基于单分子成像技术研究 λ-DNA 分子穿越微米 通道端口的电动力学特性^{*}

王琼1)2) 王凯歌1)† 孟康康1) 孙聃1) 韩仝雨1) 高爱华2)‡

 (西北大学光子学与光子技术研究所,国家级光电技术与纳米功能材料和应用国际研究中心,省部共建国家 光电技术与功能材料重点实验室培育基地,陕西省光电子技术重点实验室,西安 710069)
2)(西北大学物理学院,西安 710069)
(2020 年 1 月 12 日收到; 2020 年 5 月 16 日收到修改稿)

操控单个 DNA 分子,将其有效引入、导出微纳通道是实现 DNA 生物芯片功能的前提条件.本文利用单 分子荧光显微成像技术系统地实时观察分析 λ-DNA 单分子在电场力驱动下进入/穿出 50 μm 通道端口处的 电动力学特性及规律.研究发现: λ-DNA 分子能够顺利进入 trans端口并穿出 cis端口,外加电场强度存在最 大 (*E*_{max})和最小 (*E*_{min}) 阈值,只有场强 *E*满足: *E*_{min} ≤ *E* ≤ *E*_{max} 时, λ-DNA 分子才能进入 trans端口并顺利穿 出 cis端口;当电场强度小于最小阈值场强时,DNA 分子不能进入 trans端口;当电场强度大于最大阈值场强 时, λ-DNA 分子虽可能从 trans端口进入通道内部,但不容易从 cis端口穿出,而是在迁移至通道内 cis端口 附近时,运动方向反转、往复、甚至旋转等新现象,并且易于粘附到管壁上;随着场强增大,反转位置距 cis端 口越大.基于微流体电动力学理论,对 λ-DNA 分子在微通道端口的不同运动状态的物理机制进行了初步分 析.本研究结果对研制基于微纳通道系统的基因芯片实验室及 DNA 分子传感器具有一定的实际指导意义.

关键词: DNA 分子,单分子荧光成像技术,微流通道,反转运动 **PACS:** 82.37.Rs, 87.15.H-, 87.15.Tt, 87.19.rh **DOI:**

DOI: 10.7498/aps.69.20200074

1 引言

微/纳流控、微/纳液滴等技术集合了物理、化 学、生物、计算机及纳米等前沿技术,用于生化分 析与检测^[1-3]、医疗诊断^[4,5]和食品安全^[6]等重要 领域,能够对微量样品特性进行精准检测分析.将 微纳技术与可视化技术相结合,在仿生环境中,可 对单个 DNA 分子灵活操控、实时观测研究其动力 学特性,不但有助于揭示生命现象的基本规律,而 且在分子相互作用、纳米孔基因测序、药物输运及 靶向治疗等方面具有广泛的应用前景^[7-9].

操控单个 DNA 分子, 将其有效导入、引导其 穿越微纳通道是实现 DNA 生物芯片众多功能的 必备条件.通常,将 DNA 分子顺利导入微通道的 方法有:流体力学进样^[10](虹吸进样法、微通道端 加压法、微通道末端抽真空法)、扩散进样^[11]、电动 力进样以及电渗驱动的流体进样^[12]等方法.流 体力学进样法对所用设备有严格要求、装置复杂、 设备体积大、成本高,同时不利于分析黏度较大

© 2020 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 61378083, 61405159)、国家科学技术部中美合作基金项目 (批准号: 2011DFA12220)、国家自然科学 基金重大基础研究计划培育项目 (批准号: 91123030) 和陕西省自然科学研究基础研究计划-重大基础研究项目 (批准号: 2016ZDJC-15, S2018-ZC-TD-0061) 资助的课题.

[†] 通信作者. E-mail: wangkg@nwu.edu.cn

[‡] 通信作者. E-mail: gaoaihua@nwu.edu.cn

的样品;扩散进样法引导样品进入通道内是被动 的、且难以控制;而电动力进样法相对容易控制, 附加设备少、成本低,在毛细管电泳分析中普遍 采用.

目前,电动力进样法将 DNA 分子导入微纳通 道仍存在尚未解决的关键问题.例如,随着外加电 场强度的改变, DNA 分子在管口附近的动力学特 性、速度分布以及 DNA 本身的构象变化等不明 确^[13,14];而且,电场力引导 DNA 分子进入微纳通 道时,不断有新现象、新问题被发现.

Wang 等^[15] 曾利用可视化技术研究 DNA 分子在微米通道内的电动力学特性,发现 DNA 分子从 *trans* 端口进入内径为 30 µm 通道时,存在阈值电场强度.Yang 等^[16]研究发现 DNA 分子在外电场力作用下穿越 5 和 10 µm 的通道时,其运动方向会发生反转,并且,微米通道管径越小,DNA 分子运动方向发生反转时的阈值电场强度越大.最近,Jones 等^[17]发明了一种微管收缩分选 DNA 分子的装置,采用电场力驱动 DNA 分子运动,通过改变电压的大小与频率调控 DNA 分子运动,通过改变电压的大小与频率调控 DNA 分子在通道出口处的偏转方向,成功实现了不同大小 DNA 分子的筛选;但是,实验发现一部分分离后的 DNA 分子吸附在通道的管壁上,非常不利于芯片的持久运行.

本文利用单分子荧光成像可视化技术,实时观 察研究了 λ-DNA 分子在外加电场力作用下进/出 微米通道端口的电动力学特性,并基于微流体电动 力学理论,对 DNA 分子在进入通道端口时的不同 运动状态的物理机制进行了初步分析.

2 实 验

2.1 实验装置

实验装置如图 1 所示, 主要包括: 倒置荧光显 微镜 (IX-70, 奥林巴斯, 日本); EMCCD 相机 (iXon+885, Andor, 美国); 石英玻璃圆形微米通 道 (邯郸市鑫诺光纤色谱有限公司), 长度为 5 mm, 直径为 50 μm; 铂丝电极 (上海捷昱电子科技有限 公司); 外接高压电源 (PS 8000 2U, EPS, 德国). 实验中, 电压调节范围为: 0—100 V. 图像数据采 集、分析处理均用 Image 软件 (http://rsbweb. nih.gov/ij/). 整个实验在暗室中完成, 实验室温度 控制为 25 ℃.

