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Abstract. Structure illumination microscopy (SIM) imposes no special requirements on the fluorescent dyes
used for sample labeling, yielding resolution exceeding twice the optical diffraction limit with low phototoxicity,
which is therefore very favorable for dynamic observation of live samples. However, the traditional SIM
algorithm is prone to artifacts due to the high signal-to-noise ratio (SNR) requirement, and existing deep-
learning SIM algorithms still have the potential to improve imaging speed. Here, we introduce a deep-
learning-based video-level and high-fidelity super-resolution SIM reconstruction method, termed video-
level deep-learning SIM (VDL-SIM), which has an imaging speed of up to 47 frame/s, providing a
favorable observing experience for users. In addition, VDL-SIM can robustly reconstruct sample details
under a low-light dose, which greatly reduces the damage to the sample during imaging. Compared with
existing SIM algorithms, VDL-SIM has faster imaging speed than existing deep-learning algorithms, and
higher imaging fidelity at low SNR, which is more obvious for traditional algorithms. These characteristics
enable VDL-SIM to be a useful video-level super-resolution imaging alternative to conventional methods in
challenging imaging conditions.
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1. Introduction
Structural illumination microscopy (SIM) is an optical super-
resolution (SR) imaging technique that uses specific illu-
mination patterns to excite fluorescent samples, producing
interference patterns that contain detailed information about
the structure of the sample. Such detailed information is not
observable in conventional diffraction-limited imaging. The
basic principle of SIM is that the superimposed sample spectra
are generated using sinusoidal illumination patterns, which can
be reconstructed as SR images by separating and relocating the
superimposed spectra to the correct frequency space[1]. Taking
one-directional SR reconstruction as an example, the superim-
posed spectra are shifted to three positions �k0; 0;−k0 in the

frequency domain. In order to separate the three spectra, three
linear equations based on three phase-shifted images are built.
To achieve two-dimensional (2D) resolution improvement, the
pattern direction needs to be rotated 3 times to collect nine raw
images[2]. This is then followed by the Fourier transform of the
reconstructed spectrum back to the spatial domain, resulting in
images with doubled resolution[3,4]. The introduction of this
technique brings a breakthrough in optical microscopy, tran-
scending the conventional diffraction limitations and providing
higher-resolution view of sample structure.

However, with the traditional SIM reconstruction algorithm,
it is difficult to accurately estimate the illumination parameters
under suboptimal imaging conditions, resulting in reconstructed
images plagued by artifacts. The above limitations are especially
prominent in low signal-to-noise ratio (SNR) imaging condi-
tions in which the sample structure is prone to be reconstructed
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erroneously as noise may introduce obvious artifacts. In such
cases, neural networks have excellent ability to infer complex
features; with the help of deep-learning methods, a neural
network can learn complex structural features of images autono-
mously, thereby addressing the SIM problem of poor robustness
on imaging noise[5–7]. However, the numerous parameter calcu-
lations make the single reconstruction time of existing deep-
learning SIM methods in the typical order of seconds[8], limiting
their application in living SR observation of rapid movements.
Capturing structural changes of living cells in a real-time man-
ner and with high quality is crucial for our understanding of
biological processes, and for discovering and analyzing pathol-
ogies. In the past few years, researchers have introduced various
techniques to improve the real-time imaging capability of
microscopy techniques, such as real-time non-deep-learning
SIM reconstruction based on GPU enhancement[2], accelerated
non-deep-learning SIM reconstruction techniques based on sim-
plified workflow[9,10], and fast image denoising based on neural
networks[11,12].

Inspired by these work, here we propose a deep-learning-
based method for video-level and real-time high-fidelity SR
SIM reconstruction, termed video-level deep-learning SIM
(VDL-SIM), which integrates lightweight neural network con-
struction and software deployment into a single unified process
to achieve the goal of video-level low SNR reconstruction and to
address the problems of slow speed and poor noise robustness.
VDL-SIM employs an end-to-end residual[13] U-Net[14–16] light-
weight network via a multilevel nonlinear transformation to
capture the nonlinear relationship between signal and noise
from massive data, which is difficult to capture by traditional
SIM algorithms. The advantages of VDL-SIM are also reflected
in the reconstruction speed. Through a subtle structural design,
VDL-SIM possesses both the multiscale effective information
capturing capability of U-Net and the deep understanding
and training capability of residual networks. Based on the
synergy of the two architectures, we cut down the number of
network channels and trade off the performance of the VDL-
SIM model to accelerate the imaging while maintaining high-
fidelity output. Joined with the hardware system timing[17],
VDL-SIM can reach 47 frame/s, corresponding to 15- to 33-fold
improvement compared to existing deep-learning SIM
reconstruction algorithms. VDL-SIM is thus helpful for observ-
ing live samples with higher resolution, lower photobleaching,
and lower phototoxicity, providing a powerful tool for SR bio-
logical studies.

