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On superintegrable systems with a position-dependent mass in
polar-like coordinates*
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For a superintegrable system defined in plane polar-like coordinates introduced by Szumiński et al. and studied
by Fordy, we show that the system with a position-dependent mass is separable in three distinct coordinate systems. The
corresponding separation equations and additional integrals of motion are derived explicitly. The closure algebra of integrals
is deduced. We also make a generalization of this system by employing the classical Jacobi method. Lastly a sufficient
condition which ensures flatness of the underlying space is derived via explicit calculation.
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1. Introduction
Recently Hamiltonian systems on the plane defined in

polar-like coordinates have been studied.[1–4] A prototypical
example of such a system is given in the polar-like coordinates
by

H =
1
2

rm−k

(
p2

r +
p2

φ

r2

)
+ rmU(φ), (1)

where k ̸= 0 and m are integers, U(φ) is a complex meromor-
phic function. In Ref. [1] Szumiński et al. have determined
six cases to ensure the Liouville integrability of system (1).
In Ref. [4] Fordy has derived an integrable system with the
Hamilton function of the form

H =
1
2

rn

(
p2

r +
p2

φ

r2

)
+ c1r1−n/2 cos

(n−2)φ
2

(2)

with two constants n ̸= 2 and c1, by assuming that the Hamil-
ton function and two additional integrals of motion have fixed
quadratic parts as

H = T +h, F1 = K2K3 + f1, F2 = K1K2 + f2,

where Ki (i = 1,2,3) correspond to three basic Killing vectors
of underlying Riemannian space, h = h(r,φ), f1 = f1(r,φ) and
f2 = f2(r,φ) are functions of configuration space variables.
The Fordy system (2) has generalized the integrable cases 3
and 4 given in Ref. [1], which correspond to the specific val-
ues n = 0 and n = 4, respectively.

The transformation between the original variables (r,φ)
and flat Cartesian coordinates (Q1,Q2) is given by[4]

Q1 = br1− n
2 cos

(n−2)φ
2

,

Q2 = br1− n
2 sin

(n−2)φ
2

, (3)

where the constant b = 2/(2− n), n ̸= 2, the polar-like vari-
ables r > 0, φ ∈ R. Note that for φ differing by a multiple of
4π/(2− n) the coordinates (Q1,Q2) coincide. The parabolic
coordinates (u,v) on plane are defined by[5]

u =
1
2

(
Q1 +

√
Q2

1 +Q2
2

)
,

v =
1
2

(
−Q1 +

√
Q2

1 +Q2
2

)
, (4)

with inverse

Q1 = u− v, Q2 = 2
√

uv.

By combining point transformations (3) and (4), the Hamilto-
nian of Fordy system (2) transforms to[4]

H =
1
2

up2
u + vp2

v

u+ v
+

1
2

k(u− v), (5)

where the constant k is related with c1 in Eq. (2) through
k = (2−n)c1.

In the theory of integrable systems there are various ap-
proaches to generalize a given integrable system. One of them
is to consider the original system with a position-dependent
mass (PDM). Hamiltonian systems with a PDM have been
proposed and studied extensively,[6–11] including classical in-
tegrable systems and quantum integrable ones. Many com-
mon models, e.g., harmonic oscillator and Kepler system, to-
gether with a PDM have been intensively studied, see e.g.
Refs. [6,11].

In this paper we consider the Fordy system with a PDM.
We show that it is separable in three coordinate systems and
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we deduce its integrals of motion in explicit forms. The non-
trivial polynomial relation among integrals is worked out. We
also propose a generalization of the Fordy system with a PDM
by the Jacobi method.

This paper is organized as follows. In Section 2 we review
first integrals and separability of the original Fordy system. In
Section 3 the Fordy system with a PDM is proposed. We show
the multi-separability of the system by explicitly writing its
separation equations. The integrals of motion are computed
and their algebraic relation established. In Section 4 we ap-
ply the Jacobi method and make a generalization of the Fordy
system with a PDM. A condition for the flatness of underly-
ing Riemannian space is also deduced. Finally, Section 5 is
devoted to the conclusion and some discussions.