图 1 实验装置示意图 Fig. 1. Schematic diagram of experimental set-up.

图 1 所示为实验的装置示意图.实验具体步骤:1)导入缓冲液,在 cis端口处滴入 10 μl 的缓冲液,2 s 左右缓冲液将充满整个微米通道;2)导入 DNA分子,将 10 μl浓度为 0.455 mg/L 的 DNA/YOYO-1 样品溶液滴在 trans端口,样品通过毛细力作用进入微通道内;3) 待溶液处于稳定状态,调整电压,确定电场强度大小与方向.

实验中, EMCCD 实时记录 DNA 样品进入端 口以及在微通道内运动情况, 其曝光时间设定为 100 ms, 拍摄间隔为 100 ms, 每次连续拍摄持续 为 5 min; EMCCD 一次可以连续拍摄 1000 张 照片.

2.2 样品液、微芯片的制备

实验使用的是 λ -DNA 分子 (富酶泰斯生物技术公司, 深圳,中国), 用染料 YOYO-1 分子进行标记.为了保证最好的荧光效率, YOYO-1 染料分子插入 λ -DNA 分子的配置比例为 DNA 碱基对: YOYO-1 分子 = 10:1.

样品溶液的制备过程如下所述:1) 用移液枪 移取 100 μl 的 Bis-tris (pH=8) 和 1000 μl 的 Tris-Hcl (pH = 8), 分别滴入标记为 A 和 B 的牛角管 中;2) 取 0.411 μl 的 DNA 原液和 0.1 μl 的 YOYO-1 原液分别加入 A 和 B 中, 摇勾 A 和 B 中 的两种溶液使其充分混合, 置于暗室孵育 30 min; 3) 从 B 中取 200 μl 的 YOYO-1 稀释液加入 A 中 充分混合, 在暗室中孵育 30 min. 最终得到 DNA/YOYO-1的 混合溶液, DNA浓度为 0.455 mg/L, 储藏在暗室中备用.

微通道芯片核心部分的制备, 简述如下: 1) 将 经过 PLL(20)-g(3.6)-PEG 溶液改性后的实验用微 米通道烘干; 2) 将聚甲基丙烯酸甲酯 (PMMA) 颗 粒与氯仿溶液按照1:1进行充分混合,制备2个样 品池, 10 mm × 10 mm × 3 mm, 它们中间通过微 米通道进行连接; 铂丝电极正对微通道端口处; 3) 将聚酰胺树脂与环氧树脂按 1:1 混合后均匀涂 抹在样品池的外围,以加固结构;将芯片系统放入 烤箱,温度 60 ℃ 下烘烤两小时.实验研究中,为了 避免 DNA 分子被通道内壁表面吸附,采用改性液 PLL(20)-PEG(2)-PEG(3.4) 对微米通道内壁进行 改性处理.本文所涉及的缓冲液 pH 值都大于 3, 当溶液与二氧化硅通道壁面接触时,其表面的硅烷 醇 (Si-OH) 基团因去质子化而产生负电荷,带正 电的 PLL(多聚赖氨酸) 通过静电作用与去质子化 的硅烷醇基团相结合,吸附在通道壁面;不带电的 亲水性聚合物 PEG(乙二醇), 有效阻止生物分子 非特异性吸附到管道内壁上^[18],从而可以有效减 小管壁对 DNA吸附.实验所用改性混合液 PLL 与 PEG 的质量比 PLL:PEG = 1:3.6.

3 结果与分析

电场力驱动 DNA 分子进入并穿越微米通道, 影响 DNA 分子在端口附近电动力学特性的主要 因素有:电场强度的大小、DNA 分子大小、DNA 分子在微通道端口的位置、微米通道的性质、缓冲 液的性质 (浓度/PH) 以及实验温度等条件.本文 主要研究电场强度对 λ-DNA 分子在 50 μm通道端 口处的电动力学特性的影响.

3.1 DNA 分子顺利穿越微米通道的电场 强度阈值

微米通道两端施加电压,实验发现:当电场强 度 $E < 1.875 \times 10^3$ V·m⁻¹时,距离 trans端口大 约为 100 μm 范围内的样品池内未捕捉到 DNA 分 子,表明 DNA 分子很难靠近 trans端口;当电场 强度 $E = 1.875 \times 10^3$ V·m⁻¹时,样品池内的 DNA 分子开始缓慢靠近 trans端口,但未进入 trans端 口;当电场强度增大到 $E = 2.5 \times 10^3$ V·m⁻¹时, DNA 分子开始进入 trans端口;随后,逐渐增大电 场强度, DNA 分子能够进入 trans端口并顺利穿 越通道,并从 cis端口顺利离开;当 $E > 7.5 \times$ 10³ V·m⁻¹时,从 trans端口进入通道的 DNA 分子 迁移至 *cis* 端口附近时, 部分 DNA 分子发生反转 运动,即, DNA 分子的运动方向发生逆转,由 *cis* 端向 *trans* 端运动, 不能够从 *cis* 端口穿出.可 见, DNA 分子能够从 *trans* 端口进入并且顺利穿 越微通道, 电场强度大小有合适范围, 存在阈值: $E_{\min} = 2.5 \times 10^3 \text{ V·m}^{-1}$, $E_{\max} = 7.5 \times 10^3 \text{ V·m}^{-1}$.

如图 2 所示,当电场强度 $E = 3.75 \times 10^3$ V·m⁻¹时, DNA 分子从 *trans* 端口进入微米通道并在管内的迁移.

图 2 DNA 分子从 *trans* 端口进入微米通道并在内部迁移 ($E = 3.75 \times 10^3$ V·m⁻¹) (a) 不同时间下的 CCD 照片; (b) DNA 分子位置随时间的变化曲线

Fig. 2. DNA molecules enter the microchannel from the trans port and migrate inside $(E = 3.75 \times 10^3 \text{ V}\cdot\text{m}^{-1})$: (a) CCD photographs; (b) DNA molecular position.

