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Soliton molecules and dynamics of the smooth positon for the
Gerdjikov–Ivanov equation∗
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Soliton molecules are firstly obtained by velocity resonance for the Gerdjikov–Ivanov equation, and n-order smooth
positon solutions for the Gerdjikov–Ivanov equation are generated by means of the general determinant expression of
n-soliton solution. The dynamics of the smooth positons of the Gerdjikov–Ivanov equation are discussed using the decom-
position of the modulus square, the trajectories and time-dependent “phase shifts” of positons after the collision can be
described approximately. Additionally, some novel hybrid solutions consisting solitons and positons are presented and their
rather complicated dynamics are revealed.
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1. Introduction
The derivative nonlinear Schrödinger (DNLS) equation

has been regarded as a model in a wide variety of fields
such as weakly nonlinear dispersive water waves,[1] nonlinear
optics fibers,[2] quantum field theory[3] and plasmas.[4] The
DNLS equations have three generic deformations, the DNLS
(also named as the Kaup–Newell equation),[5] the DNLS
equation (also called the Chen–Lee–Liu equation)[6] and the
DNLS equation, also known as the Gerdjikov–Ivanov (GI)
equation[7]

iqt +qxx− iq2q∗x +
1
2

q3(q∗)2 = 0, (1)

where i2 = −1, the asterisk represents the complex conjuga-
tion, the subscripts denote the partial derivatives, x and t repre-
sent the space and time coordinates. The GI equation can also
be regarded as an extension of the NLS when certain higher-
order nonlinear effects are taken into account. The GI equation
appears in quanta field theory, nonlinear optics, weak non-
linear dispersive water wave,[8] and it is a model for Alfvén
waves propagating parallel to the ambient magnetic field, with
q being the transverse magnetic field perturbation and x and
t being space and time coordinates, respectively.[9] The Dar-
boux transformation and its determinant expression for the GI
equations have been provided in Refs. [10,11]. Breather so-
lution is obtained by nonzero seed solution. Rouge wave and
higher-order rouge solutions have been shown in Refs. [11,12].

Soliton molecules, constructed from a number of “atoms”
each being a fundamental soliton, have been become one of
the most challenging open frontiers of the field.[13] Solitons

can form bound states that are frequently referred to as soliton
molecules as they exhibit molecule-like dynamics. Investiga-
tion on soliton molecules provides an effective way to study
soliton interactions, and the formation and dissociation of soli-
ton molecules are closely linked to soliton collision, soliton
splashing and the trapping of solitons. Soliton molecules also
present the possibility of transferring optical data surpassing
the limitation of binary coding.[14] Recently, a conceptually
different soliton molecule, the intermittent-vibration soliton
molecule, is discovered and characterized.[15] By means of an
emerging time-stretch technique, Herink et al.[16] resolved the
evolution of femtosecond soliton molecules in the cavity of a
few-cycle mode-locked laser. Liu[17] have reported the first
observation of the entire buildup process of soliton molecules
in a mode-locked laser. Peng et al.[18] unveiled the build-up of
dissipative soliton in mode-locked fibre lasers and employed
autocorrelation analysis to investigate temporal evolution. In
Ref. [19], experimental investigations on the dynamics of soli-
ton molecules in the normal-dispersion regime were firstly
presented. In addition, the authors generated breathers in a
mode-locked laser.[20] Furthermore, the velocity resonance is
a new possible mechanism to form soliton molecules in a fluid
model theoretically.[21–24]

Positon solution can be regarded as a special soliton solu-
tion, which has a strong correlation potential of super trans-
parency in quantum physical field. Matveev first discov-
ered positon solution when considering the Korteweg-de Vries
(KdV) equation.[25] He showed a new family of solutions of
the KdV equation in elementary functions with the help of
the limiting procedure λi → λ j and called them “positons”.
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Dynamic properties of positons of the KdV equation was dis-
cussed in detail, the new features of positons of higher order
were shown,[26] and extension of the analysis to positons for
other nonlinear evolution equations was indicated. In Ref. [27]
positons have been established as a singular limit of a two-
soliton expression, and extended to (2+1)-dimensional phe-
nomena. The dark soliton, bright soliton and positon solutions
to NLS equations with self-consistent sources and their prop-
erties were analyzed.[28] Moreover, Dubard et al.[29] described
some basic properties of multi-positon and positon-soliton so-
lutions to the KdV equations and speculated about their possi-
ble links with freak waves.