2. Integrability of the Fordy system
According to Ref. [4] the Fordy system (5) is superinte-

grable, endowed with two quadratic integrals of motion,

F1 =
uv(p2

u − p2
v)

u+ v
+ kuv, (6)

F2 =

√
uv(pu + pv)(upu − vpv)

(u+ v)2 + k
√

uv, (7)

and a linear integral

K2 =

√
uv(pu + pv)

u+ v
. (8)

The four integrals of motion satisfy the algebraic relation[4]

F2
2 = 2HK2

2 −K4
2 + kF1. (9)

In terms of the flat coordinates (Q1,Q2) in Eq. (3) the
quadratic Hamiltonian H and linear integral K2 satisfy the
equations

2H −K2
2 = P2

1 + kQ1, K2 = P2. (10)

It is obvious that the pair of integrals (H,K2) is separated in
the flat coordinates (Q1,Q2).

We can define other coordinates (Q̂1, Q̂2), which is a ro-
tation by an angle of π/4 of flat coordinates (Q1,Q2),

Q1 =
1√
2
(Q̂1 − Q̂2), Q2 =

1√
2
(Q̂1 + Q̂2). (11)

In terms of these new coordinates the integrals of motion H
and F2 have the relation

H +F2 = P̂2
1 +

k√
2

Q̂1, H −F2 = P̂2
2 − k√

2
Q̂2. (12)

It shows that the integrals H and F2 are Stäckel separable in
the new (Q̂1, Q̂2) coordinates.

In the parabolic coordinates (u,v) defined by Eq. (4) the
pair of quadratic first integrals H and F1 satisfy the equalities

2uH +F1 = up2
u + ku2, 2vH −F1 = vp2

v − kv2, (13)

which are also separation equations of Stäckel type.
The following proposition summarizes the above analy-

sis.
Proposition 1 For the Fordy system (2) the pairs of

quadratic (or linear) integrals (H,K2), (H,F2), (H,F1) are
separable in flat coordinates (Q1,Q2), rotated coordinates
(Q̂1, Q̂2) and parabolic coordinates (u,v), respectively. The
corresponding separation equations are given by Eqs. (10),
(12) and (13), respectively.

3. The Fordy system endowed with a position-
dependent mass
The Hamiltonian system with a position-dependent mass

has been widely studied, which serves as a vital technique to
generalize a given system. In this section we consider the
Fordy system with a particular PDM as µ = εu−εv+1, where
ε is a suitable real constant.

The Hamiltonian of the new system is a scalar multiple of
the original one (5) with the scalar factor λ = 1/µ ,

H̃ = λH =
up2

u+vp2
v

2(1+εu−εv)(u+v) +
k(u−v)

2(1+εu−εv) . (14)

In terms of the original polar-like coordinates (r,φ) the Hamil-
tonian reads

H̃ =
(2−n)rn

(
p2

r +
p2

φ

r2

)
(4−2n)+4εr1− n

2 cos (n−2)φ
2

+
kr1− n

2 cos (n−2)φ
2

(2−n)+2εr1− n
2 cos (n−2)φ

2

. (15)

As the parameter ε approaches zero the mass tends to
µ = 1 and the original system (2) is recovered. Therefore the
system with a PDM, i.e., Eq. (15), can be regarded as a gen-
eralization or deformation of the Fordy system (2) with defor-
mation parameter ε .

3.1. Separability in flat coordinates (Q1,Q2) and rotated
coordinates (Q̂1, Q̂2)

When written in the flat coordinates (Q1,Q2) defined by
Eq. (3), the Hamiltonian has the form of

H̃ =
P2

1 +P2
2

2(1+ εQ1)
+

kQ1

2(1+ εQ1)
. (16)

The integrals H̃ and K2 satisfy the equalities

2(1+ εQ1)H̃ −K2
2 = P2

1 + kQ1, K2 = P2. (17)

We obviously have the following proposition.
Proposition 2 The Fordy system with the PDM, Eq. (15),

is separable in flat coordinates (Q1,Q2) defined by Eq. (3).
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The separation equations are given by Eq. (17), and the addi-
tional integral of motion is also K2.

