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Abstract. Optical fiber bundles frequently serve as crucial components in flexible miniature endoscopes,
transmitting end-to-end images directly for medical and industrial applications. Each core usually acts as
a single pixel, and the resolution of the image is limited by the core size and core spacing. We propose a
method that exploits the hidden information embedded in the pattern within each core to break the
limitation and obtain high-dimensional light field information and more features of the original image
including edges, texture, and color. Intra-core patterns are mainly related to the spatial angle of captured
light rays and the shape of the core. A convolutional neural network is used to accelerate the extraction
of in-core features containing the light field information of the whole scene, achieve the transformation of
in-core features to real details, and enhance invisible texture features and image colorization of fiber
bundle images.
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1. Introduction
Fiber optic endoscopes have demonstrated significant potential
in biomedical and industrial manufacturing applications[1–6] due
to their high-temperature resistance, electromagnetic interfer-
ence resistance, and bendability. An optical fiber bundle (FB)
contains thousands of cores, each of which independently trans-
mits light from the distal to the proximal, ensuring large infor-
mation throughput in a small volume. Imaging resolution and
image quality directly limit its application prospects. Smaller
core sizes and core spacing mean higher spatial resolution,
but weaker brightness and greater inter-core crosstalk[7–9]. In
the early years, researchers eliminated honeycomb noise by
spatial and frequency domain filtering[10,11], interpolation[12], and
a priori learning of FB patterns[13,14], but no additional informa-
tion was obtained to improve the spatial resolution. Mechanical
scanning devices[15] and optical elements[16] were used to obtain
multiple low-resolution images of different positions to combine
high-resolution images, whose speed was limited by the scan-
ning and alignment synthesis algorithms. Multiple wavelengths
were utilized to improve imaging resolution[17,18], but complex

optical systems were required. A spatial light modulator has also
been used to focus coherent light for scanning utilizing wave-
front shaping[19–21]. However, this method is sensitive to bending
and temperature. In recent years, neural networks have been
trained to learn mappings from restored FB images and esti-
mated pseudo-ground truth (GT) from a microendoscope for
the first time[22]. The brightness mapping between the FB images
and GT was constructed by a neural network (GARNN)[23,24].
Learned high-resolution FB images were also used for medical
diagnosis, and the network helped increase the classification ac-
curacy from 90.8% to 95.6% for glioblastoma[25]. In addition,
with end-to-end deep-learning reconstruction algorithms, FB
imaging systems are capable of reconstructing multispectral
data with the integration of coding components[26]. However,
each core in FBs was regarded as one pixel in previous studies,
and the information hidden inside the core is unexplored and
unexploited, which limits its reconstruction resolution and infor-
mation dimension.

Coding elements in optical pathways and computational
frameworks are investigated to extract high-frequency informa-
tion. A framework for computational imaging using different
random binary masks and sparse-recovery algorithms in the
FB endoscopy system was presented to reconstruct images with*Address all correspondence to Fei Xu, feixu@nju.edu.cn
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more resolved pixels in individual cores[27,28]. Indeed, each core
of the FB itself has unavailable hidden information including
high-dimensional light field information because it usually con-
tains a few modes. The proportion of different modes in the core
is related to the light field captured at the distal[29]. A digital aper-
ture filtering approach used the FB as a light field sampling sen-
sor to achieve a depth of field extension and three-dimensional
(3D) light field imaging based on in-core modes[30–32]. Light with
different spatial incidence angles and different incidence posi-
tions is recorded by the FB in a pattern within the core, which
implies more information than the intensity of individual pixels.
If a mapping relationship between the in-core features and the
distal multidimensional light field can be established, then the
real image features at the distal end smaller than the core size
can be reconstructed.