由图 2(a) 可见, 当外加电场在阈值电场强度 内, DNA 分子能够顺利进入 trans 端口, 其中有 2 个 DNA 分子进入观察视野范围内, 分别用虚线 椭圆和虚线菱形标识; $A_1 \sim D_1$ 和 $A_2 \sim B_2$ 分别对应 DNA₁和 DNA₂ 分子在不同时刻出现在微米通道 内的位置, 可以发现: 1) DNA 分子在通道内运动 时, DNA₁和 DNA₂ 分子到微米通道中心轴向的距 离 $L_1 < L_2$, 其大小基本不变; 2) DNA₁ 分子在 trans 端口附近运动时 (从 A_1 位置到 B_1 位置), 进 入 trans 端口之前是纠缠蜷缩的 (A_1 位置), 进入 通道内, 渐渐被拉伸, 长度增大, 但在微米通道内 拉伸长度变化不大; 3) 图 2(b) 是 DNA 分子在通 道内迁移时位置的改变, DNA₁ 分子在 0—0.5 s 内 移动距离为 65.5 μm, 0.5—1.0 s 内移动距离为 94.0 μm, 1.0—1.5 s 内移动距离为 153.0 μm, 其平 均速度逐渐增大; 而 DNA₂ 分子在被捕捉时已经 进入到微通道内, 0—0.5 s 内移动距离为 70.0 μm, 与 DNA₁ 分子刚进入端口时运动的距离几乎相同.

实验中, 还观察到 DNA 分子进入 trans 端口 后, 其速度会逐渐增大, 而 DNA 分子穿出 cis 端口 时的速度逐渐减小等现象. 图 3 所示为 DNA 分子 进入 trans 端口和穿出 cis 端口时的速度随时间的 变化曲线.

图 3(a) 为 DNA 分子进入 trans 端口的速度 随时间的变化. 其中 DNA₁, DNA₂和 DNA₃ 分子 分别表示距离中心轴线不等的三个 DNA 分子, 距 中心轴线的距离为 $L_1 < L_2 < L_3$, 速度关系为 $v_1 > v_2 > v_3$. 可见, DNA 分子从样品池进入 trans 端口 之前的速度较小, 一旦进入 trans 端口开始加速, 进入微米通道中部后速度比较平稳; 轴线附近的 DNA 分子速度大于管壁附近的 DNA 分子速度. 图 3(b) 为 DNA 分子流出 cis 端口时的速度随时 间的变化特性, 实验数据是从 DNA 分子距离 cis 端口大约为 100 µm 的位置处开始记录的, DNA 分子距离中心轴线的距离为 $L_4 < L_5 < L_6 < L_7$, 测量轴向的速度 $v_4 > v_5 > v_6 > v_7$.

对比图 3(a) 和图 3(b), DNA 分子进入 trans 端口与 DNA 分子流出 cis 端口的速度变化几乎是 两个反对称的过程. 在通道端口附近的同一横截面 处,中心轴线附近的 DNA 分子速度变化快, 而管 壁附近的 DNA 分子速度变化慢. DNA 分子进入 trans 端口时,速度逐渐增大,最后保持不变; 穿出 cis 端口时,速度逐渐减小,最终进入样品池中的速 度大小基本相同,其主要原因是 DNA 分子在样品 池中的运动主要受布朗运动的影响.

图 3(c) 为 DNA 分子在进入端口和离开端口 处的速度随着外加电场变化的曲线图,规定 DNA 分子逆着电场方向的运动为正方向.图 3(c) 所示是在不同的电场强度下,分别对通道进/出端 口随机捕捉的 30—50 个 DNA 分子的平均速度, DNA 分子距离中心轴线的范围为 0—14 μm. 其 中,黑色曲线为 DNA 分子刚好进入端口的平均速 度随着外加电场强度的变化关系,红色曲线为 DNA 分子刚好离开端口处的平均速度随着外加电 场强度的变化关系. 由图 3(c) 可知, 当电场强度 2.5 × 10³ V·m⁻¹ < $E \le 7 \times 10^3$ V·m⁻¹时, DNA 在入端口速度小于出端口速度; 当外加电场强为 7 × 10³ V·m⁻¹ < $E \le 1 \times 10^4$ V·m⁻¹时, DNA 在 入端口的速度大于出端口速度.

图 3 DNA 分子进出端口的速度随时间的变化 (*E* = 3.75 × 10⁴ V·m⁻¹) (a) 进入 *trans* 端口; (b) 穿出 *cis* 端口; (c) 速度随外加电场强度的变化关系

Fig. 3. The velocity of DNA molecules entering and leaving the port ($E = 3.75 \times 10^3 \text{ V}\cdot\text{m}^{-1}$): (a) Entering the *trans* port; (b) leaving the *cis* port; and (c) velocity versus electric intensity.

3.2 DNA 分子的反转运动

继续增大电场强度,当电场强度 E > 7.5 × 10³ V·m⁻¹ 时,发现 DNA 分子从 *trans* 端口进入微

米通道内,运动至 cis端口附近时将出现部分 DNA 分子反转运动,即,运动方向发生改变,如图 4 所示.

图 4 DNA 分子在微通道内的反转运动 (a) $E = 8.125 \times 10^3 \text{ V·m}^{-1}$; (b) $E = 9.375 \times 10^3 \text{ V·m}^{-1}$; (c) 不同电场强度下, 在 *cis* 端口不同区域内的 DNA 分子反转数占总数的百分比

Fig. 4. Reversed motion of DNA molecules within micro channel under different electric intensity: (a) $E = 8.125 \times 10^3 \text{ V}\cdot\text{m}^{-1}$; (b) $E = 9.375 \times 10^3 \text{ V}\cdot\text{m}^{-1}$; (c) percentage of DNA molecules with reversal motion direction in different regions of the *cis* port under different electric intensity.