In terms of rotated flat coordinates (Q̂1, Q̂2), the PDM
Hamiltonian H̃ has the form as

H̃ =
P̂2

1 + P̂2
2

2+
√

2ε(Q̂1 − Q̂2)
+

k
2

Q̂1 − Q̂2√
2+ ε(Q̂1 − Q̂2)

. (18)

The Hamilton–Jacobi equation H̃ = α turns out to be

P̂2
1 + P̂2

2
1+ εQ1

+
k√
2
(Q̂1 − Q̂2)

1+ εQ1
= 2α,

which is equivalent to

P̂2
1 +

k√
2

Q̂1 −
√

2αεQ̂1 −α

= −P̂2
2 +

k√
2

Q̂2 −
√

2αεQ̂2 +α,

both sides of which depend upon a canonical pair (Q̂i, P̂i) only.
It follows that

F̃2 = P̂2
1 +

k√
2

Q̂1 −
√

2αεQ̂1 −α (19)

is an additional first integral of the system with a PDM, i.e.,
Eq. (15).

The pair of first integrals (H̃, F̃2) satisfies the following
separation equations:

(1+
√

2εQ̂1)H̃ + F̃2 = P̂2
1 +

k√
2

Q̂1,

(1−
√

2εQ̂2)H̃ − F̃2 = P̂2
2 − k√

2
Q̂2. (20)

Substituting Eq. (18) into Eq. (19) leads to the explicit form of
the first integral F̃2 as

F̃2 =
(1−

√
2εQ̂2)P̂2

1 − (1+
√

2εQ̂1)P̂2
2

2(1+ εQ1)

+
k(Q̂1 + Q̂2)

2
√

2(1+ εQ1)
(21)

in the rotated flat coordinates (Q̂1, Q̂2), or

F̃2 =
P̂2

1 − P̂2
2 −

√
2ε(Q̂2P̂2

1 + Q̂1P̂2
2 )

2(1+ εQ1)
+

kQ2

2(1+ εQ1)

=
−εQ2(P2

1 +P2
2 )+2P1P2(1+ εQ1)

2(1+ εQ1)
+

kQ2

2(1+ εQ1)
(22)

in the flat coordinates (Q1,Q2), where we have, in the calcu-
lation, used the equality

Q̂2P̂2
1 + Q̂1P̂2

2 = 1√
2

(
Q2(P2

1 +P2
2 )−2Q1P1P2

)
.

Proposition 3 The Fordy system with a PDM, Eq. (15),
is Stäckel separable in rotated flat coordinates (Q̂1, Q̂2). The
separation equations are given by Eq. (20). The quadratic in-
tegral of motion F̃2 has the form of Eq. (21) or (22).

3.2. Separability in parabolic coordinates (u,v)

When written in the parabolic coordinates (u,v), the
Hamiltonian H̃ has the form

H̃ =
up2

u + vp2
v

2(1+ εu− εv)(u+ v)
+

k(u− v)
2(1+ εu− εv)

.

The Hamilton–Jacobi equation H̃ = α turns out to be

2(u+ εu2)H̃ −up2
u − ku2 +2(v− εv2)H̃ − vp2

v + kv2 = 0,

where the parts of (u, pu) and (v, pv) are separated. It follows
that

2(u+ εu2)H̃ −up2
u − ku2 =−F̃1

is an additional first integral. The pair of first integrals (H̃, F̃1)

satisfies the separation equations

2(u+ εu2)H̃ + F̃1 = up2
u + ku2,

2(v− εv2)H̃ − F̃1 = vp2
v − kv2. (23)

The explicit form of first integral F̃1 is given by

F̃1 =
uv(1− εv)p2

u −uv(1+ εu)p2
v

(u+ v)(1+ εu− εv)
+

kuv
1+ εu− εv

(24)

in parabolic coordinates (u,v), or

F̃1 =
Q2

2
4R(1+ εQ1)

(
(p2

u − p2
v)− ε(vp2

u +up2
v)
)
+

k
1+ εQ1

Q2
2

4

= Q2P1P2 −Q1P2
2 − εQ2

2
4(1+ εQ1)

(P2
1 +P2

2 )

+
k

4(1+ εQ1)
Q2

2 (25)

in the flat coordinates (Q1,Q2), where the quantities

p2
u − p2

v =−4P2
2

Q1R
Q2

2
+4P1P2

R
Q2

, R =
√

Q2
1 +Q2

2 ,

vp2
u +up2

v = RP2
1 +P2

2
R

Q2
2
(R2 +3Q2

1)−4P1P2
Q1R
Q2

have been employed during the calculation.
Proposition 4 The Fordy system with a PDM, Eq. (15),

is Stäckel separable in parabolic coordinates (u,v). The sepa-
ration equations are given by Eq. (23). The quadratic integral
of motion F̃1 has the explicit form of Eq. (24) or (25).