In recent years, adopting different representations of a
general solution through zero background “seed” solution of
the corresponding equations to obtain solutions is an im-
portant method to obtain positons, which is different from
rouge waves.[30–32] Also, smooth positons of other systems
were studied, such as the complex modified KdV equa-
tion, the derivative nonlinear Schrödinger equation, and the
Kundu–Eckhaus equation.[33–35] To our knowledge, the soli-
ton molecules, the dynamic of positon solution and hybrid so-
lution for Eq. (1) have not been studied.

The organization of the paper is as follows. In Section 2,
we present the velocity resonance method to generate soliton
molecules of the GI equation. In Section 3, we present the
determinant expression of n-order positon solution to the GI
equation by degeneration DT. As the application of the for-
mula, we give the explicit expression of two-positon solution
and plot the two-, three- and four-positon solutions. In Sec-
tion 4, the trajectory of positon solutions and and time-varying
“phase shift” of two- and three-positon solutions after colli-
sions are discussed in detail. In Section 5, hybrid solutions
consisting of solitons and positons are investigated. The con-
clusion is provided in Section 6.

2. Soliton molecules of the Gerdjikov–Ivanov
equation
Considering the spectral problem{
Ψx = (Jλ 2 +Q1λ +Q0)Ψ =UΨ ,

Ψt = (2Jλ 4 +V3λ 3 +V2λ 2 +V1λ +V0)Ψ =VΨ ,
(2)

with

Ψ =

(
φ

ψ

)
, J =

(
−i 0
0 i

)
,

Q1 =

(
0 q
r 0

)
, Q0 =

(
− 1

2 iqr 0
0 1

2 iqr

)
,

V3 = 2Q1, V2 = Jqr, V1 =

(
0 iqx
−irx 0

)
,

V0 =

( 1
2 (rqx−qrx)+

1
4 iq2r2 0

0 − 1
2 (rqx−qrx)− 1

4 iq2r2

)
,

where q and r are two potentials, Ψ is the eigenfunction of
Eq. (2) corresponding to the complex spectral parameter λ .
The zero curvature equation Ut −Vx + [U,V ] = 0 infers the
following system{

iqt +qxx + iq2rx +
1
2 q3r2 = 0,

irt − rxx + ir2qx− 1
2 q2r3 = 0.

(3)

This system admits the reduction r = −q∗ and reduces to the
GI equation (1). The determinant representation of the n-fold
DT for the GI equation has been given in Ref. [11]. We cite
the main theorem as follows.

Theorem 1 Let
(

φi
ψi

)
(i = 1,2, . . . ,2n) be distinct so-

lutions related to λi of the spectral problem, then (q[n],r[n])
given by the following formulae are new solutions to the GI
equation:

q[n] = q+2i
Ω11

Ω12
, r[n] = r−2i

Ω21

Ω22
. (4)

Here

Ω11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 λ1ψ1 · · · λ
2n−3
1 ψ1 λ

2n−2
1 φ1 −λ 2n

1 φ1
φ2 λ2ψ2 · · · λ

2n−3
2 ψ2 λ

2n−2
2 φ2 −λ 2n

2 φ2
φ3 λ3ψ3 · · · λ

2n−3
3 ψ3 λ

2n−2
3 φ3 −λ 2n

3 φ3
φ4 λ4ψ4 · · · λ

2n−3
4 ψ4 λ

2n−2
4 φ4 −λ 2n

4 φ4
...

...
...

...
...

...
φ2n λ2nψ2n · · · λ

2n−3
2n ψ2n λ

2n−2
2n φ2n −λ 2n

2n φ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Ω12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 λ1ψ1 · · · λ
2n−3
1 ψ1 λ

2n−2
1 φ1 λ

2n−1
1 ψ1

φ2 λ2ψ2 · · · λ
2n−3
2 ψ2 λ

2n−2
2 φ2 λ

2n−1
2 ψ2

φ3 λ3ψ3 · · · λ
2n−3
3 ψ3 λ

2n−2
3 φ3 λ

2n−1
3 ψ3

φ1 λ4ψ4 · · · λ
2n−3
4 ψ4 λ

2n−2
4 φ4 λ

2n−1
4 ψ4

...
...

...
...