图 4 所示为 DNA 分子在不同电场力作用下 穿越微米通道时,其运动方向发生反向的情况.如 图 4(a) 所示,当外加电场强度 $E = 8.125 \times 10^3 \text{ V·m}^{-1}$ 时, DNA 分子首先在通道内沿 $trans \rightarrow cis$ 方向运动 (0—0.4 s 内),速度逐渐减小;当 DNA 分子运动至 cis端口处时,将在径向上迁移,而在轴向上 近似静止 (0.4—0.6 s 内);最后, DNA 分子运动方 向发生反转,沿 $cis \rightarrow trans$ 方向运动 (0.6—1.0 s 内),速度逐渐增大.如图 4(b) 所示,当电场强度继 续增大至 $E = 9.375 \times 10^3 \text{ V·m}^{-1}$, DNA 分子未到 达 cis 端口的边界处就开始反转,即,在 0—0.5 s 内, DNA 分子沿 trans→cis 方向运动,逆着电场方 向运动; 0.5—1.2 s内, DNA 分子沿 cis→trans 方 向运动,顺着电场方向运动.

为了详细研究在不同的电场强度下 DNA 分 子的反转运动沿管径方向的变化,对微通道进行了 划分, r为距离中心轴线的距离, C区域为0 ≤ $r_1 < 14$ µm, S₁区域为 14 µm $\leq r_3 < 20$ µm, S₂区域为 20 μm \leq $r_2 \leq$ 25 μm. 同一电场强度 下,当 DNA 分子运动稳定后统计 10 min. 在不同 外加电场强度下重复实验,发现每次实验捕捉到的 各个分区域内 DNA 分子数目占 DNA 分子总数的 百分比分布基本相同, 例如, 当电场强度为 7.5 × 10³ V·m⁻¹ 时, DNA 分子分布在 C, S1 和 S2 各区 域内的平均百分比分别约为 68%, 23% 和 9%. 图 4(c) 所示是随机的 3 次实验, 外加不同电场强 度时,发生在不同区域的反转 DNA 分子数占所捕 捉的 DNA 分子总数的百分比. 由图 4(c) 可知, 在 不同的外电场强度下, DNA 分子流出端口不同区 域的反转数占流出总数的百分比不同. 随着电场强 度的增大, DNA 分子反转的几率增大, 在相同的 电场强度下, C 区域内 DNA 分子的反转概率最小, 其次是 S1 区域, S2 区域内 DNA 分子的反转概率最大.

随着电场强度的继续增大, DNA 分子运动方 向发生反转的位置距离 cis 端口越来越远, 离 trans 端口越来越近; 当 $E = 1 \times 10^4$ V·m⁻¹时, 通 道 trans 端口附近的内壁上会吸附 DNA 分子; 当 $E > 1 \times 10^4$ V·m⁻¹时, 部分 DNA 分子刚进入 trans 端口内就发生反转运动, 返回到 trans 端的 样品池中, 或者被吸附到管壁上.

DNA 分子的反转运动方式可以分为基本的两种类型:1) DNA 分子首先逆着电场的方向运动至 cis 端口; 然后, DNA 分子在反转点的位置径向迁 移, 轴向上静止; 最后, DNA 分子开始反转, 朝向 trans 端口运动; 2) DNA 分子首先逆着电场的方 向运动, 在未到达 cis 端口时收缩成一个紧凑的小 球, 似乎停止在通道中; 最后, DNA 分子直接反转 运动. 其中, 距离中心轴线较远的 DNA 分子容易 发生第一种类型的反转运动; 而中心轴线附近、或 者管壁附近的 DNA 分子, 或者当电场强度大于 9.375 × 10³ V/m 时, DNA 分子容易发生第二种 类型的反转运动.

3.3 DNA 分子的往复运动以及旋转运动

当电场强度增大至 $E > 9.375 \times 10^3$ V·m⁻¹时,在 *trans* 端口附近,发现 DNA 分子具有周期性往复运动的现象.

如图 5(a) 所示,当电场强度 $E > 9.375 \times 10^3$ V·m⁻¹时,在 *trans* 端口附近,单个 DNA 分子 在一个周期内的往复运动,周期约为 3.0 s,其中, 红色箭头表示 DNA 分子的运动方向.

图 5 DNA 分子在 *trans* 端口附近沿轴向的运动 (a) 往 复运动; (b) 旋转运动

Fig. 5. The motion of DNA molecules near the *trans* port: (a) Reciprocating along the axis; (b) rotating.

如图 5(b) 所示,当电场强度 $E = 1 \times 10^4$ V/m 时,捕捉到多个 DNA 分子的往复运动,分别用圆 形虚线、菱形虚线标记.其中,黄色箭头表示单个 DNA 分子 (圆形虚线标记) 在轴向上往复运动的 方向, $A_1 - A_5$ 表示 DNA 分子在不同时刻的位置, 它在轴向上的运动距离较大,自身无旋转;红色箭 头表示团聚在一起的多个 DNA 分子 (菱形虚线标 记) 绕着自身旋转的方向,其方向指向管壁 (顺时 针旋转), $B_1 - B_5$ 表示 DNA 分子在不同时刻的位 置,团聚的 DNA 分子在轴向上往复运动的距离较 小,蓝色虚线表示 DNA 做往复运动时的平衡位置.

图 6 是图 5(b) 中团聚的 DNA 分子在 10 s 内 往复运动的轨迹.其中,蓝色曲线为 DNA 分子运 动的轨迹,红色虚线为 DNA 分子在运动过程中平 衡位置的拟合曲线,图中两点之间的时间间隔 为 0.1 s.

图 7 所示为通道 trans 端口附近的内壁上吸

附 DNA 分子的情形,图 7(a) 和图 7(b) 的电场强 度分别为 7.5 × 10³ 和 1 × 10⁴ V·m⁻¹,由图 7 可 知,随着电场强度的增大,吸附在内管壁的 DNA 分子数量增多.