2. Methods

2.1. Lightweight Convolutional Neural Network

The network architecture of VDL-SIM is shown in Fig. 1(a),
which begins with a convolutional layer and a Gaussian error
linear unit[18]. The output of the Gaussian error linear unit is fol-
lowed by four identical convolutional blocks (CBs). The struc-
ture of the CB is shown in Fig. 1(b); each CB consists of two
convolutional layers and a dropout layer connected to a convo-
lutional branch followed by a pooling operation[19]. The opera-
tion of the CB is given as

CB�x� � Pooling�y�: (1)

The intermediate variable y is defined as

y � Convfxg � ConvfDrop�Convfxg�g; (2)

where x denotes the input feature maps of the CB, Pooling rep-
resents the pooling layer operation, Conv represents the convo-
lutional layer operation, and Drop represents the dropout layer
operation.

The output of the last CB is sent to the convolutional layers
and the dropout layer and then connected to its own convolu-
tional skip. Following the output are four identical transposed
convolutional blocks (TCBs), as shown in Fig. 1(c). The TCB
operation is denoted as

TCB�x� � ConvfConvTfxg � yg
� ConvfDrop�ConvfConvTfxg � yg�g; (3)

where x denotes the input feature maps of the TCB, ConvT rep-
resents the transposed convolutional layer operation, and y is
defined in Eq. (2) above.

The final TCB output then passes through a transposed con-
volutional layer before the image is upgraded to the same size as
the ground truth (GT) image using the convolution and sigmoid
activation function to accommodate the inferred high-frequency
information. Finally, the network outputs a monochrome gray-
scale SR image.

Our VDL-SIM network based on lightweight residual U-Net
is more computationally efficient compared to other networks,
such as the generative adversarial network (GAN). Generators
and discriminators in GAN need to compete and co-train with
each other, which makes the training process more complex and
slower to converge[20]. In contrast, U-Net is known for its multi-
scale features and efficient upsampling[14–16], and the residual
network improves the understanding of image structure through
depth and jump-connection mechanisms[13]. The combination of
both thus allows the VDL-SIM network to be easier to train and
converge quickly while maintaining high-quality outputs. We
further simplify the VDL-SIM model by pruning the number
of network channels and present the selection process for prun-
ing channels in Sec. S1 of Supplementary Material to balance
imaging speed and quality. The channel pruning could reduce
the number of weight parameters in the model, thereby signifi-
cantly reducing storage and computational costs. In addition,
pruning the number of channels also helps to remove redundant
and unnecessary information that might be learned during train-
ing, making the VDL-SIM model more compact and robust. As
a result, the lightweight VDL-SIM network could produce high-
quality results with high time-efficiency without the need for
complex adversarial training.

The VDL-SIM network is trained with the Adam opti-
mizer[21], allowing iterative updating of the neural network
weights based on the training data, with the advantage of effi-
cient computability. The objective function of the network is
defined as a combination of mean square error (MSE) and struc-
tural similarity index measure (SSIM) losses[20]. The MSE loss
ensures pixel accuracy, and the SSIM loss enhances the struc-
tural similarity of the output. In each training iteration, the initial
learning rate is set to 0.0001. The network then learns at a
50% decay rate, and the training is terminated until the learning
rate reaches the minimum value of 0.00001. Twenty thousand
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epochs are trained, and the batch size for each round of training
is 2. The network is trained using NVIDIA GeForce RTX
3050Ti GPUs. It is important to note that the storage and
processing space occupied by a training set with too large of
an image size may exceed the memory capacity of the device,
affecting the forward or backward propagation of the network.
In our work, the input image size for training is 128 pixel ×
128 pixel, with a pixel size of 65 nm. Taking the F-actin data
set as an example, 20,000 iterations took about 1 h.