...
...

φ2n λ2nψ2n · · · λ
2n−3
2n ψ2n λ

2n−2
2n φ2n λ

2n−1
2n ψ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Ω21 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 λ1φ1 · · · λ
n−3
1 φ1 λ

n−2
1 ψ1 −λ n

1 ψ1
ψ2 λ2φ2 · · · λ

n−3
2 φ2 λ

n−2
2 ψ2 −λ n

2 ψ2
ψ3 λ3φ3 · · · λ

n−3
3 φ3 λ

n−2
3 ψ3 −λ n

3 ψ3
ψ4 λ4φ4 · · · λ

n−3
4 φ4 λ

n−2
4 ψ4 −λ n

4 ψ4
...

...
...

...
...

...
ψ2n λ2nφ2n · · · λ

2n−3
2n φ2n λ

2n−2
2n ψ2n −λ 2n

2n ψ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Ω22 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 λ1φ1 · · · λ
n−3
1 φ1 λ

n−2
1 ψ1 λ

n−1
1 φ1

ψ2 λ2φ2 · · · λ
n−3
2 φ2 λ

n−2
2 ψ2 λ

n−1
2 φ2

ψ3 λ3φ3 · · · λ
n−3
3 φ3 λ

n−2
1 ψ3 λ

n−1
3 φ3

ψ4 λ4φ4 · · · λ
n−3
4 φ4 λ

n−2
1 ψ4 λ

n−1
4 φ4

...
...

...
...

...
...

ψ2n λ2nφ2n · · · λ
2n−3
2n φ2n λ

2n−2
2n ψ2n λ

2n−1
2n φ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5)

We start with the soliton solutions by Eq. (4) and assume
hereafter that eigenfunctions and eigenvalues are as follows:

λ2n = λ
∗
2n−1, Ψ2n =

(
φ2n
ψ2n

)
=

(
−ψ∗2n−1
φ ∗2n−1

)
. (6)

The eigenfunctions of the spectral problem (2) by setting seed
solution q = 0 with eigenvalues λ j = α j + iβ j are solved as

Ψj =Ψ(λ j) =

(
φ j(λ j)
ψ j(λ j)

)
=

(
exp(−iλ 2

j (2λ 2
j t + x))

exp(iλ 2
j (2λ 2

j t + x))

)
. (7)
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When n = 1, let λ2 = λ ∗1 , and Ψ1 =

(
φ1
ψ1

)
, Ψ2 =

(
−ψ∗1
φ ∗1

)
, the

explicit formula of one-soliton solution is

q1−s =
16e−2ihα1β1

α1 cosh(4α1β1H)− iβ1 sinh(4α1β1H)
, (8)

with h = α2
1 x+2α4

1 t−12α2
1 β 2

1 t−β 2
1 x+2β 4

1 t, H = 4 tα2
1 −

4 tβ 2
1 + x. The trajectory of wave crest is

x =−4t(α2
1 −β

2
1 ). (9)

The key to generating soliton molecules is to start with
eigenfunctions with a “phase shift” by choosing zero “seed
solution” q = 0, the general form of eigenfunctions is as fol-
lows:

Ψj =Ψ(λ j) =

(
φ j(λ j)
ψ j(λ j)

)

=

(
exp(−iλ 2

j (2λ 2
j t + x)−ξ )

exp(iλ 2
j (2λ 2

j t + x)+ξ )

)
, (10)

where ξ is a real constant and λ j = α j + iβ j.

Then we can reach the following velocity resonance con-
dition. In order to obtain a molecule consisting of n solitons,
we can constrain the parameters in Eq. (4) as follows:

α
2
2 j−1−β

2
2 j−1 = v0, λ1 6= λ3 6= · · · 6= λ2 j−1,

j = 1,2, . . . ,n, (11)

where v0 is a real constant. Here we choose v0 = 1/4, and soli-
ton molecules consisting different solitons are shown in Fig. 1.
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Fig. 1. (a) Soliton molecule consisting of two solitons with parameter selections λ1 = 2
3 +

√
7i
6 , λ3 = 3

4 +
√

5i
4 , ξ = 40. (b) Soliton molecule

consisting of three solitons with parameter selections λ1 =
2
3 +

√
7i
6 , λ3 = 1+

√
3i
2 , λ5 =

3
4 +

√
5i
4 , ξ = 40. (c) Soliton molecule consisting of

four solitons with parameter selections λ1 =
2
3 +

√
7i
6 , λ3 = 1+

√
3i
2 , λ5 =

3
4 +

√
5i
4 , λ7 =

4
3 +

√
55i
6 , ξ = 10.

