
Chin. Phys. B Vol. 29, No. 10 (2020) 100303

On the time-independent Hamiltonian in real-time and
imaginary-time quantum annealing∗
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We present the analog analogue of Grover’s problem as an example of the time-independent Hamiltonian for apply-
ing the speed limit of the imaginary-time Schrödinger equation derived by Okuyama and Ohzeki and the new class of
energy-time uncertainty relation proposed by Kieu. It is found that the computational time of the imaginary-time quantum
annealing of this Grover search can be exponentially small, while the counterpart of the quantum evolution driven by the
real-time Schrödinger equation could only provide square root speedup, compared with classic search. The present results
are consistent with the cases of the time-dependent quantum evolution of the natural Grover problem in previous works. We
once again emphasize that the logarithm and square root algorithmic performances are generic in imaginary-time quantum
annealing and quantum evolution driven by real-time Schrödinger equation, respectively. Also, we provide evidences to
search deep reasons why the imaginary-time quantum annealing can lead to exponential speedup and the real-time quantum
annealing can make square root speedup.
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Quantum speed limit is a fundamental concept in quan-
tum mechanics, and it aims at finding the minimum time scale
or the maximum dynamical speed for some fixed targets. For
example, when unitary evolution of pure states is considered,
an achievable QSL is given as τ ≥ dFS/∆E, where dFS is the
Fubini–Study distance between the initial and target states,[1]

and ∆E is the time-averaged standard deviation of a given
Hamiltonian, which plays the role of the average speed.[2]

The first rigorous derivation of the quantum speed limit can
be dated back to Mandelstam and Tamm.[3]

Since the advent of quantum theory, the time-energy un-
certainty relation ∆E∆T ≥ h̄/2 has been a controversial issue
with regard to its appropriate formalization, validity, and pos-
sible meanings.[4] It cannot be derived from any commutator
relation, which is due to the lack of a well-defined time oper-
ator in quantum mechanics. The authors of Ref. [5] showed
that ∆E cannot be regarded as the minimum dispersion of
an energy measurement of duration ∆T . Instead, ∆T corre-
sponds to the minimum time span that quantum systems with
constant energy and initial energy spread ∆E need to evolve
from one state to another orthogonal state.[6–9] The relation
τQSL ' h̄/∆E gives the quantum speed limit time of a system.
In Refs. [10,11], the energy-time uncertainty relation for time-

independent systems has been further extended, in which the
quantum speed limit time for general mixed states, not neces-
sarily orthogonal, is determined as a function of their geomet-
rical angle which is given by the Bures length.[12]

Recently, Kieu obtained a new class of time-energy un-
certainty relations directly derived from the Schrödinger equa-
tions for time-dependent Hamiltonians.[13] For particularly
interesting cases there, the results for the time-independent
Hamiltonians and also for the time-varying Hamiltonians
which are employed in quantum adiabatic evolution[14,15] are
presented explicitly. With Grover’s search as an example,[16]

the estimate of the lower bound on computational time for it
is shown, from which the role of required energy resources
is particularly emphasized there, besides the space and time
complexity, for the physical process of quantum computa-
tion. Inspired by this work, Okuyama and Ohzeki derived a
speed limit for the imaginary-time Schrödinger equation, and
they found that, using this new speed limit, the optimal com-
putational time of the imaginary-time quantum annealing of
Grover’s search is bounded from below by the logarithm of the
size of the problem.[17] This result is consistent with a previ-
ous study in which both of analytical and numerical methods
have been applied for the Grover problem in imaginary-time
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quantum annealing to reach the same conclusion.[18]

However, it is easy to see that, in the works of Refs. [13,
17], an example seems to lack for an illustration purpose when
the speed limit or the time-energy uncertainty relation is ap-
plied to the time-independent Hamiltonian case. Thus in the
present paper, we make up this gap by showing that the con-
tinuous version of Grover’s search, or the analog analogue to
Grover’s algorithm called by Farhi et al.,[19] is just such a
good toy example for the goal. It will be found that, for the
time-energy uncertainty relation applied to the quantum evo-
lution of Grover’s problem in the continuous setting, the re-
sulting time complexity matches the well known square root
bound,[20] whereas the optimal time is logarithm in the prob-
lem size for the speed limit applied to the same kind of prob-
lem. Thus from the results here, we once again see that the op-
timal schedules for the quantum annealing by the imaginary-
time and real-time Schrödinger equations differ greatly.