3.3. Algebra of integrals of motion

The system with a PDM, Eq. (14), has four first integrals,
H̃,K2, F̃1, F̃2. In this subsection we will determine the alge-
braic relation and Poisson algebra among them. A straight-
forward computation gives the nonvanishing Poisson brackets
between them as

{K2, F̃1}=−F̃2, {K2, F̃2}= εH̃ − k
2
,

{F̃1, F̃2}= 2K2(H̃ −K2
2 ).
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It can be seen that the Poisson algebra is a polynomial algebra
as right-hand sides of the above equations are polynomials in
the integrals.

Since the number of integrals exceeds the number of de-
grees of freedom of the system there exists at most three func-
tionally independent integrals of motion and the four integrals
of motion must be functionally dependant.[5] However, it is a
nontrivial task to find the suitable algebraic equation for the in-
tegrals especially when the integrals have complicated forms.

An instructive principle is that, in order to establish such
an algebraic relation, it is necessary to make the potential parts
of the integrals canceled out. We denote by h̃, f̃1, f̃2 the po-
tential parts of integrals H̃, F̃1, F̃2, respectively. It is crucial to
rewrite h̃ as

h̃ =
k

2ε
− k

2ε(1+ εQ1)
.

From this we observe that these potentials can be canceled out
by the relation

2
(

ε h̃− k
2

)
f̃1 + f̃ 2

2 = 0. (26)

This inspires us to calculate the expression

2
(

εH̃ − k
2

)
F̃1 + F̃2

2 ,

the result of which is found to be a combination of H̃ and K2

only. Lastly we obtain the algebraic equation among integrals
as follows:

F̃2
2 = 2H̃K2

2 +(k−2εH̃)F̃1 −K4
2 . (27)

Compared with the algebraic relation (9) for integrals of mo-
tion of the original Fordy system (2), Eq. (27) can be treated as
a deformation of the former by the parameter ε . Both Eqs. (9)
and (27) are polynomial relations of order four.

4. Generalization by the Jacobi method
The classical Jacobi method can be used to construct

new integrable systems from known ones. It originated in
Ref. [12] where the author proposed elliptic coordinates and
employed them to integrate some vital mechanical systems.
This method reverses the conventional path from a given sys-
tem to its separation variables and formulate new systems from
known separation variables and arbitrary separation relations.
For more discussions and applications of it, one can see, e.g.,
Refs. [13–16].

4.1. Generalization of the PDM Fordy system

Note that the separation Eq. (23) of the Fordy system with
a PDM can be viewed as a deformation of Eq. (13) for the
Fordy system. Alternatively to the PDM approach, we can
also obtain the new system by applying the classical Jacobi

method to the separation equations of the Fordy system, i.e.,
by adding quadratic terms εu2 and −εv2.

According to this idea, we can further generalize the
Fordy system with a PDM, i.e., Eq. (15). By applying the Ja-
cobi method to separation equations (23) we can get a family
of generalized integrable systems with the following separa-
tion equations:

2(u+ εu2)ℋ̃+ ℱ̃1 = (u+ f (u))p2
u + k1u2 + k2u3,

2(v− εv2)ℋ̃−ℱ̃1 = (v+h(v))p2
v + k3v2 + k4v3, (28)

where f and h are functions of independent variables u and v,
respectively; ε and ki (i = 1, . . . ,4) are arbitrary constants. It
follows from Eq. (28) that the generalized system has an ex-
plicit Hamiltonian as

ℋ̃ =
(u+ f (u))p2

u +(v+h(v))p2
v

2(u+ v+ εu2 − εv2)

+
k1u2 + k2u3 + k3v2 + k4v3

2(u+ v+ εu2 − εv2)
. (29)

Contrast to the system (14) which is multi-separable, the gen-
eralized system (29) for general parameters ki and functions
f ,h is separable in parabolic coordinates (u,v) only. It will be
an interesting problem to determine the values of ki and forms
of f and h for which the system is also separable in other co-
ordinate systems.

