
Vol.:(0123456789)

1 3

  e-ISSN 2150-5551
      CN 31-2103/TB

ARTICLE

Cite as
Nano-Micro Lett. 
(2023) 15:237

Received: 16 July 2023 
Accepted: 6 September 2023 
Published online: 26 October 2023 
© The Author(s) 2023

https://doi.org/10.1007/s40820-023-01206-2

Hetero Nucleus Growth Stabilizing Zinc Anode 
for High‑Biosecurity Zinc‑Ion Batteries
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HIGHLIGHTS

• Animal models are applied to evaluate the biosecurity and biocompatibility of the zinc-ion batteries with the electrolytes of different 
zinc salts.

• Leakage scene simulations and histological analysis are employed in investigating the tissue response after battery implantations, in 
which  ZnSO4 exhibits higher biosecurity.

• Sn hetero nucleus is introduced to stabilize the zinc anode, which not only facilitates the planar zinc deposition, but also contributes 
to higher hydrogen evolution overpotential.

ABSTRACT Biocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implanta-
ble devices, raising higher require-
ments on the battery biocompat-
ibility, high safety, low cost, and 
excellent electrochemical perfor-
mance, which become the evalu-
ation criteria toward developing 
feasible biocompatible batteries. 
Herein, through conducting the 
battery implantation tests and 
leakage scene simulations on New 
Zealand rabbits, zinc sulfate elec-
trolyte is proved to exhibit higher 
biosecurity and turns out to be one 
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of the ideal zinc salts for biocompatible zinc-ion batteries (ZIBs). Furthermore, in order to mitigate the notorious dendrite growth and 
hydrogen evolution in mildly acidic electrolyte as well as improve their operating stability, Sn hetero nucleus is introduced to stabilize the 
zinc anode, which not only facilitates the planar zinc deposition, but also contributes to higher hydrogen evolution overpotential. Finally, 
a long lifetime of 1500 h for the symmetrical cell, the specific capacity of 150 mAh  g−1 under 0.5 A  g−1 for the Zn–MnO2 battery and 212 
mAh  g−1 under 5 A  g−1 for the Zn—NH4V4O10 battery are obtained. This work may provide unique perspectives on biocompatible ZIBs 
toward the biosecurity of their cell components.

KEYWORDS Aqueous zinc-ion batteries; Biocompatible devices; Operating stability; Zinc anode; Zinc salts electrolyte

1 Introduction

Thanks to the rapid development of advanced techniques 
and theories, biocompatible devices are applied in various 
aspects of human lives in these years, of which the biocom-
patibility is significant when evaluating their feasibility [1, 
2]. Biocompatible devices generally include wearable and 
implantable electronics, depending on their operating envi-
ronments [3]. Wearable electronics refer to the electronic 
devices that can be worn or pasted on the body, which are 
involved in many aspects of cutting‐edge research in the 
fields of smartwatches, fitness trackers, smart clothing 
sensors, and Internet of Things [4–7]. With the increasing 
demand for wearable electronics, biocompatible and reli-
able power source with eco-friendly, low-cost, and multi-
functional characteristics are imperative to be constructed 
[8, 9]. Implantable devices are of great potential in medical 
fields, including cardiac pacemakers, cardioverter-defibril-
lator, total artificial hearts, implantable nerve stimulators, 
cochlear implants, implantable bone growth stimulators, and 
implantable drug pumps [10, 11]. Limited by the incommod-
ity of surgical removal, the long-term availability is vital for 
most biocompatible devices, thus delivering higher demands 
on the biocompatible batteries, which provide the required 
energy for the whole device [12, 13]. Among the required 
properties of wearable and implantable batteries, biocompat-
ibility should be preferentially considered, including operat-
ing stability and biosecurity.

Basically, aqueous energy storage techniques exhibit tre-
mendous advantages for powering these electronics [14–16]. 
Among them, zinc-ion batteries (ZIBs) have attracted much 
attentions in relevant energy storage field due to their excel-
lent stability and low cost [17–20]. Based on the aqueous 
electrolyte, ZIBs have been selected as the candidates for 
powering biocompatible electronics [3, 21, 22]. On the one 
hand, substantial efforts have been made on biocompatible 

ZIBs and their operating stability because of their high 
safety, intrinsic inertness, and compatibility with hydrogel 
electrolytes [23–26]. Relevant research leads to gratifying 
results, as various battery configurations have been imple-
mented, including cable type [27], planar type [28], stack 
type [29], etc. On the other hand, high biosecurity ZIBs are 
especially potential prospect, as zinc is a naturally occurring 
element in the body and is essential for proper functioning 
[30]. Unfortunately, there are still few reports investigating 
the biosecurity of ZIBs, not to mention the corresponding 
experimental validation [31, 32]. Therefore, more efforts 
should be focused on the biosecurity of biocompatible ZIBs, 
while their long-term operating stability should be promised 
as well [33].