2.2. Video-Level SIM Reconstruction Method

The reconstruction pipeline of VDL-SIM is shown in Fig. 2,
which integrates the three steps of data set processing, network
training, and deploying video-level reconstruction into a unified

process. The network is utilized with C++ hardware acceleration
features[17] to enhance the speed of SR reconstruction and pro-
vide a software interface.

We choose the more complex structure of F-actin in the open-
source BioSR data set[16] as the training data source due to its
high generalizability. The choice of the structure for training the
data set is discussed in detail in Sec. S2 of the Supplementary
Material. Note that in order to improve the reconstruction, we
utilize the rolling ball algorithm[22] to act on the GT images in the
training data set, pairing the background-removed GT images
with their corresponding nine raw SIM images, forming data
pairs. We provide the principle of the rolling ball algorithm,
and our selection process, in Sec. S3 of the Supplementary
Material. After background suppression processing, the infor-
mation in the image is more focused, which allows the network

Fig. 1 Network architecture of VDL-SIM. (a) The architecture of VDL-SIM. It contains four CBs and
four transposed CBs. (b) The composition of a CB. It consists of two convolutional layers and a
dropout layer connected to a convolution branch and then pooled. (c) The composition of a trans-
posed CB. It consists of a transposed convolutional layer, a skip connection, and a CB without
pooling operation.
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to better understand the structural features while reducing the
computational resource requirements. STEP1 in Fig. 2 shows
the process of training data set acquisition. More details of
the processing are given in Sec. S2 of the Supplementary
Material. STEP2 is the network training (Fig. 2, STEP2).
The nine raw SIM images are provided as input, and the output
is compared with the GT images to update the network weights
by calculating the joint loss of pixel accuracy and structural sim-
ilarity. After training convergence, the optimal graph structure
and weight parameters of the network are saved and integrated
with the model to be deployable. In the final reconstruction step,
we load and validate the integrated network, feed a series of nine
raw SIM images into the storage matrix, and utilize GPU to ac-
celerate the network computation to achieve video-level micro-
scopic reconstruction (Fig. 2, STEP3).

The basic software functions include camera timing
control, laser control, sample stage control, and reconstruction
control[23–25]. Users can perform DVL-SIM reconstruction by se-
lecting the excitation light wavelength, entering the exposure
time and laser intensity, pressing the deep learning video-level
reconstruction button, and selecting the appropriate observation
area by controlling the motorized displacement table knob. The
experimental data were mainly acquired using a home-made
high-speed SIM system[17,26] based on electro-optic modulators
(EOMs) and a scanning galvanometer system, with a multicolor
laser serving as the light source. EOMs (Thorlabs, EO-PM-
NR-C4) and scanning galvanometer systems (Cambridge
Technology, 8310 K) are used to generate and change the struc-
tured illumination pattern. The modulated sample information is

recorded as a single-phase image through an objective lens
(Nikon, 100 × ∕NA 1.49) and a digital sCMOS camera
(Hamamatsu, ORCA-Flash4.0 V3). The raw images obtained
have a pixel size of 65 nm.

3. Results and Discussions

3.1. Superior Reconstruction Speed

Speed comparison of video-level SIM reconstruction by VDL-
SIM and existing SIM deep-learning algorithms is shown in
Figs. 3(a) and 3(b). The field-of-view (FOV) selection supports
128 pixel × 128 pixel to 512 pixel × 512 pixel, which can be
adjusted according to user requirements. Three algorithms of
VDL-SIM, DFCAN[20], and ML-SIM[13] are used for the com-
parison. The test graphics card is NVIDIA GeForce RTX
3050Ti GPU and the camera used is Hamamatsu, ORCA-
Flash4.0 V3, with a pixel size of 65 nm. As shown in Fig. 3(a),
the VDL-SIM network improves the speed ranging from 6- to
15-fold over the ML-SIM algorithms. Specifically, compared to
the DFCAN network, the difference becomes even more pro-
nounced under 128 pixel × 128 pixel, where the speed
improvement reaches 33-fold. Our work accelerates deep-
learning SIM SR reconstruction and achieves video-level goals.