From the generalized separation equations (28) we obtain

W1(u, α̃, α̃1) =
∫ u
√

2(u+εu2)α̃+α̃1−k1u2−k2u3

u+ f (u) du,

W2(v, α̃, α̃1) =
∫ v
√

2(v−εv2)α̃−α̃1−k3v2−k4v3

v+h(v) dv,

which leads to a separable form of Hamilton’s characteristic
function,

W =W1(u, α̃, α̃1)+W2(v, α̃, α̃1). (30)

The equations

β̃ =−t +
∂W
∂ α̃

, β̃1 =
∂W
∂ α̃1

, (31)

can be inverted to obtain expressions of u and v as functions
of time t and the constants α̃, α̃1, β̃ , β̃1, which means that the
system (29) is integrated in principle.

4.2. A particular condition for flat underlying space

In general the generalized system (29) is defined on
cotangent bundle of non-flat Riemannian manifold. In the fol-
lowing, we analyze the conditions which imply the flatness of
the underlying space.

The underlying Riemannian space has the metric

ds2 = (u+ v+ εu2 − εv2)

(
du2

u+ f (u)
+

dv2

v+h(v)

)
. (32)

By denoting U = u+ f (u), V = v+h(v),

J = u+ v+ εu2 − εv2,
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it has the form of

ds2 =
J du2

U(u)
+

J dv2

V (v)
= E du2 +Gdv2, (33)

where E = J/U , G = J/V . In an orthogonal coordinate sys-
tem (u,v) the Gaussian curvature of metric (33) is given by the
following formula[17]

K =− 1
2
√

EG

(
∂

∂u
Gu√
EG

+
∂

∂v
Ev√
EG

)
. (34)

A detailed calculation gives

√
EG =

J2
√

UV
, Gu =

2εu+1
V

, Ev =
−2εv+1

U
,

and finally the curvature of metric (32) has an explicit form as

K =
1

2J3

[
−
(

εu+
1
2

)
J f ′(u)+

(
εv− 1

2

)
Jh′(v)

+
(
1+2(u2 + v2)ε2 +2(u− v)ε

)
×( f (u)+h(v))+ ε

2(u+ v)3
]
. (35)

It is difficult to find the most general forms of f , g and ε which
imply the flatness of the Riemannian space, K = 0. We can
consider a special case ε = 0. In such a case the flatness con-
dition K = 0 is equivalent to the equation

−1
2
(u+ v)( f ′(u)+h′(v))+( f (u)+h(v)) = 0,

which has a solution of the form

f (u) = ℓ1u2 + ℓ2u, h(v) =−ℓ1v2 + ℓ2v, (36)

where ℓ1 and ℓ2 are two arbitrary constants. We thus have the
following proposition.

Proposition 5 For the condition of ε = 0 and f (u), g(v)
given by Eq. (36) and arbitrary parameters ki (i = 1, . . . ,4), the
Hamiltonian system (29) is defined on the cotangent bundle of
a flat Riemannian space.

5. Conclusions
In summary, we have made a deformation for the su-

perintegrable system (2) proposed by Fordy, by a position-
dependent mass. The new system with a PDM is shown sepa-
rable in three distinct coordinate systems with separation equa-
tions and integrals of motion explicitly demonstrated. By ap-
plying the Jacobi method to the Fordy system with a PDM
a family of integrable systems containing arbitrary constants
and functions are generated.

It will be an interesting direction of study to explore
the connection between the new systems proposed in this pa-
per and those known in the literature. In particular, a broad
class of the finite-gap systems with position-depend mass has
been considered by Bravo and Plyushchay in Ref. [8]. They
obtained elliptic finite-gap systems of Lamé and Darboux–
Treibich–Verdier types by reduction to Seiffert’s spherical spi-
ral and Bernoulli lemniscate with Calogero-like or harmonic
oscillator potentials. Our proposed systems have intimate re-
lations with them. While they studied quantum mechanical
systems with PDM, we consider classical ones. It will be in-
teresting to develop the quantum counterparts of our proposed
systems and explore their applications in areas of theoretical
physics such as supersymmetric quantum mechanics or quan-
tum field theory.[18,19]

Another line of research is to investigate the newly pro-
posed systems by employing some common approaches in
theory of integrable systems, such as the Lax representation,
classical r-matrix formulation, (bi-)Hamiltonian structure, and
action-angle variables. Their symmetry properties[20,21] can
also be investigated.

References
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