecting the relationship between chemical structures and func-
tions of biological macromolecules.!'?! The raw data of MD
simulations are high-dimensional time series with the total
time length usually in the order of microsecond or even longer
and containing the femtosecond resolution and all-atomic co-
ordinates and velocities. The data are too complicated to pro-
vide an intuitive understanding of the simulated system; thus
we usually need to find much less (collective) variables to
characterize the motion of the system in a larger timescale
to understand its main features.®! For simpler systems, there
may exist some direct ways to select some collective variables
to (approximately) represent the main features via our expe-
riences or intuitions. For example, for small proteins or pep-
tides, the dihedral angles in the backbone can describe well
the large (and usually slow) motions of molecules. Thus they
can be used as the key collective variables. However, in more
complex systems, it is usually needed to develop more system-
atical data analysis methods to capture the main features from
big MD data.

Many methods were presented to simplify large data to
take out the main features. For example, lots of clustering
algorithms [+l and reduction dimensionality techniques!’~!!!
focused on finding the low-dimensional structure of data point
set, and were applied in the analysis of MD simulation data of
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biomolecules.!!>>3] The methods are based on the geometric
distances between data points (conformations of molecules)
can get the static structure of the whole data set without apply-
ing any dynamics information. A recent technique, the diffu-
sion map, constructed an artificial diffusion dynamics among
the static data points based on the distances then tried to find
the slow modes of the diffusion dynamics, which achieved the
static structure robustly under the help of the artificial dynam-
ics information. ! On the other hand, some methods, such as
the Markov states model (MSM),[?4311 and its improvement,
tICA, 3233 the trajectory map (TM), >+ applied the dynam-
ics information of MD trajectories to find the slow-dynamic
structure of data. The TM gives a simple and efficient way to
take into account the time successiveness along the MD tra-
jectory to construct the structure of slow dynamics robustly. It
promises a general method in analyzing various complicated
time series. The implementation and application of TM were

34.37-401 Here we revisit the math-

presented in previous works. !
ematical principle behind the TM and the relationship between
the TM and other related techniques; thus we can more clearly

discuss the advantages and disadvantages of these methods.

2. Theory and method
2.1. Slow dynamics modes

Generally, let us consider a stochastic process, as the
molecular dynamics (MD) simulation, e.g., following the
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(overdamped) Langevin equation

mq:f%gm+V5E?ﬁMG7 M
q

where 7 is the friction coefficient, g is a simple denotation of
the (high dimensional) conformational coordinate, U (g) is the
potential energy surface, kg is the Boltzmann constant, 7 is
the temperature, and dG is the normal Gaussian white noise.
Equivalently, we can described the process by the Fokker—
Planck equation based on the probability density function,

d
EP(%[) = LFPP(Qﬂt)7 ()

with the operator

L L9
LFPaq[Y <aq>+(kBT)Y 8(1]

Simply, we set ¥ to be a constant, (the unit if resetting time
dt = dr/7y). The equilibrium solution is the Boltzmann dis-
tribution, Peq(q) = (1/Z)e PU@). Here Z = [dge PV,
named as the partition function, is the center quality in sta-
tistical physics, and § = 1/kgT. In this paper, we will set kgT
as unit without explicit mention again.
Defining P(q,t) = [Peq(q)]'/*¥(g,1), we have
d

=5, ¥(q.0) = H¥(q,1), 3)
the imaginary time Schodinger equation, H =
—9%/dq* +V(q) is a real symmetric operator, the same as the

where

Hamilton operator in quantum mechanism. The effective po-
tential
1 92

2
Vi = 1| 50| —3 3V00)

Therefore, we have the spectrum expansion
P(4,1) = Peg(9) Y, an(0)e ™' Bu(q), @)
n=0

where @,(q) = ®P.(q)/Po(g), and P,(gq) is the eigen-
function of the operator H with the eigenvalue A,, ie.,
H®,(q) = 4, P,(q). Wehave 0 =g < A <--- < A, <

-, and Py(q) = [Peq(q)]'/>. The orthogonal condition
<q3n(‘1)qsm(‘1)>eq = | Pu(q) Pm(q)dg = Sun, and the complete-
ness Peq(q) Xn—o qsn(‘])(f)n(q/) = 68(q—q). Here (-)eq means
the expectation under the distribution P.q(g). The expansion
coefficient a,(0) = (®,(q))o = [ dgP.(q)P(g,0), the expec-
tation under the initial distribution P(q,7 = 0).