In this paper, we propose a method for restoring feature-en-
hanced FB images by the acquisition of the light field at the
distal without extra elements in the probe and system. The edge,
texture, and spectral features of the image in the real light field
are encoded in the FB core pattern [in Fig. 1(c)]. Due to the
random size and shape of their cores, it is time-consuming to
implement computational decoding for each core individually.
A generative adversarial neural network FBNet is used to learn a
mapping from the pattern features in FB image cores to the GT
high-frequency features and fill in the missing information (for a

detailed description of the principle of operation). The enhanced
natural grayscale images show a 12.7% improvement in the
structural similarity index measure (SSIM) and a 14.1% im-
provement in peak signal-to-noise ratio (PSNR). Additionally,
we facilitate the conversion of fiber endoscopic grayscale im-
ages to color images for the first time, enabling multispectral
imaging without color filters. Intra-core intensity patterns enable
the saturation of the reconstructed images close to the GT. The
method fully utilizes the in-core modes to acquire and transmit
incident multi-dimensional light field information, which
greatly expands the transmission capacity of FBs and enriches
the image content.

2. Principle of Operation

2.1. Light Field Acquisition Using Fiber Bundles

The plenoptic function [P�θ;φ; λ; t; x; y; z�] describing the light
field contains the position �x; y; z� of any point, any direction
(θ;φ in polar coordinates), wavelength (λ), and time (t). The
light field feature means more high-frequency detail for images.
Figure 1(a) illustrates the real image split into several spots by
the fiber core after passing through the FB, and Fig. 2(a) shows
the end face of the FB and its spatial frequency feature map. In
previous studies of FB image recovery, in-core patterns have

Fig. 1 Schematic of light field acquisition and feature enhancement reconstruction using the FB.
(a) Changes in the images after transmission through the FB, where a completely clear image is
split into multiple core patterns by the fiber core. (b) A snapshot of the proximal face of the FB when
it is illuminated with a fiber probe at the distal. The colored circles highlight the different patterns
excited by different incidence angles. A partial zoom-in view is shown on the right. (c) The imaging
process uses the FB to acquire the light field including light field acquisition, transmission, and
reconstruction via FBNet.
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usually been ignored. High-frequency information smaller than
the core size is lost, corresponding to the frequency outside the
red circle of the spatial frequency diagram below [in Fig. 2(a)].
The same intensity value collected on the sensor may corre-
spond to a combination of multiple high-frequency features
(edges, intensities, spectra, etc.) at the distal end [as shown

in the upper part of Fig. 2(b)], which leads to a reconstruction
bias of image details only through the intensity of each core.

FBs are used as light field acquisition sensors due to their
large numerical aperture and few-mode properties within one
core. A point light source of a few hundred nanometers in diam-
eter is placed at the front of the FB to demonstrate that the light

Fig. 2 Principle of light field acquisition using the FBs. (a) High-frequency light field information
recorded in the core pattern. Up: spatial domain sampling of the FB. The yellow part corresponds
to the fiber cores. Down: frequency domain sampling of the FB (given by the Fourier transform of
the figure above). Low-frequency features are located in the center part of the image. Red circles
correspond to the frequency of the core pitch size. (b) Sampling effect of different features smaller
than the core size on the proximal end. Above: ignoring core features. Below: considering the in-
core pattern. (c) On-axis Gaussian beam: the different color curves show the trend of the ratio of
different excitation modes to the total incident power with an increasing angle of incidence.
(d) Tilted Gaussian beam: the red curve shows the fundamental mode excitation efficiency as
a function of a shift of a distance. (e) On-axis uniform beam: the red curve indicates the funda-
mental mode excitation efficiency as a function of the spot size of the beam and the modal.
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reaches the end face at different angles and excites different
transmission modes (in different colors) in different cores, aris-
ing various patterns as shown in Fig. 1(b). That is, features
smaller than the core size can be accurately distinguished by the
patterns within the core [as shown in the lower part of Fig. 2(b)].
Nevertheless, it is difficult to recover different features only
from the intensity values of a single fiber core. It is estimated
that the number of transmission modes in each core is about 6–
12 when the wavelength is in the range of 400–700 nm. The
excitation of these modes is influenced by the spatial angle
and position of the illumination on the end face.