3. Smooth positons of the Gerdjikov–Ivanov
equation

When λ1 = λ3 and letting n = 2 in Eq. (4), the denomina-
tor of the fraction is zero. Then the DT cannot carry on with
the same eigenvalue. In order to overcome this deficiency, de-
generate DT for the GI equation can be obtained by setting
λ2 j−1 = λ1 + ε ( j = 2,3, . . . ,n), the expression of q[n] will not
be zero. In this section, smooth positons are obtained using
degenerate DT and higher-order Taylor expansion from a zero
seed solution to the GI equation. Substituting Eq. (7), q = 0,
and λ2 j−1 = λ1+ε ( j = 2,3, . . . ,n) into Eq. (12), using Taylor
expansion to ε , we can obtain the smooth positon solutions to
the GI equation. The determinant expression of the n-positive
definite solution to the GI equation can be obtained from the
following proposition.

Proposition Based on the degenerate limit λ2 j−1 → λ1,
n-order soliton solution from zero seed solution q = 0 pro-
duces n-order positon solution qn−p of the GI equation

qn−p = 2i
N′2n
W ′2n

, (12)

where

N′2n =

(
∂ ni−1

∂εni−1

∣∣∣∣
ε=0

(Ω11)i j(λ1 + ε)

)
2n×2n

,

W ′2n =

(
∂ ni−1

∂εni−1

∣∣∣∣
ε=0

(Ω12)i j(λ1 + ε)

)
2n×2n

,

and ni =
[ i+1

2

]
, [i] is the floor function of i.

The reduction conditions are λ2 j = λ ∗2 j−1φ2 j = −ψ∗2 j−1,
ψ2 j = φ ∗2 j−1 (1,2,3, . . . ,n) in the above proposition.

Based on proposition 1, we can reach the exact formula of
positon solutions conveniently, because the complex process
of limits λ2 j−1→ λ1 is avoided, we can construct higher-order
positon solution easily. Higher-order positon solutions’ ex-
pression is too tedious, we only present the explicit expression
of the two-positon solution by setting n = 2 in proposition 1.
The explicit formula of the two-positon solution is

q2−p =
A1e12α1β1H−2ih +A2e4α1β1H−2ih

B1e8α1β1H +B2
,

A1 = −16α1β1(48iα5
1 β

2
1 t +32iα3

1 β
4
1 t−16iα1β

6
1 t

−16α
6
1 β1t +32α

4
1 β

3
1 t +48α

2
1 β

5
1 t +4iα3

1 β
2
1 x

+4iα1β
4
1 x−4α

4
1 β1x−4α

2
1 β

3
1 x− iβ 3

1 +α
3
1 ),
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A2 = −16α1β1(48iα5
1 β

2
1 t +32iα3

1 β
4
1 t−16iα1β

6
1 t

+16α
6
1 β1t−32α

4
1 β

3
1 t−48α

2
1 β

5
1 t +4iα3

1 β
2
1 x

+4iα1β
4
1 x+4α

4
1 β1x+4α

2
1 β

2
1 x+ iβ 3

1 +α
3
1 ),

B1 = −1024α
10
1 β

2
1 t2−4096α

8
1 β

4
1 t2−512α

8
1 β

2
1 tx

−6144α
6
1 β

6
1 t2−512α

6
1 β

4
1 tx+128iα6

1 β
2
1 t

−64α
6
1 β

2
1 x2−4096α

4
1 β

8
1 t2 +512α

4
1 β

6
1 tx

+32iα4
1 β

2
1 x−128α

4
1 β

4
1 x2−32iα2

1 β
4
1 x

−1024α
2
1 β

10
1 t2 +512α

2
1 β

8
1 tx+128iα2

1 β
6
1 t

−64α
2
1 β

6
1 x2−768iα4

1 β
4
1 t−2α

4−2β
4,

B2 = (2ie16αβH
α β − e16αβH

α
2 + e16α β H

β
2

−2iα β −α
2 +β

2)(α2 +β
2),

h = α
2
1 x+2α

4
1 t−12α

2
1 β

2
1 t−β

2
1 x+2β

4
1 t,

H = 4tα2
1 −4tβ 2

1 + x. (13)

We provide the three-dimensional plot and density plot
for two-positon, three-positon and four-positon cases, see
Figs. 2(a), 2(b), 3(a), 3(b), and 4.