Herein, through conducting the battery implantation 
tests and leakage scene simulations on New Zealand rabbits 
(Fig. 1a), aqueous zinc salt electrolytes are proved to exhibit 
higher biosecurity than organic lithium salt electrolyte. 
Importantly,  ZnSO4 turns to be one of the ideal zinc salts for 
biocompatible ZIBs, which are based on the cathodic inser-
tion/extraction and anodic plating/stripping (Fig. 1b). Except 
for high biosecurity, operating stability is also significant for 
biocompatible ZIBs. Thus, in order to mitigate the notori-
ous dendrite growth and hydrogen evolution in mildly acidic 
electrolyte [34, 35], which may induce battery inflation and 
short circuit [36], Sn hetero nucleus is introduced to modify 
the zinc foil surface. This Sn@Zn anode not only facilitates 
the planar zinc deposition, but also be endowed with higher 
hydrogen evolution overpotential (Fig. 1c), leading to much 
lower polarization voltage gap and longer lifetime in sym-
metrical cells. Coupled with  MnO2 and  NH4V4O10 cathode 
materials, the batteries exhibit high specific capacities of 
150 mAh  g−1 under 0.5 A  g−1 (300 cycles) and 212 mAh 
 g−1 under 5 A  g−1 (1000 cycles), respectively, presenting 
desirable electrochemical performance.
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2  Experimental Section

2.1  Materials

All the reagents are of analytical purity and used as received 
without further purification. Zinc sulfate heptahydrate 
 (ZnSO4·7H2O, ≧ 99%), stannous sulfate  (SnSO4, ≧ 98%), 
manganese sulfate  (MnSO4, ≧ 99%), zinc acetate tetrahy-
drate (Zn(CH3COO)2·4H2O, ≧ 99%), zinc trifluoromethane-
sulfonate (Zn(CF3SO3)2, ≧ 99%), and lithium hexafluoro-
phosphate  (LiPF6/EC, 5%) are used.

2.2  Synthesis of the Materials

2.2.1  Construction of Sn@Zn Foil

About 0.01 M  SnSO4 solution is obtained by dissolving 
 SnSO4 into deionized water and string for 30 min. Bare Zn 
foil is cut into needed circular sheets (15-mm diameter) and 
immersed in 0.01 M  SnSO4 solution for 1 min. The obtained 
Sn@Zn foil is washed with deionized water for several times 
and dried at 80 °C in air for 12 h.

2.2.2  Synthesis of CNT@MnO2

About 1.5-g multiwalled carbon nanotubes (CNTs, Shen-
zhen Nanotech Port Co., Ltd.) was ultrasonically treated 
for 1 h in 50-mL nitric acid  (HNO3, 68 wt%, Aladdin). 
The resulting suspension was heated at 120 °C for 12 
h in a Teflon-lined autoclave. After thoroughly washed 
with deionized water, the  HNO3-treated CNTs (0.25 
g) were dispersed in 20 mL of aqueous solution of 
Mn(CH3COO)2·4H2O (1.69 g) with a 0.5-h ultrasonic 
treatment. Subsequently, the obtained solution was mixed 
with 80 mL of  KMnO4 (0.727 g) aqueous solution and 
stirred for 0.5 h at room temperature. The resulting solu-
tion was then heated at 80 °C for 6 h under stirring. 
Finally, the obtained dark brown precipitate (denoted as 
CNT@MnO2) was washed several times by deionized 
water and dried at 80 °C in air for 12 h.