According to the mode theory of optical fibers[29], one core is
assumed to be circular to facilitate the calculation of its corre-
sponding light field. An accurate approximation can be used for
weakly guiding fibers. Pl is the power of one kind of linearly
polarized mode and Pi is the total incident power. k is the propa-
gation coefficient, r0 is the modal spot size, and ρs is the beam
spot size. ni represents the refractive index and θi represents the
angle between the incident light and the fiber axis. The ratio of
the power of each mode can be described as
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According to Eq. (1), only the l � 0 modes are excited when
the Gaussian beam is incident perpendicular to the end face at
the center of the core. With the increase of the angle between the
Gaussian beam and the fiber axis, higher order modes (l > 0)
are excited, and the power ratio of the fundamental mode gradu-
ally decreases as shown in Fig. 2(c). Figure 2(d) shows that the
excitation efficiency of the fundamental mode [in Eq. (2)] is af-
fected by a shift of a distance rd along the fiber axis of the offset
Gaussian beam. When the Gaussian beam is replaced by the
uniform beam with radius ρs, the fraction of beam power excit-
ing the fundamental mode can be expressed by Eq. (3).
Fundamental mode and higher-order modes are excited simul-
taneously when the uniform beam is incident normally on the
end face as shown in Fig. 2(e). The excitation efficiency of the
fundamental mode is related to the radius of the beam,
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The image recorded on the image sensor contains a sampling
of the incident light field from all the fiber cores in the form of
mode patterns. Equation (4) describes the relationship between
image features and the pattern of modes within the core on the
sensor, where YP denotes the arrangement of intensity values of
pixels corresponding to a single core on the sensor. P is the
number of pixels, and M denotes the number of modes that
can be supported by the core. The image block corresponding
to each fiber core at the far end is discretized into N voxels, each
with an intensity value of IN . The matrix α represents the inten-
sity contribution of different modes to different pixels, which
can usually be calculated from the core size and wavelength.
The rows represent the contribution of different modes to a sin-
gle pixel on the sensor, and the columns represent the intensity

distribution of different modes. The matrix k represents the
power share of different modes excited by each voxel and is
obtained from Eq. (1) to Eq. (3). Based on the mode theory
and the light field sampling of the fiber core, the power distri-
butions of different mode fields are superimposed from the near-
end shot. The high-frequency image features can be recon-
structed once the matrix α and matrix k of each core are ob-
tained,
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2.2. Neural Network Model for Optimal Reconstruction

By approximating the computation of individual cores, high-fre-
quency optical fields were shown to be reconstructed by
extracting hidden information within the cores. However,
FBs have more than thousands or even tens of thousands of
cores and are randomly shaped. Calculating and reconstructing
each core individually affects the timeliness of the image.
Therefore, a deep learning algorithm is applied to optimize
the light field detail reconstruction process. The responses of
different modes in each fiber core for different spatial locations
are obtained during training. Our goal is to extract light field
information from low-frequency sampled maps with in-core pat-
terns to achieve reconstruction of distal real image details. In
addition to eliminating the interference of foveal artifacts, condi-
tional adversarial networks help fill in the blank information
with the high-frequency information in previous learning-based
work[33–35]. Reasonable network structures and an objective func-
tion-based gradient descent method optimize the solution pro-
cess of matrix α and matrix k in Sec. 2.1.

The network structure (FBNet) consists of two parts, where
the generator (G) is used to generate an output close to the real
image, and the discriminator (D) is used to classify the output
with the real image as shown in Fig. 3(a). x is the observed
image, and z is the random noise. y is the output. G�x� is
the output of the G. When the discriminator has difficulty dis-
tinguishing between the real graph and the generator output, the
generator and discriminator are considered to have completed
the training. U-FBNet and R-FBNet [as shown in Fig. S1 in
the Supplementary Information (SI)] with different generators
(U-Net[36] and Resnet[37]) were used separately to demonstrate
that the intra-core pattern contributes to the reconstruction
of high-frequency features. A Markovian discriminator
(PatchGAN)[33,34] tries to classify if each N × N patch in an im-
age is real or fake, also facilitating the learning of intra-core de-
tail information. Thus, the objective function of the adversarial
network can be expressed as
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LGAN�G;D� � Ex;y�log D�x; y�� �Ex;zflogf1−D�x;G�x; z��gg;
(5)

whereG tries to minimize this objective against an adversarialD
that tries to maximize it. Moreover, the generated image has to
be closer to the real, so mixing the GAN objective with a more
traditional loss l1 is necessary,