Now, let us firstly turn to the case that the time-energy
uncertainty relation in Ref. [13] is applied to the time-
independent Hamiltonian. For this case, we consider the fol-
lowing Schrödinger equation with a time-independent Hamil-
tonian H:

ih̄
d
dt
|ψ(t)〉= H|ψ(t)〉, |ψ(t)〉= |φ0〉, (1)

and also consider another state |φ(t)〉 which satisfies a closely
related Schrödinger equation

ih̄
d
dt
|φ(t)〉= β1|φ(t)〉, |φ(t)〉= |φ0〉, (2)

in which β is an arbitrary constant but not equal to zero so that
it results in a phase ambiguity |φ(t)〉= exp(−i

∫ t
0 β/h̄dτ)|φ0〉,

and 1 denotes the identity matrix. It was found by Kieu that
the following inequality holds for Eq. (1):

h̄
√

2≤ ∆t⊥×∆E0, (3)

where

∆E0 =
√
〈φ0|H2|φ0〉−〈φ0|H|φ0〉2 (4)

is the energy spread of the initial state, and ∆t⊥ is the time
at which the initial state evolves into a state orthogonal to it,
〈ψ(∆t⊥)|φ0〉= 0. It can be noted that in inequality (3), Eq. (2)
only serves as an ancillary equation, and β in it has been set
as β = 〈φ0|H|φ0〉 in Ref. [13].

For the analog to Grover’s algorithm, the system Hamil-
tonian is time-independent and given as[19]

H = E|s〉〈s|+E|w〉〈w|, (5)

where |w〉 is the target state, |s〉 is the initial state which is usu-
ally chosen as the uniform superposition of all the elements in

an unstructured database, |s〉 = 1√
N ∑

N−1
i=0 |i〉, and E is some

positive constant. From Eq. (5), it is easy to obtain√
〈φ0|H2|φ0〉−〈φ0|H|φ0〉2 = E

√
1
N
− 1

N2 (6)

after some calculations and noting that 〈w|φ0〉 = 〈w|s〉 =
1/
√

N. Therefore, from inequality (3), we can reach

∆t⊥ ≥
h̄
√

2

E
√

1/N−1/N2
. (7)

For N � 1, we can further reduce the above inequality to the
following one,

∆t⊥ ≥
h̄
√

2
E
×
√

N ' O(
√

N). (8)

Thus, we can see that, by the time-energy uncertainty re-
lation given in Ref. [13], the analog analogue of Grover’s
problem solved by quantum evolution driven by the real-time
Schrödinger equation also has a square root speedup compared
with classic computer search. This is consistent with the result
of Farhi et al. given in Ref. [19], whereas the time complexity
there was obtained by the analogue method used in the analy-
sis of the quantum circuit model of Grover’s algorithm.

Now, let us argue why the time-energy uncertainty rela-
tion leads to a square root speedup in real time evolution. In
Hermitian quantum mechanics, the most general 2×2 Hermi-
tian has the form

H =

(
s r e−iθ

r e iθ u

)
, (9)

where the four parameters r, s, u, and θ are real. The eigen-
value constraint E+−E− = ω of this matrix reads

ω
2 = (s−u)2 +4r2. (10)

From Ref. [21], we know that the optimal time for the quantum
evolution from an initial state

|φ0〉=
(

1
0

)
(11)

to the final state

|φ1〉=
(

a
b

)
, (|a|2 + |b|2 = 1) (12)

with this Hamiltonian can be given as

∆t =
2h̄
ω

arcsin |b|. (13)

We can see that express (13) resembles the time-energy un-
certainty principle, and it is the statement that rate× time=
distance. The constraint (10) on H is equivalent to plac-
ing a bound on the standard deviation ∆H of the Hamilto-
nian, where ∆H in a normalized state |φ〉 is given by ∆H =√
〈φ |H2|φ〉−〈φ |H|φ〉2. The maximum value of ∆H is ω/2.

