全流态工况下绕丝棒束内的摩擦压降 模型研究

周涛涛^{1,2} 刘书勇¹ 郁 杰^{1,2} 1(中国科学院合肥物质科学研究院核能安全技术研究所 合肥 230031) 2(中国科学技术大学 合肥 230026)

摘要 为准确预测液态铅铋在燃料组件棒束内截面的摩擦压降特性,需选取合适的摩擦压降模型。针对8种不同的绕丝棒束内摩擦压降模型,采用统计分析的方式评估模型的适用性,研究不同模型在不同流态范围内实验数据的预测准确性。分析结果表明:摩擦系数不仅与棒束数量(Nr)和节径比(P/D)有关,还与螺径比(H/D)有关;在层流范围内BBDD模型和本文模型与实验数据较为吻合;在过渡流范围内BBDD模型、CTD模型和本文模型与实验数据较为吻合;在过渡流范围内BBDD模型、CTD模型和本文模型与实验数据较为吻合;在湍流范围内Rehme模型、UCTD模型和本文模型与实验数据较为吻合。因此,本文提出的模型适用于全流态的燃料组件棒束内截面的摩擦压降预测。

关键词 全流态,绕丝棒束,截面摩擦系数 中图分类号 TL33

DOI: 10.11889/j.0253-3219.2023.hjs.46.060604

Friction pressure drop model for wire-wrapped rod bundles in full flow

ZHOU Taotao^{1,2} LIU Shuyong¹ YU Jie^{1,2}

1(Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China) 2(University of Science and Technology of China, Hefei 230026, China)

Abstract [Background] In order to accurately predict the friction pressure drop characteristics of liquid lead bismuth in the cross-section of the fuel assembly rod bundle, a suitable friction pressure drop model should be selected.[Purpose] This study aims to investigate Friction pressure drop model for wire-wrapped rod bundles in full flow. [Methods] Eight different frictional pressure drop models within wire-wrapped rod bundles were evaluated their applicability by using statistical analysis. The prediction accuracy of experimental data from different models in different flow regimes was explored corresponding to laminar flow, transitional flow, and turbulence. [Results] The analysis results show that the friction coefficient is not only related to the number of rod bundles (Nr) and the pitch-to-diameter ratio (P/D), but also related to the wire lead length-to-diameter ratio (H/D). The modified BDD model in the laminar flow range and this work model are more consistent with the experimental data in the transition flow range. The Rehme model, the UCTD model and this work model in the turbulent range are more consistent with the

中国科学院合肥物质科学研究院"十三五"规划重点支持项目(No.KP-2019-11)资助

第一作者:周涛涛,男,1997年出生,2020年毕业于北京科技大学,研究领域为先进反应堆热工水力学

通信作者: 刘书勇, E-mail: shuyong.liu@inest.cas.cn

收稿日期: 2022-09-07, 修回日期: 2023-02-01

Supported by Key Supporting Program of "13th Five-Year Plan" of Hefei Institutes of Physical Science, Chinese Academy of Sciences (No.KP-2019-11)

First author: ZHOU Taotao, male, born in 1997, graduated from University of Science and Technology Beijing in 2020, focusing on advanced reactor thermal hydraulics research

Corresponding author: LIU Shuyong, E-mail: shuyong.liu@inest.cas.cn

Received date: 2022-09-07, revised date: 2023-02-01

experimental data. **[Conclusions]** Therefore, the model presented in this study is suitable for predicting friction pressure drop in the cross-section of the fuel assembly bundle in the full flow state.

Key words Full flow, Wire-wrapped rod, Cross-section friction coefficient

小型模块化铅冷快堆采用液态金属铅或液态铅 铋合金作为冷却剂,具备核燃料增殖以及应用场景 灵活等优势。国际上的快堆燃料组件大多采用绕丝 定位的方式,使得燃料棒布置得更加紧凑,减小机械 振动的同时可加强子通道间的湍流交混,展平温度 峰值,但绕丝的存在会增大燃料组件的压降。准确 预测燃料组件棒束段的压降对于燃料芯块与包壳的 安全运行限值设计至关重要。摩擦系数是计算摩擦 压降的关键参数,因此评估现有摩擦压降模型的适 用性并开发新的摩擦压降模型具有十分重要的 意义。