Ll1�G� � Ex;y;z�ky −G�x; z�
��
1
�: (6)

Finally, the objective is

G� � argmin
G

max
D

LGAN�G;D� � βLl1�G�: (7)

β is a tunable weighting parameter that depends on the differ-
ent kinds of samples, which is set to 50 in this paper. In the
training, the classical GAN method of training a network is
used, with one gradient descent step on D followed by one step
on G. Minibatch SGD and the Adam solver are applied. The
initial learning rate is set to 0.0002. More details about the net-
work structure are available from Section S1 in the SI.

2.3. Experimental Setup and Data Acquisition

A FB image projection and acquisition system is set to directly
acquire the real image and the image of the proximal end of the

FB as shown in Fig. 3(b). The FB (FIGH-016-160S, Fujikura)
used in this paper has an outer diameter of approximately
164 μm and a length of 0.5 m with 1491 cores. The cores are
nearly circular and irregularly shaped, with a core spacing of
approximately 3.2 μm. The GT images are displayed on com-
puter monitors (2560 × 1440, AOC) with a pixel pitch of
206 μm. Only an area of 128 × 128 in size is used to display
the real image. The screen is projected onto the FB distal plane
using a plano–convex lens (f2 � 30 mm, Thorlabs) and an ob-
jective (50×, LMPlanFi, Olympus). The reduction factor is ap-
proximately 175 times. The image transmitted through the FB is
recorded by the complementary metal oxide semiconductor
(CMOS) image sensor (panda 4.2, PCO) through a combination
of objective (40×, Daheng) and plano–convex lenses (f1 �
12 mm, Thorlabs), magnified approximately 33.3 times. Each
core pattern corresponds to about 40 or so pixels on the CMOS.

In the experiments, the public dataset, E-MINIST dataset,
and ImageNet dataset[38] are slightly optimized to fit the exper-
imental requirements. The set of letters in the EMNIST dataset
is used to create projection patterns. One of each of the 26 letters
is selected, and four of them are stitched at random to form the
new dataset C-letters with more various edges. Part of the
ImageNet dataset is converted to grayscale to test for mono-
chrome texture detail. The real data are displayed on the monitor
at the time of acquisition, and the acquisition data containing
core patterns are recorded directly by the magnification

Fig. 3 Neural network models and experimental setup. (a) Training procedure of the FBNet. The
generator G learns to generate pseudo-real images in an attempt to fool the discriminator.
Discriminator D learns to achieve classification between fake (synthesized by the generator)
and real images. (b) FB image acquisition experimental setup diagram. The real image on
the screen is displayed on the distal of the FB by a scaled combination of the lens (L1, f 1 �
12 mm) and objective (OBJ1, 50×). The pattern at the proximal of the FB is projected on the
CMOS by a lens (L2, f 2 � 30 mm) and an objective (OBJ2, 40×).
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projection system, which is named the few-mode image dataset
(FM). The corresponding reconstructed results using FBNet are
called FM-X (where X can be U or R, respectively, correspond-
ing to two different networks, U-FBNet and R-FBNet). As a
comparison, the single-mode image dataset (SM) ignoring
the mode patterns can also be obtained computationally. The
positions of each core and the pixel coordinates of the region
they occupy are first obtained by binarization and morphologi-
cal processing.