The speed of evolution of a quantum state is given by ∆H.[22]

The distance between the initial state and the final state is
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δ = 2arccos |〈φ0|φ1〉|, which thus is fixed. The shortest time
to achieve the evolution from |φ0〉 to |φ1〉 = e−iH∆t/h̄|φ0〉 is
bounded below. Since ∆H of the Hamiltonian in Eq. (9) is
r, to minimize the time of quantum evolution, we can choose
r = ω/2, which implies s = u. Returning to the setting of the
analog analogue to the Grover problem, the Hamiltonian reads
in the two-dimensional space

H = E
(

1+ x2 x
√

1− x2

x
√

1− x2 1− x2

)
, (14)

in which x = 〈s|w〉= 1√
N

. For N� 1, we can think that the di-
agonal elements of this matrix are approximately equal to each
other, and the off-diagonal elements are approximately equal
to Ex. Thus, the minimum time of the quantum evolution
from the initial state to the target state is ∆t = 2h̄

2xE arcsin |b|=
O(
√

N), in which b =
√

N−1
N ≈ 1 for N� 1.

It is noted that from Ref. [13], in fact, we have another
inequality, i.e.,

2h̄≤ ∆t∀×
√

∆E2
0 +E2

0 , (E0 = 〈φ0|H|φ0〉), (15)

which together with inequality (3) constitutes the energy-
time uncertainty relation for time-independent quantum uni-
tary processes. Then we can unify them into the generic form

∆t = max
{

2h̄√
∆E2

0 +E2
0

,

√
2h̄

∆E0

}
, (16)

which is just like the classic Margolus–Levitin’s and
Mandelstam–Tamm’s uncertainty relations shown in a unified
way. In fact, unifying these uncertainty relations of Kieu is
necessary. This can be seen from the following simple exam-
ple. Suppose that the target state |w〉 is orthogonal to the the
initial state |s〉. It is easy to verify that the inequality (3) can-
not give a meaningful time complexity estimate for this special
problem. However, from the early results like that in Ref. [23],
we know that the true time complexity for the problem solved
by quantum adiabatic evolution is O(1). Using Eq. (15), we
can also obtain the same result rather directly. Also, it can
seen from Eq. (16) that the quantum speed limit time is in-
versely proportional to the energy of the system (energy spread
or energy expectation value of the initial state), so it is deter-
mined by the initial energy in the time-independent case. This
should not be surprising as energy is the generator of quantum
time evolution. Therefore, it can be physically understood that
the quantum speed limit time strongly depends on the initial
energy of the quantum system: the more the energy that has
been pumped into a system and the more the states the energy
distributed in, the faster the system will evolve. In the analog
analogue of the Grover search problem, the parameter E in the
driving Hamiltonian H is in O(1), so the quantum evolution
time is given by O(

√
N). It is easy to see that when E is set

as, for example, E = O(
√

N), the resulting time complexity
of the quantum evolution is constant. This phenomenon is not
new, and in fact has already been noticed in the early work of
Ref. [24]. Even further, it can be expected that, if E has the
form of an exponential factor in N, the quantum evolution time
can thus be reduced exponentially. In physics, Ref. [25] gave
an example for this, i.e., when the quantum evolution time is
controlled by the mean energy and the latter is increased ex-
ponentially in time, as in the creation of a squeezed state in a
modulated harmonic trap, the quantum speed limit time is ex-
ponentially reduced. On the other hand, it can be noted that the
quantum speed limit time may also be increased when the en-
ergy of the system is decreased. In realistic scenario, Ref. [26]
provided an example for it.