图 6 DNA 分子在 trans 端口附近的往复运动 ($E = 9.375 \times 10^3 \text{ V·m}^{-1}$)

Fig. 6. The track of DNA molecules reciprocating near the trans port ($E = 9.375 \times 10^3 \,\mathrm{V\cdot m^{-1}}$).

图 7 不同电场强度下的 trans 端口附近通道内壁团聚有 DNA 分子 (a) $E = 7.5 \times 10^3 \,\mathrm{V \cdot m^{-1}}$; (b) $E = 1 \times 10^4 \,\mathrm{V \cdot m^{-1}}$ Fig. 7. Aggregates of DNA molecules on the wall of microchannel near the trans port; (a) $E = 7.5 \times 10^3 \,\mathrm{V \cdot m^{-1}}$; (b) $E = 1 \times 10^4 \,\mathrm{V \cdot m^{-1}}$.

3.4 DNA 分子进/出微通道端口机制

图 8 所示是流体在通道内的速度分布以及 DNA 分子的受力和运动示意图.由于微米通道端口处存 在反压差,通道内流体速度是电渗流和反压差流的 叠加,流体的流速不再是理想的塞状分布^[19].

图 8 中, 灰色带箭头的线段表示流体的速度分 布, 流体在通道 *trans/cis* 端口的速度是顺着电场 方向的电渗流流速与逆着电场方向的泊肃叶 (Poiseuille) 抛物线流速的叠加. 流体在径向上存 在速度梯度; 另外, 由于端口处存在明显的反压差 作用以及可能存在的污染、管口不平整等因素, 缓 冲液沿轴向也存在速度梯度.

图 8 缓冲液在微米通道内的流速分布以及 DNA 受力和速度示意图 (a) 受力; (b) 速度

Fig. 8. Schematic diagram of buffer velocity distribution in microfluidic channel and the infromation of DNA: (a) Force; (b) velocity.

如图 8(a) 所示, DNA 分子在 *trans/cis* 端口 处沿轴向的受力为

$$F_x = f_{\text{电} i \star j} + f_{\text{E} \text{B} i \text{K} \text{B} j} + f_{\text{E} \text{E} \text{B} j} + f_{\text{H} \text{B} i \text{K} \text{B} j} + f_{\text{H} \text{B} i \text{K} \text{B} j}, \qquad (1)$$

沿径向的受力为

$$F_y = f_s + f_{\text{Censkrup}} + f_{\text{Censkrup}}.$$
 (2)

DNA 分子在微通道内部只受到沿轴向的作用力, 其大小为

$$F_x = f_{\text{电} \pm \text{h}} + f_{\text{e} \approx \text{h} \pm \text{h}} + f_{\text{h} = \text{h} + \text{h} \pm \text{h}$$

图 8 中, $f_1 = f_{\text{电}ix \text{力}} = qE$; f_2 , f_3 分别为轴 向 流 体 阻 力 和 径 向 流 体 阻 力 , 其 大 小 为 $f_{\hat{n}(\text{h} \text{R} \text{I})} = 6\pi a \mu (v_{\text{f}} - v_{\text{p}})$, 其方向与速度矢量差的 方向相同; $f_{\text{E} \oplus \hat{\mu} \hat{k} \oplus \hat{\mu}} = -\frac{4\pi a^3}{3} \times \frac{\partial p}{\partial x}$,反压差力也 是 由 压 强 梯 度 引 起 的;萨夫曼力 的大 小为 $f_s = K \mu (v_{\text{f}} - v_{\text{p}}) a^2 |G/v|^{1/2}$.式中, q为 DNA 分子 的带电量, E为电场强度, a为 DNA 分子的半径, v_{f} , v_{p} 分别为流体的速度和 DNA 分子的速度, μ 表 示流体黏度, v为流体运动黏度, G为局部流体速 度梯度, $\partial p / \partial x$ 为轴向的压强梯度.

当 DNA 分子与壁面之间的距离很近时存在 静电作用, 其大小为^[20]

f管壁静电力 =

$$\begin{cases} 64\pi\varepsilon ak\left(\frac{k_{\rm B}T}{\rm e}\right)^2 \tanh\left(\frac{{\rm e}\zeta_{\rm wall}}{4k_{\rm B}T}\right) \tanh\left(\frac{{\rm e}\zeta_{\rm DNA}}{4k_{\rm B}T}\right){\rm e}^{-k}y_1 \cdot q \\ (y_1 > k^{-1}), \quad (4) \\ -4\pi\varepsilon a\frac{k_{\rm B}T}{\rm e}\frac{\zeta_{\rm wall} - \zeta_{\rm DNA}}{ky_1^2} \cdot q \qquad (y_1 \ll k^{-1}). \quad (5) \end{cases}$$

其中 k^{-1} 为德拜长度; $k_{\rm B}$ 玻尔兹曼常量; $y_{\rm I}$ 为 DNA 分子到管壁的距离; $\zeta_{\rm wall}$ 和 $\zeta_{\rm DNA}$ 分别为壁 面 Zate 电势和 DNA 的表面电势, 与 DNA 的带电 量和缓冲液的 PH 有关. 由(1)式和(2)式可知, DNA分子所受合力的 大小与外加电场强度、缓冲液速度、DNA分子大 小、DNA电泳速度、管径大小等因素有关.

图 8(b) 是流体和 DNA 分子在通道中的运动 示意图. 实验中使用的缓冲液 pH > 3, 与管壁接 触时管壁带负电; 当微米通道两端施加电场时, 微 通道内的缓冲液将形成电渗流, 其移动方向为 *cis→trans*; 由于 DNA 分子显负电性, DNA 分子 电泳的方向与电渗流方向相反, 为 *trans→cis*. 理 想状态下, DNA 分子等带电粒子在微米通道中运 动的速度是电泳^[21,22]和电渗流^[23,24]的叠加. 规定 DNA 分子电泳速度方向为正, 则 DNA 分子在微 通道中运动的有效速度 *v*_{eff} 为

$$\boldsymbol{v}_{\text{eff}} = \boldsymbol{v}_{\text{p}} - \boldsymbol{v}_{\text{f}} = \varepsilon (\zeta_{\text{DNA}} - \zeta_{\text{wall}}) E / 4\pi \mu.$$
 (6)

当微米通道长度为无限长的理想情况时, 流体 在微通道中的速度可以用电渗流速度来表示, 即, $v_f = \varepsilon \zeta_{wall} E/4\pi \mu$. 然而, 实际的微米通道为有限长, 通道端口流体的速度是电渗流和反压差流动速度 的叠加, 即^[20,25]:

$$v_{\rm f} = \frac{\varepsilon E}{4\pi\mu} [\zeta_{\rm wall} - \psi(y_2)] - \frac{1}{2\mu} \frac{\partial p}{\partial x} (h^2 - y_2^2).$$
(7)

其中 ε 是溶液的介电常数; $\psi(y_2)$ 为距离中心 线为 y_2 处的电势; h 为通道的半径.