Then the intensities of all pixels within each core are
counted, and the average value is calculated. Finally, the intra-
core Gaussian distribution of single-mode intensities is fitted
based on the average value and the core radius, which is filled
in the region to replace the original intra-core mode. Its
reconstruction results are named SM-X (X is a placeholder,
named in the same way as above). The reconstruction is oper-
ated on MATLAB and Python on a computer (CPU, Inter i3-
10105) with GPU (NVIDIA GeForce RTX 3060) acceleration.

3. Results

3.1. Improvement of Edges

Image edges typically denote locally discontinuous features
within the image. The genuine edges of the image are corrupted
because the cladding portion of the FB is not transmitting light.
Previous works only allow the acquisition of edge information
at a resolution exceeding the core spacing. The resolution of the
dataset C-letter at the FB end face is approximately 1.1 μm, sig-
nificantly smaller than the core spacing. The lateral resolution at
different spatial locations is affected by the random shape of the
fiber core. SSIM and PSNR are employed for quantitative evalu-
ation of image quality. Based on the networks mentioned in
Sec. 2.2, the reconstruction process of the in-core pattern to real
object detail maps is optimized, and the results are shown in
Table 1.

The deep learning-based approach doubles the SSIM and
PSNR compared to traditional interpolation methods. Various
network structures are capable of achieving accurate
reconstruction of most low-frequency information. However,
compared to the method that ignores the in-core patterns (cor-
responding results SM-X), SSIM increases from 0.8963 to
0.9329, and PSNR increases from 24.4267 to 25.9967 when us-
ing the R-FBNet for image restoration of the FM. SSIM and
PSNR also get a boost when the generator is the U-Net.
Some of the test results are shown in Fig. 4 and Fig. S2 (in
the SI). The original acquisition map (in the first row) is covered
by the foveal noise of the FB itself, the image quality is de-
graded, and the edge information is corrupted. The red window
is a zoom-in on the region of interest, where spatial features
smaller than the core size excite higher-order modes in the fiber.

The frequency spectrum in the third, sixth, and ninth columns is
obtained using the Fourier transform. The similarity to the real
image frequency information is marked on the image in white.
Compared with interpolation methods, the overall visual effect
of the reconstructed images obtained by the deep learning-based
methods (SM and FM) is closer to the real map. For high-
frequency information, the minor edge (within the orange
circles) is more accurately recovered by the extraction of in-core
features containing the light field information. Considering the
percentage of high-frequency and low-frequency information in
the images and their effects on SSIM and PSNR, it is a huge
boost. In addition, mean opinion score (MOS) means perceiv-
ing, measuring, and evaluating changes and distortions in the
information of two images with the same subject content in a
subjective way, and judging the quality of the image by normal-
izing the scores of the observers. MOS studies involved 15 raters
scoring all the restored images with an integral grade from 1
(worst) to 5 (best) based on fidelity and sharpness compared
to the GT. The last row of Table 1 provides average MOS results.
Images with intra-core patterns have better reconstructed visual
quality. In this experiment, 2900 sheets from the C-letter dataset
are utilized for training, 100 for validation, and 100 for testing.
TheGTs are displayed only in the green channel with 128 pixel ×
128 pixel, and the FB images recorded are 768 pixel × 768 pixel
in gray. The FM and SM are trained with their corresponding
GTs by networks U-FBNet and R-FBNet, respectively, and
the networks converge after 40 epochs in 36 and 88 min.

3.2. Enhancement of Textural Features

Most scenes in nature vary in grayscale with more textural
features. We adopt 9000 (7000 for training, 1000 for testing,
and 1000 for validation) natural images from ImageNet[36] as
the GT to demonstrate that acquiring light field information with
the FB helps in the reconstruction of 8-bit texture details.
Multidimensional light field information, i.e., richer image con-
tent, is recorded and transmitted, although it is difficult for the
naked eye to distinguish from FB patterns. Real images of dif-
ferent sizes are cropped to 128 × 128 and converted into a gray-
scale map. The R channel of the on-screen image was set to
grayscale map intensity while the G and B channels were set
to 0. This considers that the wavelength can also have an effect
on the structural pattern within the core. Similarly, we trained
the direct acquisition map FM (with intra-core patterns) and
SM (without intra-core patterns) images with R-FBNet and
U-FBNet, respectively, until convergence.