2.3  Characterization Methods

2.3.1  Materials Characterizations

The X-ray diffraction (XRD) analysis was conducted by a 
Rigaku Mini Flex 600 diffractometer using Cu Kα radia-
tion (λ = 1.5418). The scanning electron microscopy (SEM) 

Fig. 1  An overview of the relevant related works. a Implantable batteries and the experimental animal models. b Working mechanism of the 
Zn–MnO2 batteries. c Schematics of introducing the Sn hetero nucleus and its effects on mitigating dendrite growth and hydrogen evolution 
reaction
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images with corresponding energy-dispersive X-ray spec-
trometer (EDS) mappings were collected on a FESEM 
(FEI Nova NanoSEM 230, 10 kV). The crystallographic 
structures of the samples were identified using high-res-
olution transmission electron microscopy (HRTEM, Tec-
nai G2 F20). The XPS measurements were conducted by a 
ESCALAB 250 Xi X-ray photoelectron spectrometer. The 
content ratios of elements were investigated by inductively 
coupled plasma optical emission spectrometry (ICP-OES, 
Spectro Blue Sop).

2.3.2  Electrochemical Measurements

The potentiostatic charge–galvanostatic discharge per-
formances were recorded using LAND battery cycler 
(CT2001A) at room temperature, in which the cells were 
charged and discharged at different current densities between 
0.1 and 1 A  g−1 the voltage region of 0.8 ~ 1.8 V. The cyclic 
voltammetry (CV) was tested on CHI660E at 0.1 mV  s−1 
from 0.8 ~ 1.8 V vs.  Zn2+/Zn. Liner sweep voltammetry 
(LSV) was tested at 5 mV  s−1.

2.3.3  Simulation of the Electric Field Contribution

A simplified 2D/3D electrodeposition model based on 
COMSOL Multiphysics software was established to com-
pare the proportional schematics of electric field distribution 
and current density. The ionic conductivity of electrolyte 
was set as 5.0 S  m−1.

2.4  Animal Experiments

2.4.1  Animal Experiment

Animals were maintained in accordance with animal care 
guidelines established by the Laboratory Animal Ethics 
Committee of the Department of Laboratory Animals (CSU-
2022-0122). Four months of age and weighing 2.5–3.0-kg 
male New Zealand white rabbits (n = 5, each group) were 
used in the current study. In brief, all operations were per-
formed under general anesthesia with 30 mg  kg−1 pentobar-
bital sodium. The batteries are employed in this work after 
punching with 1-mm diameter.

2.4.2  Assess Battery‑Related Injuries

Rabbits were shaved under general anesthesia. We choose 
an abdominal “T-type” incision to exposure the entire stom-
ach, a median abdominal incision to exposure the colon, 
and a hind thigh incision to exposure the skeletal muscle. 
The cathode side of the battery was placed on the mucosal 
surface or the muscle surface for 6 h. Lifting the batteries to 
expose the tissue and photographed every 2 h, then return-
ing it to its original place. Tissues were collected after 6 h 
and then stored in 10% formalin. The hematoxylin and eosin 
(HE) staining was performed to assess the injury degree.

2.4.3  Battery Implantation into Rabbits

Rabbits were shaved under general anesthesia. The battery 
was implanted into the subcutaneous space through a 2-cm 
incision. After implantation, the incisions were closed using 
4–0 silk suture. After 60 days of implantation, the implants 
and the surrounding implant capsules were extracted. The 
inflammatory response and compatibility of the implants 
were assessed by the HE staining and Masson’s trichrome 
(M and T) staining. The thickness of implant capsules and 
the collagen density was evaluated by ImageJ.

3  Results and Discussion

Generally, battery biocompatibility research includes the 
investigations on the operating stability and biosecurity 
when considering the battery applications in wearable and 
implantable devices [37]. Biocompatible ZIBs are known to 
apply flexible configurations to keep operating stability in 
some cases while their biosecurity is promised with high-
safety components, including cathode, anode, electrolyte, 
and separator materials [32]. For ZIBs, most of the compo-
nents are of great stability and safety [38]; thus, the battery 
biosecurity is mainly determined by the aqueous electro-
lytes, especially the zinc salts therein. Aqueous ZIBs based 
on different electrolytes are tested on the living rabbit mod-
els to determine the histocompatibility, while the Li-ion bat-
teries are used as controls. The initial visible changes start to 
occur on the sample with Li-ion battery in 2 h. Gas bubbles 
with circular and brown discoloration around the contact 
surfaces of the Li-ion battery are observed in colon wall 
(Fig. 2a), gastric wall (Fig. S1), and skeletal muscle of hind 



Nano-Micro Lett. (2023) 15:237 Page 5 of 12 237

1 3

limb (Fig. S2). After 6 h, there is significant blackening and 
burning in the gastric mucosa, colonic mucosa, and muscle 
surface around the Li-ion battery. There is little progression 
in the visible changes observed for the Zn(CF3SO3)2 and 
Zn(CH3COO)2 batteries and less so for the  ZnSO4 batteries. 
The hematoxylin and eosin (HE) staining technique is exten-
sively used to display the general morphological and struc-
tural characteristics of various tissues or cell components 
and lesions. Here, HE-stained sections present significantly 
greater depths of necrotic tissue in the control than in these 
three ZIBs groups (Fig. 2b), among which  ZnSO4 exhibits 
the minimal destruction.