Along with improving the reconstruction speed, we analyze
the imaging quality of different deep-learning algorithms.
Taking the reconstructed image of a HiFi algorithm[27] under suf-
ficient laser dose as the GT image, we compared the three
reconstruction metrics: peak signal-to-noise ratio (PNSR),

Fig. 2 VDL-SIM video-level reconstruction method pipeline. (STEP1) Data set processing. The
training data pairs are obtained after performing the background removal on the raw data set with
the rolling ball algorithm. The effect of the rolling ball algorithm on VDL-SIM is given in Sec. S3 of
the Supplementary Material. (STEP2) Network training process. The data are fed to the network
for training, updating the weights until convergence. Afterward, model integration is performed to
generate files containing graph definitions and weight parameters. (STEP3) Software side deploy-
ment of SIM video-level reconstruction. The model is loaded for validation followed by reading in
the fast-captured images to reconstruct.
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structural similarity index (SSIM), and mean squared error
(MSE) of DFCAN, ML-SIM, and VDL-SIM algorithms at dif-
ferent SNRs. As shown in Fig. 3(d), the image fidelity of ML-
SIM reconstruction under the same level of SNR is weak,
evinced by its excessive MSE value, and both PSNR and SSIM
index values are the minimum; especially at the very low SNR
of 4.87, the structural similarity is less than 0.1. On the other
hand, VDL-SIM has the advantage in the three indices; as
shown in Fig. 3(c), the PSNR and SSIM can be maintained at
a better level; also, the MSE is the smallest. VDL-SIM still
maintains the reconstruction effect of about 50%, even at the
4.87 SNR level. Our analysis illustrates that VDL-SIM can still
be robustly reconstructed at deficient light doses, which pro-
vides a new possibility for lower phototoxicity SIM imaging.
We will present the reconstructed images later in Sec. 3.3.
Although VDL-SIM has better reconstruction ability at lower
SNR, we admit that VDL-SIM’s reconstruction ability at high
SNR is not eminently outstanding, and we can expect further
improvement of VDL-SIM’s performance in future work.

3.2. Video-Level SIM Reconstruction

We then use microtubules and F-actin structures to demonstrate
the video-level reconstruction and display capabilities of VDL-
SIM. The excitation light wavelengths of the microtubules and
F-actin are 561 and 640 nm, respectively. Figure 4(a) shows the
video-level reconstructed images of the microtubule samples
under successive lateral positions at the same focus. By contrast,
Fig. 4(b) shows the video-level reconstructed images of the F-
actin samples under successive axial positions at the same lateral
position. As we can see, VDL-SIM can maintain high-fidelity
reconstruction at the focus position as we move the sample po-
sition or the focal plane. For better visualization, we present an
example of video-level reconstruction of microtubule structures
by VDL-SIM in Video 1. Figure 4(c) shows the running VDL-
SIM reconstruction software interface. The right panel supports
offline reconstruction. The left panel supports the parameter set-
ting, including excitation light wavelengths, camera exposure
time, and FOV sizes. The middle panel shows the SR video
stream for SIM video-level reconstruction.

Fig. 3 Comparison of performance for deep-learning SIM SR reconstruction. (a) Comparison
table of reconstruction speeds for three FOVs, with a camera pixel size of 65 nm. (b) A more visual
histogram presentation of the reconstruction speeds in (a). (c) Comparison of the quality of three
metrics of reconstructed images. (d) Data for three metrics: MSE, PNSR, and SSIM.
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In the above two experiments, the exposure time per raw im-
age is set to 15 ms, and the camera used is Hamamatsu, ORCA-
Flash4.0 V3, which can capture images at the maximum speed
of 400 frame/s. Since video-level SIM imaging requires fast im-
age acquisition, reconstruction, and display simultaneously, if
the exposure time is not set properly, it will lead to the presence
of residual images from the previous region. Therefore, when
utilizing VDL-SIM for video-level reconstruction, it is impor-
tant to match the exposure time and reconstruction speed to
avoid the problem of display delay and jamming. Taking the
512 × 512 FOV as an example, the exposure time needs to
be set below 15–20 ms.

3.3. Robust Reconstruction under Low SNR Level

In practical biological applications, which often involve fast im-
aging, it is common practice to set the laser intensity and expo-
sure time at lower levels. This is done to mitigate potential
issues related to photobleaching and phototoxicity, resulting
in captured images with a low SNR. Traditional SIM algorithms
have a high-fidelity SR imaging capability at high SNR condi-
tions, but are prone to introduce artifacts and even fail to recon-
struct at low SNR due to inaccurate parameter estimation.
Benefiting from the robust learning ability of the network
model, VDL-SIM could address the issue and achieve high-
quality video-level reconstruction under low SNR.