The testing results are shown in Table 2. The average SSIM
of the test images based on the FM images is 0.8051 (12.7%
improvement compared to ignoring in-core patterns), and the
average PSNR is 24.5879 (14.1% improvement compared to
ignoring in-core patterns) when trained with the R-FBNet net-
work. Similar results (SM-U: SSIM = 0.7355 and PSNR =
23.8912; FM-U: SSIM = 0.8076 and PSNR = 25.7332) were
obtained when training with U-FBNet. The average MOS re-
sults agree with the SSIM and PSNR results listed in the last
row of Table 2. Some of the results reconstructed through U-
FBNet are presented in Fig. 5. The corresponding results using
R-FBNet are shown in Fig. S3 in the SI. The reconstruction
using FBNet (the third and the fourth rows) greatly improves
the FB imaging quality compared to the direct acquisition
map (the first row) and the conventional reconstruction map
(the second row).

Table 1 Comparison of Testing Results for Boundary Features

SSIM PSNR MOS

Interpolation 0.4119 12.1435 N/A

R-FBNet SM-R 0.8963 24.4267 3.6667

FM-R 0.9329 25.9967 4.4667

U-FBNet SM-U 0.9092 24.5865 4.2000

FM-U 0.9104 24.9419 4.3333
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It is difficult to discriminate these features effectively, even
using deep learning techniques. FM-R and FM-U provide better
enhancement than SM-R and SM-U for grayscale texture fea-
tures within color windows such as a woman’s mouth (in the
yellow window). The colored window area corresponds to a real
image field of view of approximately 40 μm edge length, which
is almost the same as the diameter of a hair. Our method is suf-
ficient for endoscopic detection, cell imaging, etc. Due to the
absence of sampling at the cladding at the front end of the
FB, some distortion is inevitable. The network structure based
on PatchGAN and the loss function containing loss L1 are em-
ployed to address this issue. Richer datasets and more optimized
network structures may further overcome this problem.

3.3. Image Colorization

Usually, color image sensors have special arrays of color filters
on their pixels. As each filter point can only pass one of the
colors red, green, or blue, all pixels should have information
about all three colors at the output. The two filtered color

component values are made up in later algorithmic processing
by interpolation, which distorts the directly acquired color im-
age. In contrast, monochrome cameras give grayscale feedback
for the color that is closer to the color-grayscale feedback of a
real object. Its performance is superior to that of the color cam-
era in terms of both luminous flux and detail. We provide a light-
field-acquisition-based method for reconstructing color patterns
from the grayscale patterns of FBs taken by monochrome cam-
eras. In-core patterns influenced by light field information are
shown to contribute to picture colorization. We select 9000 color
images from the ImageNet[36] dataset as a dataset, of which 7000
are used for training, 1000 for testing, and 1000 for validation.
They are cropped to the same size of 32 pixel × 32 pixel and
then enlarged to 128 pixel × 128 pixel for final display on the
computer screen. Considering that the pattern structure is recon-
structed while recovering the color information, we sacrifice
some of the spatial resolution to color the directly captured gray-
scale images. The training set converges after 60 training
epochs, taking a minimum of 132 min. The acquisition section
is configured in Secs. 3.1 and 3.2.