Additionally, coin cells based on different electrolytes are 
implanted in the dorsal subcutaneous region of rabbits for 60 
days (Fig. S3a). After 2 weeks, the region with Li-ion battery 
implanted develops a sore that hardly heals, and the purulent 
drainage draining from the wound is observed (Fig. S3b). 
We evaluate the tissues surrounding three ZIBs after the 
implantation and find that the tissues surrounding implanted 
region are mild swelling after 1 week, and full recovery cov-
ering with fur from implanting operation is achieved within 
30 days (Fig. S4). After 60 days of implantation, the HE-
stained sections show that the structure of the implanta-
tion regional skin turns to be normal without inflammatory 
cell infiltration among Zn(CF3SO3)2, Zn(CH3COO)2, and 
 ZnSO4 batteries (Fig. S5). These three ZIBs are surrounded 
by the thin implant capsules of few inflammatory cells and 
collagen (Fig. 3a), exhibiting the thickness of 336 μm for 

Zn(CH3COO)2, 306 μm for Zn(CF3SO3)2, and 157 μm for 
 ZnSO4 (Fig. 3b). The collagen encapsulation of  ZnSO4 bat-
teries is significantly thinner than that of Zn(CF3SO3)2 and 
Zn(CH3COO)2 batteries, which implies that  ZnSO4 exhibits 
superior biosecurity than Zn(CF3SO3)2 and Zn(CH3COO)2, 
regarding compatibility to the host. One of the staining 
methods used to display fibers and inflammatory factors in 
tissues. Masson’s trichrome (M and T) is one of the stain-
ing methods used to display fibers and inflammatory factors 
in tissues. Figure 3c presents the HE staining and M and 
T staining images of the collagen encapsulation of batter-
ies based on  ZnSO4, Zn(CH3COO)2, and Zn(CF3SO3)2, of 
which the collagen density at the interface is 6.86%, 13.76%, 
and 52.42%, respectively. These findings imply that  ZnSO4 
is superior to Zn(CF3SO3)2 and Zn(CH3COO)2 batteries 
when regarding the electrolyte biocompatibility for ZIBs.

Although  ZnSO4 is proved to be of high biosecurity, 
the safety issues during battery operating should also be 
considered. Battery inflation and short circuit induced by 
notorious dendrite growth and hydrogen evolution in mildly 
acidic  ZnSO4 electrolyte are threatening the development 
of biocompatible ZIBs [39]. To mitigate these anode issues, 
we introduce the Sn hetero nucleus on the anode zinc foil, 
which is obtained by simply immersing a zinc foil in the 
solution of 0.01 M  SnSO4 for 1 min. As shown in the XRD 
spectra (Fig. 4a), relatively weak signals of Sn are detected 
on the Sn@Zn foil, indicating the existence of Sn element 
in minute amounts (Fig. 4b). Furthermore, the morphology 

Fig. 2  a Leakage scene simulation tests on the colon mucosa and b the corresponding HE staining results
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of Sn@Zn foil is presented in the SEM images in Fig. 4c, 
which proves that constructing the heterogenous layer causes 
neglectable changes to the zinc foil. It is worth noting that 
the heterogenous layer is formed as the nanoscale Sn par-
ticles generated on the zinc foil (Fig. 4d), which allows the 
efficient Zn plating/stripping through the interspace. Similar 
results have been obtained by conducting the depth-depend-
ent XPS spectra of Sn@Zn foil with the etching rate of 6 nm 
 s−1. As shown in Fig. 4e, the Zn 2p signals become stronger 
in deeper positions, while the opposite situation is observed 
in Sn 3p signals (Fig. S6). The structure models explaining 
 Zn2+ adsorption on different Zn planes and Sn planes are 
shown in Fig. 4f. The calculated adsorption energy of  Zn2+ 
on Zn (100) and Zn (002) is − 2.15 and − 0.36 eV, which 
are much higher than − 9.21 and − 3.57 eV on Sn (100) and 
Sn (101), indicating that  Zn2+ is preferentially adsorbed on 
Sn surface.