实验中,样品池的边长 (*L* = 10000 μm) 相对 于微通道的内径 (*D* = 50 μm) 以及 DNA 分子的 回转半径 (*R*_g = 0.7 μm), 几乎是一个三维无限大 的储液池. DNA 分子在样品池内将处于纠缠状态, 当其从 *trans* 端口进入通道, 是逆着流体流动的方 向迁移, DNA 分子进入以及穿越微米通道的过程 中始终受到一个逆向流体的作用力^[26].

研究发现^[15], 电场力驱动 DNA 分子从 *trans* 端进入并顺利穿越内径为 30 μ m 的通道时, 最小 阈值电场强度为 $E_{min} = 7 \times 10^3$ V·m⁻¹. 本研究发 现, DNA 分子从 *trans* 端口进入并顺利穿越内径 为 50 μ m 通道时的最小阈值电场强度 $E_{\min} = 2.5 \times 10^3 \text{ V·m}^{-1}$.即, 通道内径越小, 电场强度阈值越大. 这种现象符合电渗流压力同湿周长度 *C* 与通道截 面积 *A* 的比值成正比的规律^[27].

由 (6) 式与 (7) 式可得, DNA 分子在微米通道 内同一横截面上的有效速度:

$$v_{\rm eff} = -\frac{1}{2\mu} \frac{\partial p}{\partial x} (y_2^2 - h^2) + \frac{\varepsilon E}{4\pi\mu} (\zeta_{\rm DNA} - \zeta_{\rm wall}). \tag{8}$$

(8) 式 等 号 左 侧 的 第 二 项 为 定 值,因 此, DNA 分子的有效速度与径向距离 y₂ 的关系是开 口向下的抛物线,DNA 分子沿轴向的有效速度在 中心轴线处将最大.

图 9 所示是 DNA 分子在流出端口同一截面 不同位置处沿轴向速度的实测数值与理论计算值. 其中, 横坐标为 DNA 分子距离中心轴线的距离, dp/dx = 0.04 Pa/m, $\mu = 1.011 \times 10^{-3}$ Pa·s, $y_2 =$ 4.5, 13.5, 22.5 μ m, $\frac{\varepsilon E}{4\pi\mu}(\zeta_{DNA} - \zeta_{wall}) = 0.034 \,\mu$ m/s. 蓝色曲线为理论 DNA 分子速度, 红色曲线为实测 速度. 从图 9 可以明显看出, 随着 DNA 分子距离 中心轴线越远, 其轴向有效速度越小; 理论与实验 相吻合.

图 9 DNA 分子在端口同一截面不同位置的实测速度与 理论速度

Fig. 9. Measured and theoretical velocities of DNA molecules at different positions on the same cross section of near the microchannel port.

外加电场不同, DNA 分子在通道内出现不同 的运动状态, DNA 的反转运动主要出现在 cis 端 口, 往复运动和旋转运动出现在 trans 端口.

图 10 所示为 DNA 分子从 trans 端口进入微 米通道, 并随着电场强度的改变, 在端口附近其反 转运动发生位置点变化示意图. 图 10(a) 和图 10(b) 为 DNA 分子在不同电场强度下的反转运动过程. 其中, 图 10(a) 的电场强度范围为 7.5 × 10³ V·m⁻¹ $\leq E \leq 1 \times 10^4$ V·m⁻¹, 图 10(b) 的电场强度范围 为 $E > 1 \times 10^4$ V·m⁻¹.

图 10 DNA 分子在微米通道内端口附近处的反转运动示 意图 (a) DNA 分子在 *cis* 端口处反转,反转后的 DNA 分 子容易吸附在微米通道内管壁上, 7.5 × 10³ V·m⁻¹ $\leq E \leq$ 1 × 10⁴ V·m⁻¹; (b) DNA 分子在 *trans* 端口附近的反转运 动, $E > 1 \times 10^4$ V·m⁻¹

Fig. 10. Schematic diagram of DNA molecules moving near the port of microchannel: (a) reversing near the *cis* port, and the reversed DNA molecule is easy to be adsorbed onto the inner wall, $7.5 \times 10^3 \text{ V}\cdot\text{m}^{-1} \leq E \leq 1 \times 10^4 \text{ V}\cdot\text{m}^{-1}$; (b) reversing near the *trans* port, $E > 1 \times 10^4 \text{ V}\cdot\text{m}^{-1}$.

由图 10(a) 可知, DNA 分子是逆着流速靠近 cis 端口. DNA 靠近 cis 端口,其电泳力和电渗流 阻力几乎不变,流体的阻力虽然逐渐减小,但压强 梯度力却逐渐增大,导致 DNA 分子的运动速度逐 渐减小.图 10(a) 中用虚线圆标记了一个在 cis 端 口将要反转的 DNA 分子所处的位置,此时,压强 梯度力与 DNA 分子表面的电渗流阻力之和大于 DNA 分子所受电泳力,使得 DNA 开始反转运动.

力的主导下反转运动,沿 cis→trans的方向运动. 需要说明的一点是,外加电场的增大会产生焦耳 热,进而引起缓冲液的黏度减小;而且,在散热的 过程中,微米通道沿径向有温度梯度,将影响微通 道内部流体的速度分布,对 DNA 分子的运动也会 产生影响.