Table 3 shows the results of the enhancement with U-FBNet
and R-FBNet, respectively. The SSIM and PSNR of the color
reconstruction were slightly lower compared to the projection
and reconstruction of the single-channel image in Sec. 3.2.
This is partly because the calculation of SSIM and PSNR for
color images is influenced by the effect of color recovery,
but also because the effective size of the image (32 pixel ×
32 pixel) is reduced and a small error on a single pixel can have
a significant impact. However, it is also true that the enhanced
effect based on our method (FM-R: SSIM = 0.7096 and PSNR =
21.2329; FM-U: SSIM = 0.6487 and PSNR = 20.2941) is

Fig. 4 Results of training and testing of SM and FM using R-FBNet. The first row displays the
original images recorded by the image sensor containing the mode patterns, their regions of in-
terest, and the spatial frequency spectra. The results of reconstruction by the traditional interpo-
lation method are shown in the second row. The third and fourth rows present the reconstruction
results by R-FBNet for different datasets. Some boundary features are marked with orange circles.
The ground truths (GTs) are listed in the last row as a comparison. The similarity coefficients of
their spectrograms with the corresponding GTs are recorded in white.

Table 2 Comparison of Testing Results for Textural Features

SSIM PSNR MOS

R-FBNet SM-R 0.7143 21.5485 3.6667

FM-R 0.8051 24.5879 3.4333

U-FBNet SM-U 0.7355 23.8912 2.9667

FM-U 0.8076 25.7332 3.4667

Feng, Zhu, and Xu: Feature-enhanced fiber bundle imaging based on light field acquisition

Advanced Imaging 011002-7 2024 • Vol. 1(1)



superior to that of enhancement by intensity within each core
only (SM-R: SSIM = 0.6683 and PSNR = 20.6507; SM-U:
SSIM = 0.6201 and PSNR = 20.1989). The average MOS re-
sults improve from 3.1333 to 3.4000 and from 3.3333 to 3.5333,
respectively, when using the R-FBNet and U-FBNet. Figure 6
and Fig. S4 (in the SI) show partial results of testing.
Surprisingly, the FBNet-based method accurately colors endo-
scopic grayscale images, which allows high dynamic range and
high-resolution monochrome cameras to be used for color im-
aging scenes as well. For low-light imaging and measurements,
the filterless multispectral acquisition provides greater luminous
flux, increasing the accuracy of subsequent high-level vision
tasks. Although the relationship between the in-core mode
(FM-R) and color is difficult to perceive directly with the naked
eye, the similarity of saturation of some reconstructed images to
the GT has been marked with white numbers. Note that the re-
constructed saturation maps of the red and blue channels are
closer to that of GTs, and the green channel is less well-repro-
duced. One possible reason is that the magnified projection sys-
tem is used at the far end and the lens chromatic aberration
excites more higher-order patterns in the red and blue channels,
making them easier to learn by the neural network. Another

potential factor is that the green wavelength lies between the
red and blue, and some patterns generated by the green incident
light are learned as a superposition of the two incident light
fields, red and blue, making the reconstructed map converge
to gray. Theoretically, the reconstructed resolution and dimen-
sionality of a color image are simultaneously affected by the
number of modes within the fiber core. The use of hyperspectral
data for training and more degrees of freedom of the developed
system could further address the color crosstalk problem.

4. Discussion
Based on the light field sampling characteristics of the FB and
the potential information of multiple core channels, high-fre-
quency detail information of the image at the distal end is ex-
tracted from the core pattern, which was often overlooked
before. An evidence-based model is proposed, and deep learn-
ing methods are used to optimize the solving process to meet
practical needs. Our enhancements improve over previous meth-
ods in edge reconstruction, texture recovery, and image colori-
zation. Although other work may have obtained better
performance metrics, this is influenced by the dataset and the
fiber. When the in-core mode is ignored, the same-sized field
of view on the detector can acquire a larger field of view at
the far end, which has more information at lower frequencies.
In contrast, the proportion of spatial frequencies lower than the
core spacing is correspondingly reduced during reconstruction
so that better reconstruction quality may be obtained. However,
when the detection scene is small, the high-frequency details
cannot be ignored. Our method can effectively reconstruct more
high-frequency information from low-resolution samples.
Fortunately, our method is equally applicable to improve the
reconstruction quality of other algorithms.