Due to the fast decay of motion modes with large eigen-
values as time, we can consider only the equilibrium mode
Py(q) and the first N eigenfunctions, {®P;(q),...,Pn(q)},
named as slow modes, to describe the main features of the dy-
namics of system at long time scale. For example, if U(q) =
1kg? in one dimension space, we have V(q) = 1k*¢* —k/2. It

is easy to know the eigenvalues and eigenfunctions of the oper-
ator H from that of the quantum harmonic oscillator, A, = nk,
and the &, (g) is the n-order Hermite polynomial. In this case,
@y(g) gives the equilibrium information, and A; = k corre-
sponds to the time scale to reach the equilibrium.

2.2. Linear space of slow modes and metastable states

For any probability function P(g,t), we can suppose it al-
ready evolved a not-short time, thus

v

(QJ) ~ y a £
(@ Nl+n§’1 n(t)Pu(q), )

0

i.e., it approximately belongs to the linear space spanned by
the slow modes. For example, considering an MD trajectory
q(t),t € [0,7], without losing generality, the corresponding
probability function P(q) = (1/7) [y dt8(q — q()) is a lin-
ear combination of the slow modes (if not, reset a later time
as t = 0 and discarding the earlier conformations). There-
fore, we can generate lots of MD trajectories from different
initial conformations, the corresponding probability functions
(or more exactly, the finite-size samples), denoted as {P;(q)},
i=1,...,m, can be applied to linearly combine to span the
slow dynamic modes of the system

2 _ Zibn,iPi(Q)
Dy(q) = m

where a linear uncorrelated subset of {P,(¢)} is sufficient to

) (6)

expand any slow mode.

Usually, we can split the whole conformational space into
some conformational regions which are basins or super-basins
of the potential energy surface and separated by high energy
barriers; each is named as a metastable state in slow dynam-
ics. In other words, each metastable state is a conformational
region where the system often reaches local equilibrium in-
side before leaving out. The slow modes correspond to tran-
sitions among metastable states, and the inner local equilib-
rium within each (small) metastable state is corresponds to
faster modes. Therefore, all the slow-mode functions {®,(¢)}
provide a splitting of the whole conformational space into
metastable states, which are approximately constants inside
each state but vary obviously only at boundaries of metastable
states. We have

Du(q) =Y cna®alq). ©)

Here Oy (q) is the characteristic function of the o metastable
state, whose value is unit inside the state but zero otherwise.
It means that conformations inside the same state are equal in
the viewpoint of slow dynamics. As involving more (shorter)
dynamic modes, more metastable states are split and more re-
fined description about the conformational space are obtained.
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MD trajectories similarly give the splitting of metastable
states, since

P:(q) -y
Peq(CI) - ; laea (q)v (8)

i.e., the local equilibrium distribution is proportional to the
global one inside each metastable state. It means that there
is the same linear structure among slow-mode functions, the
characteristic functions of metastable states, and the confor-
mational probability functions from MD trajectories. The cen-

34,381 ig

tral idea of the trajectory map (TM)! to achieve slow

modes or metastable states from MD trajectories.

2.3. Trajectory map

We apply a set of known conformational functions, de-
noted as {A*(q)}, u = 1,2,...,Np, as basis functions to
coarsely represent the linear space spanned by the slow-mode
functions,

Pi(q)
Peq(Q)

Here, the approximation which comes from the incomplete-

~ Y pipAt(q). )
u

ness of the set of basis functions less affects the construction
of the slow-mode space. The coefficient p; , = (Au(q))i is
estimated from the finite-size conformational sample corre-
sponded to P;(gq) (a segment of MD trajectory length of 1),
where the conjugated basis function A, (¢) satisfying

(Ap(9)AY(q))eq = Suv, (10)

is estimated in the conformational sample corresponded to
Peq(g). Usually, the equilibrium sample is absence, we can
apply a reference distribution P.¢(g), for example, the mean
of all MD trajectories, to replace Peq(q), which less affects
the construction of linear space of slow modes, since Pe(q)
is also proportional to Pq(g) in each metastable state, thus
Pi(q)/Pees(q) still belongs to the slow-mode linear space.

In this paper, we do not distinguish the conformation
sample of an MD trajectory and its corresponding probabil-
ity function P,(gq), unless avoiding some possible confusions.
In addition, for simplification, we linearly combine these se-
lected physical variables AY(g) to get a set of orthonormalize
basis functions {A* (q) = A, (q)}. Thus, except A°(g) = 1, we
have (A" (q))rt = 0. We use the Einstein summation conven-
tion of repeat subscript and superscript indexes below without
explicit mentioning.