另外,电场强度越大对 DNA 分子构象的影响 较明显,使其表面电荷分布发生改变.如图 5(a) 所 示, DNA 分子在构象上高度压缩, 其表面电荷密 度将发生改变;图 5(b) 所示,电场强度超过1× 104 V/m, DNA 分子收缩成一个相当紧凑的小球, 导致 DNA 分子表面电荷密度分布发生改变, 各向 同性增强^[28], 表面电势 (ζ_{DNA}) 发生变化将导致 DNA 分子电泳力发生改变^[29]. 图 5(a) 中, DNA 分 子逆着流体的方向进入通道,在1.0 s时刻,DNA 分子未到达 cis 端口, 但是其有效速度已减小为零. 由于在该电场强度下, DNA 分子的电渗流淌度大 于电泳淌度, 使得 DNA 分子不能保持静止状态, 因此下一刻 DNA 分子的运动方向开始反转,转向 cis→trans运动. 当到达 trans 端口附近时, 有效速 度再次减小为零 (2.0 s 时刻), 此时 DNA 分子的受 力为 $f_{\text{电泳力}} + f_{\text{压强梯度力}} + f_{\text{反压差力}} > f_{\text{电渗流阻力}}$,导 致 DNA 分子不能流出 trans 端口, 在此位置再一 次进行反转,转向 trans→cis 运动,形成一次往复 运动.

电场强度继续增大,并不能促使 DNA 分子在 电泳的主导下向着 cis端管口迁移,反而加快 DNA 分子往复运动的频率. DNA 分子在往复运动 的过程中,偏向管壁运动时速度减小.由图6可以 看出, DNA 分子在往复运动的过程中逐渐地靠近 管壁,同时 DNA 分子往复运动的轴向距离逐渐减 小. 当电场强度 $E > 7.5 \times 10^3$ V·m⁻¹时, DNA 分 子明显偏向管壁运动,主要原因是在 trans 端口附 近,反压差的作用使得 DNA 分子周围的流体存在 速度梯度,受到萨夫曼力的作用^[30],方向指向管壁. 关于 DNA 分子的旋转运动,则主要是由于 DNA 分子周围的缓冲液在径向和轴向上都存在速 度梯度. 当团聚的 DNA 分子质量较大时, 就有可 能出现径向位置变化较小的旋转运动. 如图 5(b) 所示,中心轴线右侧团聚的 DNA 分子周围的流体 存在速度梯度,距离中心轴线越近流体速度越小, 此时 DNA 分子向着管壁处旋转;当 DNA 分子的 旋转角速度矢量与运动的速度矢量不重合时,在与 旋转角速度矢量和平动速度矢量组成的平面相垂 直的方向上将产生一个径向力,即,马格努斯力^[31]. 萨夫曼力和马格努斯力之间存在互动性; DNA 分 子将在以上多种力的共同作用下做复杂的旋转 运动.

4 结 论

本论文利用单分子荧光显微成像方法比较系 统地研究了 λ-DNA 分子在外电场力作用下进入、 穿越内径为 50 μm 的圆形通道的电动力学特性. 研究结果表明: DNA 分子能够进入微米通道 trans端口并顺利穿越微通道存在最小阈值电场强 度 $E_{\min} = 2.5 \times 10^3 \, \text{V·m}^{-1}$ 和最大阈值电场强度 $E_{\text{max}} = 7.5 \times 10^3 \text{ V·m}^{-1}$. 只有当外电场强度满足 $2.5 \times 10^3 \,\mathrm{V \cdot m^{-1}} \leq E \leq 7.5 \times 10^3 \,\mathrm{V \cdot m^{-1}}$ 时,才能 够引导 DNA 分子从 trans 端口进入通道, 并顺利 从 cis 端口穿越. 当外电场小于 Emin 时, DNA 分 子只能靠近 trans 端口, 但不能通过 trans 端口进 入通道;外加电场强度 7.5 × 10³ V·m⁻¹ < E ≤ 1 × 10⁴ V·m⁻¹时, DNA 分子通过 trans 端口进入 通道,迁移至 cis 端口附近时会出现反转运动;随 着外加电场强度的增大, DNA 分子反转位点逐渐 远离 cis 端口, 距离 trans 端口越小, 另外, DNA 分子可能呈现往复运动和旋转运动等新现象.同时 发现 DNA 分子在微通道端口附近的偏转角度随 着电场强度的增大而增大; 当外加电场强度 E > 1 × 10⁴ V·m⁻¹时, DNA 分子在样品池内很难靠近 trans 端口. 在外电场力作用下, DNA 分子从容积 较大的样品池内进入微米通道,在通道内沿轴向主 要受电泳力、压强梯度力、反压差力、流体阻力以 及电渗流阻力等的作用;电场强度的改变,将引起 缓冲液的流速以及 DNA 分子受力情况的改变,进 一步影响其动力学特性.本研究结果对研制基于微 纳通道系统的 DNA 分子传感器和芯片实验室等 具有一定的指导意义.

参考文献

- [1] Streets A M, Huang Y 2014 Curr. Opin. Biotechnol. 25 69
- [2] Atalay Y T, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboner P, Nicolai B M, Lammertyn J 2011 Trends Food Sci. Technol. 22 386
- [3] Rivet C, Lee H, Hirsch A, Hamilton S, Lu H 2011 Chem. Eng. Sci. 66 1490