To demonstrate the robust reconstruction ability of VDL-
SIM, we compare the reconstructed images and evaluation in-
dices of F-actin structure among VDL-SIM, DFCAN, and ML-
SIM at three SNR levels. In Fig. 5(a) with SNR equal to 24.04,
the structural similarity index of VDL-SIM reaches 78%; how-
ever, DFCAN and ML-SIM are only around 50%, while VDL-
SIM maintains a higher PSNR and the lowest MSE of the three
algorithms. With the decrease of SNR, the ML-SIM image is no
longer able to perform effective SR reconstruction, with more
artifacts, and DFCAN is also unable to distinguish two close

microtubules, whereas VDL-SIM can do the job [Figs. 5(b)
and 5(c)]. In particular, at SNR equal to 16.72, the MSE value
of ML-SIM is about 10 times that of VDL-SIM, while
DFCAN’s SSIM is only half of that.

We demonstrate the advantages of VDL-SIM over the deep-
learning SIM algorithms DFCAN andML-SIM, both in terms of
reconstruction speed (as described in Sec. 3.1) and robust
reconstruction capability. This advantage is also valid for mito-
chondrial structures. Figure 6(a) demonstrates the imaging re-
sults of DFCAN, ML-SIM, and VDL-SIM under the SNR of
the 21.83 conditions. It can be seen that in the magnified image,
ML-SIM has more severe ringing artifacts, and VDL-SIM dis-
tinguishes the middle hollow much more clearly than DFCAN,
which is evident as shown in the lower central value of the nor-
malized intensity of VDL-SIM in Fig. 6(c). More notably, the
advantage of VDL-SIM’s high-fidelity robust reconstruction
ability at low SNR will be even more prominent when compared
with traditional SIM algorithms, as we further illustrate by com-
paring VDL-SIM with the traditional SIM algorithms inverse
matrix-SIM[28] (IM) and high-fidelity SIM[27] (HiFi).

At low laser intensities, the mitochondria under SNR of
21.83, 17.92, and 13.92 conditions were imaged by the conven-
tional SIM algorithms HiFi and IM, respectively. As shown in
Figs. 6(b), 6(e), and 6(f), IM at low SNR tends to reconstruct
the scattered dots, and it is also difficult for HiFi to recognize
the mitochondrial structure, as their normalized intensity shows
an irregular trend in Fig. 6(d). This is caused by the inability of the
conventional algorithm to perform correct parameter estimation
under poorer imaging conditions. However, our VDL-SIM algo-
rithm still recovers the sample details better at the same SNR
level. Additionally, we demonstrate the ability of VDL-SIM to
reconstruct biological structures under extremely low SNR im-
aging conditions (SNR < 10), in Sec. S4 of the Supplementary
Material. In application scenarios of living specimen imaging,
where low SNR imaging conditions are essential for the goal
of maintaining the physiological state, VDL-SIM can serve as

Fig. 4 Video-level SIM reconstruction result presentation of VDL-SIM. (a) Video-level recon-
structed microtubule results at 1, 24, and 47 s under different lateral positions. (b) Video-level
reconstructed F-actin results at 10, 11, and 12 s under different axial positions. The exposure
time of (a) and (b) are set to 15 ms, and the FOV is 512 pixel × 512 pixel. (c) VDL-SIM
reconstruction software interface. Scale bars, 5 μm.
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a complementary technique for such application scenarios to give
the observer a reference of the biological structure.

To further visualize the effect of video-level VDL-SIM
reconstruction, we provide a comparison video for wide-field
(WF), HiFi, and VDL-SIM reconstruction under low SNR con-
ditions. Quantitative analysis for the imaging performance of the
video frames was also done. See Video 2 and Fig. S5 of the
SupplementaryMaterial. TheVDL-SIMalgorithmenables robust
reconstruction at low SNR, provides a new technique that can be
applied under challenging imaging conditions, fulfills the blank of
traditional SIM algorithms in this application area, and offers the
possibility of further reducing the phototoxicity of SIM imaging.