Thus, each MD trajectory or segment P;(g) is mapped as
a vector

pi = pipA*(q), (11)

and all these vectors {p;} span the slow-mode linear space
(more exactly, its projection in the applied basis functions

{A"(g)}). A larger set of basis functionss is helpful for pro-
viding more complete information about slow modes, but even
when the basis functions are not sufficient so that some of the
slow modes are not able to distinguish completely, the lin-
ear projection does not bring any additional biased results. In
practice, the size of sample corresponded to Pyt(g) also lim-
its the number of linear uncorrelated basis functions {A* (g)}.
More discussion about the basis functions were shown in the
previous literatures about TM, 3437-401

We apply the principle component analysis (PCA) to the
trajectory-mapped vectors {p;} to get the first a few principle
components (PCs), denoted as {By(q)}, 0t = 1,...,m, as a set
of orthonormalized basis functions of the linear space of slow
dynamics modes,

Ba(q) = bapA*(q), (12)

here bq, is the a-th eigenvector of the variance—covariance
matrix of these mapped points, Y;piupiv. We have
(Ba(q)Bg(q))ret = S4p- A hint for choosing the number of
principal components is provided by the plot of eigenvalues
sorted in decreasing order. The first few eigenvalues which
are significantly greater than zero are usually correspond to
slow processes.

In the low-dimensional space of {By(g)}, many com-
mon analyzing or visualizing techniques can be applied to
achieve the slow dynamics modes or identify metastable states
and transition among states. For example, we can project the
original MD trajectory ¢(¢) to get a smoothed slow-dynamic-
dominate trajectory B(r) with the components

R 1 t+AL

Ba) = [ Bala(t))dr' (13)

t

Here we applied a time-window smoothing (with length Ar) to
further filter fast dynamics modes of MD trajectory. Usually,
At is set about two to three orders of magnitude smaller than
the length of trajectory segment (7), and the results of TM is
insensitive to the specific value of Ar. Then we can identify
the obvious change along the trajectories B(t) as transition
events between metastable states, or calculate the two-point
similar matrix in the B space, C(f2,#;) = B(f;) - B(1) to get

the transition events.[38]

3. Application

In this section, we use the Trp-cage protein to illus-
trate the basic application of the TM. The Trp-cage con-
tains 20 residues, includes three secondary structures in its
native structure: an o helix, a 3—10 helix, and a polypro-
line IT segment.[*!=*3] This protein can fold in microseconds,
and the stability of native structure originates from the hy-

43.44] Dye to its small

drophobic core around the Trp residue. !
size and various meta-stable states, Trp-cage becomes an

ideal protein for testing both sampling algorithms and force

108706-3



Chin. Phys. B Vol. 29, No. 10 (2020) 108706

fields of simulations, thus it has been extensively studied by

[45-54] However, its folding kinetics and

MD and experiments.
folding pathways are still not fully understood.> Recently,
Lindorff-Larsen et al. have performed a 208-ps equilibrium
MD simulation of the Trp-cage at 290 K.[*3] They applied the
CHARMM22* force field®®! and the modified TIP3P water
model compatible with the CHARMM force field.”38! The
generated MD trajectory involves about 2.08 x 103 snapshots,
with a time interval of 200 ps. We downloaded the trajectory

file from D. E. Shaw Research.
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We choose the dihedral angles of protein backbone, ¢;
and y; withi=1,...,18, as collective variables to describe the
large-scale motions. Due to the periodicity of dihedral angles,
we transform the angles into their cosine and sine functions,
to get 72 basis functions in total,’”) {A*(g)}, u =1,...,72
in the TM. The time evolution of the root-mean-square de-
viation (RMSD) clearly distinguishes the folded state (native
structure) and unfolded structure, but more details inside the

unfolded structure is not so clear (Fig. 1(a)).
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Fig. 1. (a) Time evolution of the RMSD of the Trp-cage to its native structure, the slow variables B; and B; obtained in the TM. Red line is time-window-
smoothed one (A7 = 200 ns). (b) Eigenvalue of the variance—covariance matrix of the trajectory-mapped points. The inset is the contribution of each basis
function to the slow variables By and B;. (c) The free-energy landscape (in units of kg 7') in the slow-variable space (B, B>).

We apply the TM with the free parameter T = 2 us to
detect the slow modes in the 7 time scale, which hiding in
the total 208-ps-long all-atomic MD trajectory. As shown in
Fig. 1(b), two eigenvalues of variance-covariance matrix are
significantly greater than zero, which indicates that this sys-
tem involves two slow dynamics processes. These two slow
variables (denoted as By and B,) are shown in Fig. 1(a). We
show the free energy surface in the (B;,B5) space (Fig. 1(c)),
AG = —kgT InP, where P is the probability distribution of
the molecular system along the slow variables. In this two-
dimensional space, the entire region includes three minima
that correspond to three metastable states, i.e., the folded state
(St), unfolded state (S,), and extended state (S.). The B; pri-
marily distinguishes state S¢ from the other two states. In other
words, the By which combined by 72 angle-based basis func-
tions has similar physical meaning with the RMSD which is

common used to identify folded state of protein. The B, dis-
tinguishes state S, from the other states.