Fig. 5 Results of training and testing of the SM and FM for textural features through U-FBNet. The
first, second, and last rows illustrate the raw acquisition maps, the reconstruction maps by tradi-
tional methods, and the real images. The third and fourth rows show the results of the reconstruc-
tions using the SM and FM as the dataset, respectively. The regions of interest are enlarged by the
color window, corresponding to a real image size of about 40 μm at the distal.

Table 3 Testing Results for Image Colorization

SSIM PSNR MOS

R-FBNet SM-R 0.6683 20.6507 3.1333

FM-R 0.7096 21.2329 3.4000

U-FBNet SM-U 0.6201 20.1989 3.3333

FM-U 0.6487 20.2941 3.5333
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The C-letters dataset with multiple simple edge features is
used to demonstrate that spatial features smaller than the core
pitch size can be reconstructed based on the learning of the pat-
tern within the core. The reconstruction time is less than 0.1 s,
much faster than traditional calibration calculation methods,
which makes high-resolution video-rate imaging possible.
However, measuring the improvement in resolution is difficult
because the core size and shape are varied at different locations
on the end face. Theoretically, the lateral spatial resolution of the
far-end image tends to be infinitesimal, breaking through the
limitations of the resolution of the imaging objective lenses
L1 and L2 when the image sensor samples the intra-core pat-
terns adequately. Small offsets cause the power share of differ-
ent modes within the core to change, as shown in Fig. 2.
However, the resolution of the reconstructed images is affected
by the network structure and the number of network parameters.
In practice, this value is also affected by the incident light field
spectrum, FB inter-core coupling, transmission loss, and sensi-
tivity of the near-end acquisition image sensor. Despite the uti-
lization of incoherent light, the large curvature will cause some
inter-core crosstalk and mode crosstalk, which will affect the
image reconstruction. Although the image quality has been
greatly improved by FBNet, the reconstruction of the ImageNet
dataset is not as satisfactory as the C-letter dataset. This is be-
cause grayscale images are richer in image content, which is
a huge test for the effective transmission capacity of the FB.
In theory, the richness (resolution and color dimension) of the
image reconstruction is limited by the number of modes sup-
ported for transmission within each fiber core. This may result
in some image artifacts as shown in SM-R and SM-U that are
well suppressed in FM-R and FM-U. In the future, more effi-
cient network structures and richer datasets that meet the needs
of the scenario will be considered to enhance the practical ap-
plications, including 3D imaging, high-speed imaging, and

unsupervised learning. Additionally, the image colorization is
based on the RGB channels, which is due to the storage format
of the image in the computer. Higher spectral channel
reconstruction is also applicable for this method but poses a
higher challenge for the FB acquisition and transmission
throughput. In addition, the attenuation of the light intensity
of the real object also affects the effect of image coloring
and needs to be further investigated.

5. Conclusion
The mode pattern within the core of a FB carries information
about the distal excitation light field. Using the FB as an optical
field sampling sensor rather than just an intensity transmission
medium helps to capture multidimensional light fields, break the
limitations of core spacing on the acquisition of detailed image
features, and enhance information transmission capacity for a
limited number of channels. We constructed a model for recon-
structing the original image details based on low-frequency
pattern maps and used deep-learning network structures to op-
timize the reconstruction process. Satisfactory results were ob-
tained in applications such as image edge clarification, detail
enhancement, and image coloring. High-frequency and multi-
wavelength light field information without light flux loss
provides the possibility of low-light imaging, fluorescence im-
aging, and multispectral imaging in medical diagnostics, surgi-
cal navigation, and industrial measurements. Future plans for
more application scenarios include training a more generalized
network based on a few samples, 3D reconstruction of a single
image, and real applications such as medical diagnosis and fluo-
rescence imaging.
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Fig. 6 Results of training and testing of the SM and FM for image colorization based on R-FBNet.
The first row illustrates the raw SM and FM datasets used for image coloring. The colored maps
and their saturation maps are shown in the second and third rows. The last row lists the GTs and
their saturation graphs as a comparison. The white numbers indicate the similarity between the
saturation of the reconstructed maps and the saturation of GTs.
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