- [4] David E, Mandal S, Yang A H J, Bernardoc C 2008 Microfluid. Nanofluid. 4 33
- [5] Branton D, Deamer D W, Marziali A, Bayley H 2008 Nat. Biotechnol. 26 1146
- [6] Wang K G, Yue S L, Wang L, Jin A, Chang Z G, Wang P Y, Feng Y C, Wang Y C, Niu H B 2006 *Microfluid. Nanofluid.* 2 85
- [7] Rief M, Clausen-Schaumann H, Gaub H E 1999 Nat. Struct. Biol. 6 346
- [8] Aksimentiev A, Schulten K 2005 Biophys. J. 88 3745
- [9] Wells D B, Abramkina V, Aksimentiev A 2007 J. Chem. Phys. 127 5101
- [10] Rose D J, Jorgenson J R, Jorgenson J W 1988 J. Anal. Chem. 60 642
- [11] Chen Y, Zhu A 1991 Chin. J. Chrom. 6 353 (in Chinese) [陈 义, 竺安 1991 色谱 6 353]
- [12] Linhares M C, Kissinger P T 1991 J. Anal. Chem. 63 2076
- [13] Lee C H, Hesish C C 2013 *Biomicrofluidics* 7 044106
- [14] Renner C B, Patrick S D 2015 Soft Matter 11 3105
- [15] Wang H Q, Wang K G, Ma H W 2016 J. Nanosci. Nanotechno. 16 6986
- [16] Yang F Y, Wang K G, Sun D, Zhao W, Wang H Q, He X, Wang G R, Bai J T 2016 Chin. Phys. B 25 529
- [17] Jones P V, Salmon G L, Ros A 2017 J. Anal. Chem. 89 1531
- [18] Marie R, Beech J P, Vörös J, Tegenfeldt J O 2006 Langmuir

22 10103

- [19] Mitchell M J, Qiao R, Aluru N R 2000 J. Microelectromech. Syst. 9 435
- [20] Li Z H 2012 Fluid Flow in Microfluidic Chips (Beijing: Science Press) p191 (in Chinese) [李战华 2012 微流控芯片中 的流体流动 (北京: 科学出版社) 第191页]
- [21] Uehara S, Shintaku H, Kawano S 2011 J. Fluids Eng. 133 121203
- [22] Firnkes M, Pedone D, Knezevic J, Dolinger M 2010 Nano Lett. 10 2162
- [23] Schoch R B, Han J, Renaud P 2008 Rev. Mod. Phys. 80 839
- [24] Perkins T T, Smith D, Chu S 1994 Science 264 822
- [25] Gao F, Shi Z M, Feng X 2017 Tansducer. Microsystem. 11 53 (in Chinese) [高峰, 石则满, 冯鑫 2017 传感器与微系统 11 53]
- [26] Chen L S, Zhou J H, Wang S K 1993 J. Eng. Therm. 3 336 (in Chinese) [陈凌珊, 周建华, 仕康 1993 工程热物理学报 3 336]
- [27] Zhou H, Zhou Y T 2010 J. Nat. Sci. 32 45 (in Chinese) [朱红, 周亚 2010 自然科学学报 32 45]
- [28] Sparreboom W, Van Den Berg A, Eijkel J C T 2009 Nat. Nanotechnol. 4 713
- [29] Tang J, Du N, Doyle P S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 16153
- [30] Saffman P G 1965 J. Fluid Mech. 22 385
- [31] Magnus G 1853 Ann. Phys. 164 1

Electrodynamic characteristics of λ -DNA molecule translocating through the microfluidic channel port studied with single molecular fluorescence imaging technology^{*}

Wang Qiong $^{(1)2)}$ Wang Kai-Ge $^{(1)\dagger}$ Meng Kang Kang $^{(1)}$

Sun Dan¹⁾ Han Tong Yu¹⁾ Gao Ai-Hua^{2) \ddagger}

1) (National Center for International Research of Photoelectric Technology and Nano-Functional Materials and Application, State Key

Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Photoelectric Technology of

Shaanxi Province, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China)

2) (School of Physics, Northwestern University, Xi'an 710069, China)

(Received 12 January 2020; revised manuscript received 16 May 2020)

Abstract

Manipulating a single DNA molecule and effectively introducing it into and exporting micro-nano-fluidic channels are prerequisites for the functional DNA biochips. And it is the key to the precise separation and screening of different DNA molecules by the micro-/nanochannel system that accurately understanding the movement characteristics and dynamic mechanism of DNA molecules moving near the channel port. In this paper, the electrodynamic characteristics of λ -DNA molecule entering into/leaving off a 50 μ m channel port driven by the electric field force are systematically investigated and analyzed by the single molecule fluorescence microscopy. The experimental results indicated that there were the maximum (E_{max}) and minimum (E_{min}) thresholds of the applied electric field intensity, and only when the field intensity E meets $E_{\min} \leq E \leq E_{\max}$, the single λ -DNA molecule could successfully enter into the *trans* port and exit out of the *cis* port; when the electric field intensity was less than the minimum threshold, $E \leq E_{\min}$, λ -DNA molecules could not enter the trans port; when the electric field intensity was greater than the maximum threshold, $E_{\text{max}} \leq E$, λ -DNA molecules could move into the microchannel through the *trans* port, but not exit out of the *cis* port. When λ -DNA molecule migrated toward the *cis* port along the channel, the movement state was changed, some new phenomena were observed, e.g. the translocation direction was reversed, reciprocated, or even rotated; moreover, the DNA molecules were easy to adhere to the channel wall. In addition, when the electric field intensity enhanced, the distance between the position where DNA molecular direction reversing and the *cis* port was increased. Based on the microfluidic electrodynamics, the physical mechanism of the velocities and translocation states of single λ -DNA molecule passing microchannel port was preliminarily analyzed. The results of this study have certain practical guiding significance for the development of gene chip laboratory and DNA molecular sensors based on the micro/nanochannel fluidic system.

Keywords: λ -DNA molecule, single molecule fluorescence imaging technology, micro/nanofluidic channel, reversal movement

PACS: 82.37.Rs, 87.15.H–, 87.15.Tt, 87.19.rh

DOI: 10.7498/aps.69.20200074

^{*} National Natural Science Foundation of China (Grant Nos. 61378083, 61405159), the International Cooperation Foundation of the National Science and Technology Ministry of of China (Grant No. 2011DFA12220), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project, China (Grant Nos. 2016ZDJC-15, S2018-ZC-TD-0061).

[†] Corresponding author. E-mail: wangkg@nwu.edu.cn

[‡] Corresponding author. E-mail: gaoaihua@nwu.edu.cn