Figure 2(a) shows the time-ordered similarity matrix of
the MD trajectory after projecting in the slow dynamics space,
C(ty,t1) = B(rp) - B(t;). The matrix is found to divide into
some blocks. Inside each block (each time segment), the el-
ement of similarity matrix is almost equal to unity, it indi-
cates that all the conformations in each time segment are al-
most identical in the B space, i.e., they belong to the same
metastable state without occuring transition in the time seg-
ment. At the time points which separated different blocks,
the MD trajectory occurs transitions from one to another
metastable states, thus the similarity of conformations in the
B space is obvious. Thus, this matrix can help us to identify
transition events.

From the similarity matrix, the PCCA+ algorithm!%3! is

108706-4



Chin. Phys. B Vol. 29, No. 10 (2020) 108706

implied to cluster the similar segments together. As shown
in Fig. 2(b), the rearranged similarity matrix clearly show
three blocks which correspond to three metastable states. A
transition network was constructed from the similarity matrix
(Fig. 2(c)). The folding path was Se —> Sy — St, without the
direct transition between S and the nature structure Sg. The
typical protein structure of each state (Fig. 2(c)) and the com-
ponents of slow variables help us to understand the main dis-
tinction between each state. As mentioned in Eq. (12), these
variables are actually linear combinations of basis functions.
The combination coefficient by is illustrated in Fig. 1(b)
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Time/ps

Fig. 2. Time-ordered similarity matrix of the MD trajectory. The similarity between two samples C(f2,t;) = B(r2) - B(t1).

which can used to obtain the understanding about the physi-
cal meaning of slow variables. The main components of B is
‘V%Rp (v angle of TRP6) and S}ZO' Those two residues corre-
spond to the hydrophobic core. The folding/unfolding process
of the protein is closely related to the formation of hydropho-
bic core. The main components of B is W(1}7LY’ which corre-
spond to the middle part of the protein. The twist of l[/cliY
make the structure of state S looser than S, (Fig. 2(c)). The
three-state model constructed by TM provides us with more

details about the folding dynamics of the Trp-cage protein.
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(b) The time-

rearranged similarity matrix, suggesting three metastable states. (c) Kinetic transition network. Numbers near the arrows are the corresponding
transition rates. The population of each state in the 208-ps MD trajectory is listed in bracket (which approaches to the equilibrium one, in
consistent with the fact the folding and unfolding transitions occur more than ten times during the MD simulation). Residue TRP6 and PRO17

are shown in blue, GLY11 in red.

4. Discussion

The propagator, G(q,1|qo,0), also named as Green func-
tion, is the condition probability of the system to be g at time ¢
while it was gq at 79, which describes the dynamics of system.
For large 7, we have

N
G(q,1190,0) = Peg(q) |1+ Y e ' By(q)Bu(qo) |, (14)
n=1
and P(q,t) = [ G(q,t|q0,0)P(q0,0)dgo.

It is easy to know that the slow-mode functions are the
first a few eigenfunctions of G(g,#|qo,0). In principle, we can
represent the propagator as a time correlation matrix by using
the basis functions {A*(q)},

64,(1.0) = [ dgdda"()G(q.1lq'-00Av(q)P(g0)
= (A (g()Av(g(O)))o 1s)

then diagonalize the matrix to get the slow-mode functions.
For well constructing the propagator to get the slow dy-
namics modes, it is natural to use a great number of (thousands
or much larger) cell functions 6 (¢) as an approximately com-
plete set of basis functions. Here {6,(q)} is the character
function of the cells, whose value is unit while ¢ is in the y
cell, otherwise zero. It means that {6,(g)} splits whole the
conformational space into lots of small cells, then any confor-
mational function can use these cell function to expand by ne-
glecting the fast-spatial varying of function inside each of cell