To investigate the Zn electrochemical behaviors on the 
Sn@Zn foil, the Zn deposition process is firstly visualized 
under the optical microscopy observation (Fig. 5a). In the 
electrolyte of 2 M  ZnSO4, obvious Zn deposition occurs on 

both the Zn foil and Sn@Zn foil in 40 min, of which the 
former turns to be uneven while Zn is uniformly deposited 
on the Sn@Zn foil. To further study the Zn plating/stripping 
process, SEM images of the foils after cycling for 100 h have 
been captured (Fig. 5b). The morphology of Zn foil presents 
to be disordered with pits and piles, indicating the uneven 
deposition process and the risk of dendrite growth. The 
morphology of Sn@Zn foil after cycling is much smoother 
without obvious deficiency, which should be attributed to the 
facilitated planar Zn deposition by the hetero nucleus growth 
[40], as supported by the EIS spectra of symmetrical cells 
(Fig. S7). The finite element simulation results presented 
in Fig. 5c indicate that the uneven morphology of Zn foil 
will lead to uneven electrical field distribution and exagger-
ated dendrite growth, while the Sn nucleus contributes to the 
smooth deposition by increasing the local current density 
in the interspace. Except for regulating the Zn deposition 
process, this heterogenous layer also contributes to anode 
protection with the higher hydrogen evolution overpotential 
of Sn particles. As shown in Fig. S8a, the LSV curves with 
the scanning rate of 5 mV  s−1 indicate severer hydrogen 

Fig. 3  a Optical images of the implant capsules of three ZIBs. b Thickness of the implant capsules and the corresponding quantified data of 
collagen density of the batteries–tissue interface. c HE staining and M and T staining results of the collagen encapsulation 2 months after the Zn-
based battery implantations. Muscle fibers (red), collagen fibers (green–blue), and nuclei (dark purple). (Color figure online)



Nano-Micro Lett. (2023) 15:237 Page 7 of 12 237

1 3

evolution on bare Zn foil (Fig. S8b), while the larger corro-
sion current density (4.6 mA  cm−2 compared with 1.284 mA 
 cm−2 for Sn@Zn foil) delivers the same results. Based on the 
above merits of introducing Sn nucleus, the symmetrical cell 
based on Sn@Zn foil exhibits much lower polarization volt-
age gap (Fig. S9) under different current densities (from 1 to 
10 mA  cm−2) and better stability during the rate capability 
tests (Fig. 5d). Thanks to the regulated Zn deposition (Fig. 
S10), the symmetrical cell based on Sn@Zn foil achieves 
the long lifetime of 1500 h under the cycling protocols of 1 
mA  cm−2 and 1 mAh  cm−2 (Fig. 5e), which indicates much 
better stability than bare Zn foil (Fig. S11).

To explore the electrochemical capability of full ZIBs, 
CNT@MnO2 is coupled with Sn@Zn and bare Zn foil, 
respectively. As shown in the XRD spectra (Fig. 6a), dif-
fractions peaks of the synthesized  MnO2 are indexed to 
PDF#53-0633 [41], of which the crystal structure remains 
unchanged after compositing with the highly conductive 
CNT powders. Meanwhile, Mn 3s and C 1s XPS spectra 
present supportive results. As shown in Fig. 6b, the sepa-
ration energy of 4.7 eV in Mn 3s spectra proves the + 4 
valence in synthesized  MnO2, while the signals of C–O and 
C=O in C 1s should be attributed to the hydrophilic treat-
ment to CNT [42]. Based on this CNT@MnO2 cathode, CV 

Fig. 4  Morphological and structural investigations on the heterogenous layer. a XRD spectra of bare zinc and Sn@Zn foil. b Schematics of the 
crystal structures of Sn, Zn, and Sn@Zn. c SEM images of bare zinc and Sn@Zn foil. d Elemental mapping results of Sn@Zn foil. e Depth-
dependent Zn 2p XPS spectra of Sn@Zn foil. f Calculated models of  Zn2+ adsorbed on Zn (100), Zn (100), Sn (100), and Sn (101)
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curves are collected as presented in Fig. 6c, which indicate 
that introducing Sn nucleus causes no side reactions to the 
Zn–MnO2 battery system. Subsequently, the rate capability 
of Zn–MnO2 batteries based on different anodes has been 
tested under varying current densities (from 0.1 to 1 A  g−1), 
of which the corresponding charge–discharge profiles are 
collected. As shown in Fig. 6d, the battery based on Sn@Zn 
anode exhibits higher specific capacity (280 mAh  g−1 under 