4. Dynamics of the positons of the Gerdjikov–
Ivanov equation
In order to find out positon’s trajectories clearly, their dy-

namics properties must be analyzed. Obviously, neither q2−p

is a traveling wave with a constant profile, nor the trajectory
of two positions is a straight line, but a slowly changing curve.

The most well-known idea that soliton is two-soliton can be
viewed as the decomposition of two solitons when t → ∞.
The two-soliton will become to two-positon after performing
a limit method, which should be decomposed asymptotically
into two solitons.

Proposition 2 When |t| →∞, two-positon solution of the
GI equation has the decomposition

|q2−p|2 ≈
∣∣∣∣q1−s(H +

ln(4096α4
1 β 4

1 t2)

8α1β1
)

∣∣∣∣2
+

∣∣∣∣q1−s(H−
ln(4096α4

1 β 4
1 t2)

8α1β1
)

∣∣∣∣2, (14)

two approximate trajectory equations are H± ln(4096α4
1 β 4

1 t2)
8α1β1

=

0, where H = 4 tα2
1 −4 tβ 2

1 + x.
Proof 1 We assume that the |q2−p|2 has the following

decomposition:

|q2−p|2 ≈ |q1−s(H + c1)|2 + |q1−s(H− c1)|2, t→ ∞, (15)

with

q1−s(θ) =
16e−2ihα1β1

α1 cosh(4α1β1θ)− iβ1 sinh(4α1β1θ)
, (16)

where θ = H ± c1. Substituting q2−p and Eq. (16) into
Eq. (15), and considering the approximation in the neighbor-

hood of H = 0 for Eq. (15), we can obtain c1 ≈
ln(4096α4

1 β 4
1 t2)

8α1β1
.
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Fig. 2. The evolution of a two-positon |q2−p|with α1 = 1/3, β1 = 2/5 of the GI equation: (a) 3D plot, (b) density plot, where two red curves are

approximate trajectories defined by H± ln(4096α4
1 β 4

1 t2)
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= 0, which compared with density plot are shown consistence; (c) 2D plot of two-positon
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Proposition 3 When |t| → ∞, the three-positon solution
of the GI equation has the decomposition

|q3−p|2 ≈
∣∣∣∣q1−s

(
H +

ln(4194304α8
1 β 8

1 t4)

8α1β1

)∣∣∣∣2 + |q1−s(H)|2

+

∣∣∣∣q1−s

(
H−

ln(4194304α8
1 β 8

1 t4)

8α1β1

)∣∣∣∣2, (17)

three approximate trajectory equations are defined by H ±
ln(4194304α8

1 β 8
1 t4)

8α1β1
= 0 and H = 0, where H = 4tα2

1 −4tβ 2
1 + x.

Proof 2 As we can see in Fig. 3(a), the undetermined
form of q3−p can be written as

|q3−p|2 ≈ |q1−s(H + c2)|2 + |q1−s(H)|2

+ |q1−s(H− c2)|2, (18)

when |t| → ∞; c2 is “phase shift” to be determined, and
q1−s(H± c2) are obtained by changing c1 in Eq. (16). Substi-
tuting q1−s(H + c2), q1−s(H), q1−s(H− c2) into Eq. (18) and
considering the approximation in the neighborhood of H = 0,

we can obtain c2 ≈
ln(4194304α8

1 β 8
1 t4)

8α1β1
.

When n = 4 in Eq. (12), the four-positon solution q4−p

of the GI equation can be obtained via the similar method.
We omit the formula of the four-positon solution because of
the rather complexity form. The three-dimensional plot and
density plot have shown in Fig. 4, and higher-order positon
solutions can be constructed by the similar way.
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Fig. 4. The evolution of a four-positon |q4−p| with α1 = 1/2, β1 = 1/2
of the GI equation on (x, t)-plane: (a) the 3D plot, (b) the density plot.