Next, we turn to the imaginary-time quantum annealing
of this continuous version of Grover’s problem. We firstly re-
call the speed limit for the time-independent systems. For this,
we consider the following two imaginary-time Schrödinger
equations

− d
dt
|ψ(t)〉= H|ψ(t)〉, − d

dt
|φ(t)〉= β1|φ(t)〉,

|ψ(0)〉= |φ(0)〉= |ψ0〉, (17)

in which H is required to be a real positive-semidefinite ma-
trix, |ψ(t)〉 and |φ(t)〉 are real vectors. For Eq. (17), the speed
limit derived in Ref. [17] is given as follows:

|||ψ(τ)〉− exp(−τ〈ψ0|H|ψ0〉)|ψ(0)〉||

≤
√
〈ψ0|H2|ψ0〉−〈ψ0|H|ψ0〉2

1−exp(−τ〈ψ0|H|ψ0〉)
〈ψ0|H|ψ0〉

. (18)

Now we use Eq. (18) to analyze the quantum annealing of
the continuous version of Grover’s problem driven by the first
equation in (17). Note that for the time-independent Hamilto-
nian given in Eq. (5), it can be verified that H is indeed real
positive-semidefinite, which is needed in the imaginary-time
quantum annealing. In the imaginary-time Schrödinger equa-
tion, the norm of the state is not preserved, so the case that the
state |ψ(t)〉 reaches the target state |||ψ(τ)〉|| |w〉 at time τ is
considered. Substituting this target state into the left-hand side
of Eq. (18), we can reach

|| |||ψ(τ)〉|| |w〉− e−τ〈ψ0|H|ψ0〉|ψ(0)〉||

= [|||ψ(τ)〉||2+ e−2τ〈ψ0|H|ψ0〉− 2√
N
|||ψ(τ)〉||e−τ〈ψ0|H|ψ0〉]1/2

= [(|||ψ(τ)〉||− 1√
N

e−τ〈ψ0|H|ψ0〉)2

+

(
1− 1

N

)
e−2τ〈ψ0|H|ψ0〉]1/2

≥
√

1− 1
N

e−τ〈ψ0|H|ψ0〉. (19)

From Eqs. (18) and (19), we can obtain

1− e−τE(1+1/N) ≥ e−τE(1+1/N)
√

N(1+1/N). (20)
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Multiplying both sides of the above inequality by e−τE(1+1/N)

and then taking logarithm of the resulting inequality, for N�
1, we are finally led to

τ ≥
1
2 lnN

E
' O(lnN). (21)

Then we can see that the imaginary-time quantum annealing
of the analog analogue of Grover’s search also has exponential
speedup compared with the case of quantum evolution of the
same problem but by the real-time Schrödinger equation.

At first sight, it seems that this O(lnN) time scale of
the above imaginary-time evolution is counter-intuition, be-
cause imaginary-time evolution often suggests that there ex-
ists decoherences. Decoherences may have a negative effect
on quantum evolution. For example, in Ref. [27], it was found
that decoherences could decrease the energy gap between the
ground state and the first excited state. As a result, the time
scale of evolution should be longer than real-time evolution.
However, in imaginary-time dynamics, the transition from ex-
cited states to the ground state strongly influences and can not
be ignored, which is quite unlike that in real-time dynamics,
for which it is possible to prove the optimality of order