3.4. Living Specimen Imaging by VDL-SIM

Next, we demonstrate the VDL-SIM’s living specimen imaging
task. The endoplasmic reticulum (ER) is responsible for the
transportation of substances in and out of the cell, linking
the nucleus with the cytoplasm, which is a major cellular struc-
ture. Microtubules are essential for maintaining cellular mor-
phology and participating in the transportation of cellular
materials. Some existing SR imaging techniques require SR
reconstruction by high light intensity and long exposure time,
which are prone to phototoxicity in living cells. In this work,
we applied the video-level imaging technique of VDL-SIM

Fig. 5 Comparison of VDL-SIM algorithm with DFCAN and ML-SIM algorithms for imaging F-actin
structures under three SNR conditions. (a) Reconstruction images and evaluation metrics com-
parison of three deep-learning algorithms under an excitation wavelength of 640 nm and SNR of
24.04 imaging conditions. (b) and (c) with SNRs of 21.29 and 16.72, respectively; the rest of the
imaging conditions are the same as that in (a). The GT images referenced for the metrics calcu-
lation are provided by the HiFi algorithm with sufficient laser dose. Scale bars, 2 μm (larger
image) and 1 μm (boxed magnified image).
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to characterize the dynamics of microtubules and ER, with the
exposure time of 20 ms for a single image.

As shown in Fig. 7, the ER membrane stretches and
coalesces over time during a sustained imaging time of 1.62 s.
Similarly, two parallel microtubules are clearly observed to be
stretched apart by VDL-SIM. VDL-SIM is capable of capturing
even fleeting and subtle biological processes, confirming the us-
ability of VDL-SIM in practical experiments.

4. Conclusion and Outlook
We demonstrate and validate VDL-SIM, a video-level high-
fidelity SIM SR reconstruction method based on a deep-learning
neural network. The method designs a clever network structure
that synergizes two architectures, U-Net and residual network,
which enables VDL-SIM to have better information capturing
and deep understanding training capabilities. Meanwhile, under
the principle of a trade-off between reconstruction performance
and speed, our work utilizes the method of pruning the number
of network channels to speed up the imaging speed. To improve
the VDL-SIM reconstruction effect under challenging imaging
conditions, we utilize the rolling ball algorithm to preprocess the

data set in advance. Interweaving network construction and soft-
ware deployment[29] into a unified process, we finally achieve
video-level high-fidelity deep-learning SIM reconstruction with
47 frame/s (256 × 256 FOV). The high-fidelity advantage of
VDL-SIM reconstruction is obvious. We compare the recon-
structed images from DFCAN and ML-SIM in deep-learning
algorithms with that of VDL-SIM. Our work achieves faster
reconstruction speed and better quality reconstruction indices.
The advantage is even more significant at low SNR experimen-
tal conditions, when traditional HiFi and IM algorithms have
difficulty in correctly performing parameter estimation, but
VDL-SIM is still able to achieve robust SR reconstruction.
Our proposed VDL-SIM algorithm can overcome the tough
photobleaching and phototoxicity imaging conditions, filling
the blank of traditional SIM algorithms in low SNR applica-
tions, and providing a powerful tool to further reduce the photo-
toxicity of SIM imaging for application to the observation of
living samples and SR biological research. However, it must
be admitted that there is still potential to improve the resolution
of VDL-SIM, which is not outstanding at high SNR and suffers
from missing information at extremely low SNRs. As well,
how to solve the credibility problem of deep learning in

Fig. 6 Comparison of SIM SR reconstruction of mitochondrial structures at low SNR levels.
(a) Imaging comparison of VDL-SIM with deep-learning DFCAN and ML-SIM algorithms under
conditions with SNR of 21.83. The excitation wavelength is 488 nm. (b) The WF image and
the conventional SIM algorithm HiFi and IM imaging results are shown under the same imaging
conditions as that in (a). (c) Comparison of VDL-SIM, DFCAN, and ML-SIM normalized intensity
profiles of the central hollow in the boxed magnified images. (d) Comparison of VDL-SIM, HiFi, and
IM normalized intensity profiles of the central hollow in the box magnified images. (e) and
(f) Comparison of the effect of VDL-SIM, HiFi, and IM algorithms to reconstruct mitochondria
at SNRs of 17.92 and 13.92, respectively. Scale bars, 2 μm (large images) and 1 μm (boxed mag-
nified images).
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applications will be a persistent problem. These issues may sub-
sequently be further relieved by combining mathematical prior
knowledge, such as sparse constraints[30,31] and physical imaging
models[10,32,33].
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