(In practice, we can only split the sample of all conformations
and group the sample into many clusters according to their
neighboring, then {6, (g)} which are the character functions
of these clusters, describe the belonging of any sampled con-
formation g). These cells are required to so small that we can
suppose the local equilibrium inside each cell is easy to reach
in a short time. Thus the cells provide a coarse description of
conformations, we do not distinguish conformations inside the
same cell and think they are identity in slow-dynamics view-
point. Thus, {6, (q)} is approximately complete in describing
the slow dynamics modes. We can apply {6, (¢)} to represent
the detailed varying of slow-mode functions ®(g) in whole the
conformational space (in whole the finite-size set of all sam-
pled conformations in practice). In the cases, A*(¢) = 0,(q),
and Ay (q) = (1/Z,)0u(q), where Z, = (8,(q))eq is the equi-
librium probability inside the u cell. The propagator is the
transition probability matrix among these cells,

Gylt) = 5-10ua(0)01(a(0))eq
u

_ nw(LO)7 (16)

ny(0)
provides a very detailed representation of the propagator. Here
nuy(t,0) is the probability that ¢ locates in the p cell at # and
starts from the v cell at 7 = 0, and n,(0) is the probability in
the v cell at r = 0. It is worth to mention, due to the character
of the cell functions, we actually can use any initial probabil-

ity P(q,0) to calculate the matrix without altering results. It
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is easy to know that G, (r) > 0, and ¥, G, (1) = 1. Thus, the
eigenvalues of the matrix are between 0 and 1 for any ¢, and
the largest a few eigenvalues and eigenvectors give the slow
modes of motion.

It is actually the main idea of MSM which was widely
applied for analyzing metastable states of slow motions
in biological molecular systems from ensemble dynamics
simulations.?*3!1 In MSM, the cells are defined in the sam-
ple set of sampled conformations. All sampled conforma-
tions are clustered into thousands of groups based on the pair
distance of conformations, then each group of conformations
corresponds into a cell function. Along the MD trajectories,
the transition probability from one cell to another after a time
interval ¢ is estimated as the corresponding matrix element.
Due to the completeness of basis functions and not requiring
the initial distribution be equilibrium, MSM provides a com-
plete construction of slow-dynamics modes in principle, and
its eigenfunctions are one-to-one corresponding to the slow
dynamics modes. However, in practice, very large data set
of simulations is often required to get good estimate of each
matrix element with sufficient statistical accuracy, which re-
quiring sufficient events between each pair of cells.

Rather than applying a great number of cell functions
as the basis functions, a recent improvement of the original
MSM, named as tICA, was presented to identify slow dynam-
ics by constructing the time correlation matrix of some physi-
cal variables, Gy (1,0) = (A, (q(t))Av(g(0))). Here {A*(q)}
is same as the basis functions applied in the TM. As we already
mentioned, the time correlation matrix is a finite-dimensional
approximate representation of the dynamics propagator. Thus,
in principle, the tICA gives slow dynamical modes by diag-
onalizing the time correlation matrix to achieving its first a
few slowest eigen-modes, while sufficient basis functions are
applied and the initial distribution P(g,0) already reached the
equilibrium one. Anyway, in practice, usually not too many
basis functions can be applied, and the initial distribution
P(g,0) may be deviated obviously from P.q(g), thus the cal-
culated time correlation matrix may loss the character of the
original propagator more or less. For example, since the time
correlation matrix is not symmetric, some of its eigenvalues
may be not real, thus do not correspond to the rates of dynam-
ical modes then we cannot directly get slow modes from the
eigenvalues directly.

As a comparison, TM calculates and diagonalizes the
variance-covariance matrix of trajectory-mapped points,

1 N

A~

H = <Au(61)>i<AV(CI)>i~

~ No i=0
It is easy to know, X" is symmetric and a kind of average of
Guv(t27t1),

THY — i/;dr(l—;)[C“v(t)—l—cvu(t)]a (17

where

T—t

1

T—t

The TM focuses more on the difference of MD trajectories
{P:(q)}, but less on that of conformations in the same trajec-
tory, since the latter is mainly related to the short-time corre-
lation. Therefore, the average of the time correlation matrix in
the TM provides a suitable way to more efficiently extract the
slow dynamics modes by filtering fast motions.

5. Summary

The TM can extract the slow dynamic processes from
time-series data. The key of TM is to make use of the time
continuity between conformations, rather than only based on
the geometric similarity of single conformation to build the
slow variables of the system. Compared with the other meth-
ods, the TM is to apply the probability function of trajectories
to combine the slow-dynamics functions directly linearly. It
makes the TM robust and straightforward, less affecting by the
incompleteness of basis functions in representing these slow
dynamics functions. Besides, the TM gives slow-dynamics re-
lated analyzed collective variables, which not only provides a
simple understanding of the slow dynamics of systems from
MD trajectories but also is applied to extend the time scale
of further MD simulations*®! by combining with some en-
hanced sampling techniques, such as metadynamics,%"! um-
brella sampling,'°!! and forward flux methods,[%?! ezc.
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