5. Hybrid solutions of solitons and positons
In this section, we discuss the hybrid solutions of the soli-

ton solutions and the positons solutions of the GI equation.
Proposition 4 A hybrid solution of m-order smooth posi-

ton and l solitons has the following form based on semi-
degenerate DT,

qm−l = 2i
N′2n
W ′2n

, (19)

where

N′2n =

(
∂ h(i)

∂εh(i)

∣∣∣∣
ε=0

(Ω11)i j(λ1 + ε)

)
2n×2n

,

W ′2n =

(
∂ h(i)

∂εh(i)

∣∣∣∣
ε=0

(Ω12)i j(λ1 + ε)

)
2n×2n

,

h(i) =

{[ i−1
2

]
, i≤ 2m,

0, i > 2m,
(20)

where n = m+ l, λ1 = λ3 = · · ·= λ2 m−1, [i] denotes the floor
function, λ2m+1, . . . ,λ2m+2l−1 mutual inequality.

The n-positon solution can be obtained by performing
higher-order expansion with λ j → λ1 in the n-soliton solu-
tion. The two-positon solution is the degenerated case of the
two-soliton solution. Inspired by employing the Hirota bilin-
ear method to construct interaction solutions, we consider the
degeneration on partial eigenvalues. In proposition 4, if l = 0,
the hybrid solutions will be converted to higher-order smooth
positons. Let m = 2 and l = 1, we can get hybrid of one-
soliton and two-positon, see Fig. 5. As m = 3 and l = 1, the
hybrid of one-soliton and three-positon can be generated, see
Fig. 6. As m = 2 and l = 2, the hybrid of two-soliton and two-
positon can be generated, see Fig. 7. We can roughly observe
that there is no change except the phase shift before and after
the collision between solitons and higher-order smooth posi-
tons. Some interaction phenomena have similar properties.[36]

Upon collision, large pulses are formed, this is very similar to
soliton collision in a fibre laser. In Ref. [37], authors demon-
strated a conceptually different type of soliton explosions in-
duced by soliton collision. In first experimental demonstra-
tion of a new mechanism for rogue wave generation, the non-
linear interactions and collisions of ultrashort optical pulses
in a strongly dissipative regime lead to extreme peak-optical-
intensity events.[38]
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Fig. 5. The evolution of hybrid solution consisting of a soliton and two-
positon with α1 = 2/5, β1 = 1/5, α3 = 1/5, β3 = 2/5 of the GI equation
on (x, t)-plane: (a) the 3D plot, (b) the density plot.
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β5 = 2/5 of the GI equation on (x, t)-plane: (a) the 3D plot, (b) the
density plot.

6. Conclusion
In this paper, we have presented the velocity resonance

method to generate soliton molecules of the GI equation, see
Fig. 1. The determinant representation of the n-positon solu-
tion to the GI equation is presented based on degenerate DT
in proposition 1. Two-positon, three-positon and four-positon
solutions are given as an example, and the trajectory of posi-
tons is a slowly changing curve, see Figs. 2(a), 3(a), and 4.
The decomposition of the positons for the GI equation, the
time-dependent “phase shift” and approximate trajectories are
obtained in propositions 2 and 3, see Figs. 2(b) and 3(b). We
also discuss the hybrid solutions of the solutions and positons
in proposition 4. The interaction of positons and solitons can
be seen from Figs. 5–7, and the complicated dynamics are re-
vealed.

The interaction phenomenon of soliton molecules can
be approached from many equations, such as modified
nonlinear Schrödinger equation (MNSE),[39] complex mod-
ified Korteweg-de Vries equation,[40] B-type Kadomtsev–
Petviashvili equation.[41] Liu et al. used numerical simula-
tions to reveal the soliton formation through beating dynamics
on the MNSE. How to investigate beating behavior by the GI
equation, this is a meaningful question. In Ref. [42], the soli-
ton (kink) molecules, half periodic kink molecules and breath-
ing soliton molecules of the Sharma–Tasso–Olver–Burgers
equation were derived, and the fission and fusion phenom-
ena have been analyzed among kink molecules and half pe-
riodic kink molecules by multiple solitary wave solution. Re-
cently, Liu and Pang[43] unveiled that the multiple harmonic
mode-locking pulses originate from a single-pulse splitting
phenomenon and breathing behavior occurs in an early stage

of the harmonic mode-locking buildup process. We cannot
reach such results theoretically by DT at present, the corre-
sponding work of this problem will be studied in future.
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