0.1 A  g−1) especially under large current density, indicat-
ing better rate capability (Fig. 6e). These results should be 
attributed to the facilitated Zn deposition on Sn@Zn foil, as 
supported by the EIS spectra of Zn–MnO2 batteries based 
on different anodes (Fig. 6f). Ultimately, owing to the supe-
riority of Sn@Zn anode, the Sn@Zn-CNT@MnO2 battery 
achieves the prolonged lifetime for 300 cycles under 0.5 A 
 g−1 (Fig. 6g), presenting higher capacity retention and better 

Fig. 5  Zn plating/stripping process on the Sn@Zn foil. a In situ optical microscopy observation of the zinc deposition process on bare Zn and 
Sn@Zn foil. b SEM images of bare Zn and Sn@Zn foil after cycling for 100 h. c Finite element simulation results of zinc deposition process on 
bare Zn and Sn@Zn foil. Herein, the blocks are representing the disordered pits and piles for bare Zn foil, and the semicircles indicate the het-
ero Sn nucleus. d Rate capability tests of the symmetrical cells based on bare Zn and Sn@Zn foil. e Long cycling tests of the symmetrical cells 
based on bare Zn and Sn@Zn foil
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cycling stability than the battery based on bare Zn anode. 
 NH4V4O10 (NVO) is also applied as the cathode materials, 
of which the XRD spectra and SEM images are presented in 
Figs. 6h and S12. As shown in Fig. 6i, the Zn-NVO batteries 
based on Sn@Zn anode present higher specific capacity and 

capacity retention after 500 cycles. Therefore, a stabler life-
time of 1000 cycles (212 mAh  g−1) under 5 A  g−1 is obtained 
with neglectable capacity degradation.

Fig. 6  Electrochemical performance of Zn–MnO2 batteries based on the Sn@Zn foil. a XRD spectra of the synthesized  MnO2 and CNT@
MnO2. b Mn 3s and C 1s XPS spectra of the synthesized CNT@MnO2. c CV curves of the Zn–MnO2 batteries based on bare Zn and Sn@Zn 
foil. d Rate capability tests of the Zn–MnO2 batteries based on bare Zn and Sn@Zn foil and e the corresponding charge–discharge profiles. f Fit-
ted EIS spectra and g long cycling performance of the Zn–MnO2 batteries based on bare Zn and Sn@Zn foil. h XRD spectra of the synthesized 
NVO. i The corresponding cycling performance of Zn-NVO batteries based on bare Zn and Sn@Zn foil
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4  Conclusions

In this paper, we devolep three ZIBs that have the excellent 
stability with high biosecurity, especially  ZnSO4. No obvi-
ous tissue damage occurs within 6 h after exposure to these 
ZIBs; however, significant damage occurs in as little as 2 
h after exposure to Li-ion batteries. The in vivo implan-
tation experiments demonstrated that these three ZIBs are 
non-toxic, non-allergenic, and not elicit excessive tissue and 
immune responses. The ZIBs implants are resistant to cor-
rosion when exposed to bodily fluids. The above-mentioned 
characteristics are necessary for chronic implantation. Fur-
thermore, Sn hetero nucleus has been introduced on the 
zinc foil surface, facilitating zinc deposition and mitigat-
ing hydrogen evolution, thus stabilizing Zn anode during 
cycling. As a result, the Sn@Zn symmetrical cells achieve 
a long lifetime of 1500 h. When coupled with the CNT@
MnO2 cathode, the battery exhibits the specific capacities of 
280 mAh  g−1 under 0.1 A  g−1. The Sn@Zn-NVO batteries 
exhibit a long lifetime of 1000 cycles (212 mAh  g−1) under 
5 A  g−1. This work provides a novel view from evaluating 
the biosecurity of electrolyte toward biocompatible ZIBs. 
Except for the above results, relevant battery components 
may also be considered for their biosecurity and operating 
stability in the future, including exploiting high-safety pack-
age materials, stable Zn anode, and rational design of hydro-
gel electrolyte matrix, etc.
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