√
N

by the time-energy uncertainty relations in Ref. [13]. From
Ref. [18], we know that the O(lnN) time complexity of the
imaginary-time quantum annealing of Grover’s search is real-
ized by a linear scheduling, which is very different from O(N)

required for that by the real-time Schrödinger equation. This
difference is caused by the exponential decay of excited states
in imaginary-time quantum annealing. Even if the Landau–
Zener transition occurs, the imaginary-time quantum anneal-
ing can obtain a high success probability due to the fact that
the energy gap reopens after the Landau–Zener transition and
the exponential decay of excited states plays an important role
in Grover’s search problem. In real-time quantum annealing,
with respect to the adiabatic condition, it is a necessary con-
dition to avoid the Landau–Zener transition for achieving high
success probability. In contrast, in imaginary-time quantum
annealing, it is a sufficient rather than necessary condition.
Therefore, it is more important to utilize the exponential de-
cay of excited states than to avoid the Landau–Zener transition
for imaginary-time quantum annealing. On the other hand, the
fundamental speed limit (18) can be used for proving the opti-
mality of order lnN. The imaginary time adiabatic theorem[28]

does not give the optimal schedule,[18] which means that the
adiabatic time evolution has nothing to do with the optimality
in imaginary-time dynamics although the adiabatic time evolu-
tion is closely related to the optimality in real-time dynamics.
Lastly, the imaginary-time annealing is in fact not physically
realistic, so the result in Ref. [17] only gives us the implica-
tion that there is a fundamental limit even in such non-physical
systems.

Quantum annealing has attracted much interest in recent
years, for instance, in quantum machine learning[29,30] and
quantum algorithms.[31–33] In the previous work of Ref. [13],
a new class of time-energy uncertainty relations was directly
derived from the Schrödinger equations for real-time quantum
annealing. Grover’s search employed in quantum adiabatic
computation was presented as an example to illustrate for its
applications. The time-independent Hamiltonians, Grover’s
search also yielded a class of time-energy uncertainty rela-
tions using nearly the same method in the same paper. How-
ever, no example is shown for the latter case there. Therefore,
in this paper, we present the continuous version of Grover’s
search as an example to explain it. Recently, Okuyama and
Ohzeki obtained a similar speed limit as in Ref. [13] but for
the imaginary-time Schrödinger equation. Also, the time-
independent Hamiltonian case has been considered by them,
whereas an example was missing, still the quantum adiabatic
Grover’s problem was shown in the time-varying case for ap-
plying that speed limit. We find that the analogue of Grover’s
search can also serve as an instance for this goal.

As shown by our result, the quantum evolutions of the
continuous version of Grover’s problem by real-time and
imaginary-time Schrödinger equations can demonstrate very
different algorithmic performances. Plus the previous results
shown separately in Refs. [13,17], it seems to imply that the
optimal quadratic speedup and logarithmic time complexity of
quantum annealing are respectively generic in the above two
scenarios.

In this work, the derivation for the conclusion in the
real time evolution is based on non-relativistic quantum me-
chanics. In the Hermitian quantum mechanics, the optimal
time evolution problem implies that finding the transforma-
tion |φ0〉→ e−iHt |φ0〉 can provide the shortest time t = ∆t un-
der a given set of constraints.[34] The Hamiltonian (5) given
by Farhi et al. satisfies this requirement because it is well
known that the square-root speedup is optimal. However, in
PT-symmetric quantum mechanics, the speed limit of evo-
lution changes significantly without violating the uncertainty
principle,[21] for example, the optimal time for evolving from
an initial state to the target state can be arbitrarily small.

Lastly, it is known that the theory of quantum gravity is
aimed to fuse general relativity with quantum theory into a
more fundamental framework. The space of quantum gravity
provides both the dynamic (unfixed) causality of general rela-
tivity and the uncertainty of quantum mechanics. As pointed
out by the referee, it seems that an related left question for us
to consider in the future is how about the results in this pa-
per if quantum gravity is introduced as in Ref. [35]. For this,
we may reach a form like the generalized uncertainty principle
which includes the gravitational interaction between particles
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and photons,[36,37], e.g.,

∆x≥ h̄c
2∆E

+α
G
c4 ∆E, (22)

where α ∼O(1). However, in the present paper we decide not
to discuss this issue.
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