世界各国对燃料组件棒束段进行了大量以水为 冷却剂和少量以铅铋合金为冷却剂的摩擦压降实验 研究,并提出一系列用来预测带绕丝棒束组件截面 摩擦系数的模型。在适用流态方面,Novendstern^[1] 和Rehme^[2]根据各自的实验数据库总结出适用于过 渡流和湍流的摩擦压降模型。Rehme^[2]的研究表 明,摩擦系数会随棒束数量而变化,用截面总湿周长 与截面棒束和绕丝周长的比值来引入棒束数量的影 响,由于实验数据包含的棒束数量范围较小,导致其 预测范围有限;Novendstern¹¹未能将棒束数量作为 一个自变量引入模型中,当棒束数量变化范围很大 时,将无法准确预测摩擦系数。在流态划分方面, Engel等^[3]和Baxi等^[4]分别提出适用于全流态的摩 擦压降模型,摩擦压降模型的预测值与各自的实验 数据较吻合。由于两者各自的实验数据有限,导致 其流态划分没有明显的规律,同时两者的摩擦压降 模型都未提及棒束数量对摩擦系数的影响从而导致 其适用范围有限;Bublis等^[5]学者根据已有的实验数 据库对Baxi等^[4]进行修正(以下简称BBDD),使得 模型在有限范围预测准确性更高,但同样没有解决 流态划分及棒束数量表征的问题。在表征棒束数量 的影响方面, Cheng等^[6]提出的摩擦压降模型(以下 简称CTS和CTD)适用于全流态,CTS和CTD模型 基于大量实验数据来确定流态划分的界限,但两个 摩擦压降模型都未正确表征棒束数量的影响,导致 其无法准确预测现有的实验数据;Chen等^[7]增加一 个经验常数来更正模型从过渡流转变为湍流这个区 间错误的预测结果,但同样未正确表征棒束数量的 影响; Chen 等^[8]对 CTD 进行第二次修正, 修正后的 模型(以下简称UCTD)可以反映棒束数量的趋势, 能够较好地预测其数据库的实验数据,但是能否准 确预测近几年所发布新的实验数据还有待验证。

基于现有模型存在诸如无法正确表征棒束数量 的影响、适用流态范围有限等问题,本文将归纳整理 常用带绕丝棒束组件的摩擦压降模型,同时提出一 个新的摩擦压降模型,对比各模型的适用性,为棒束 截面摩擦系数的评估提供参考。

1 绕丝棒束的水力模型

带绕丝棒束组件结构如图1所示,将组件通道 划分为中心子通道、边子通道和角子通道。带绕丝 棒束组件的几何结构复杂,组件内冷却剂的流动状 态比光滑圆管内更加复杂,因此流动的临界雷诺数 大小与光滑圆管内是不同的。将全流态划分为层 流、过渡流和湍流,层流与过渡流的临界雷诺数记为 *Re*_L,过渡流与湍流的临界雷诺数记为*Re*_T。*Re*<*Re*_L, 流动为层流,*Re*_L<*Re*<*Re*_T,流动为过渡流,*Re*>*Re*_T流 动为湍流。过渡流的流动可以用以下假设来解释: 湍流首先出现在各类子通道的中心区域,然后沿径 向和周向逐渐扩散,当雷诺数足够大时,层流最终消 失^[9]。目前已有的摩擦压降模型主要考虑棒束数量 (*Nr*)、节径比(*P/D*)、螺径比(*H/D*)这三个影响因素, 接下来将介绍本文涉及的模型。

Novendstern^[1]基于光滑圆管的摩擦压降模型, 通过引入影响因子*M*来修正绕丝和棒束排列间隔 带来的影响,适用于过渡流和湍流,模型如式(1)、 (2)所示:

$$F = M \, \frac{0.316}{Re^{0.25}} \tag{1}$$

$$M = \left[\frac{1.034}{\left(\frac{P}{D}\right)^{0.124}} + \frac{29.7\left(\frac{P}{D}\right)^{6.94} Re^{0.086}}{\left(\frac{H}{D}\right)^{2.239}}\right]^{0.885}$$
(2)

式中:Re为雷诺数。

Rehme^[2]模型是等效整个组件获得的模型,在 实验数据基础上对整体结构进行综合考虑,适用于 过渡流和湍流,模型如式(3)、(4)所示:

$$F = \left[\frac{64}{Re}B^{0.5} + \frac{0.0816}{Re^{0.133}}B^{0.9355}\right] \frac{\pi (D + D_w)Nr}{6a + \pi (D + D_w)Nr} (3)$$
$$B = \left(\frac{P}{D}\right)^{0.5} + \left(7.6\frac{(D + D_w)}{H}\left(\frac{P}{D}\right)^2\right)^{2.16}$$
(4)

式中:D为燃料棒直径;D_w为绕丝直径。

 $(D)^{1.5}$

图1 带绕丝棒束组件结构示意图 Fig.1 Diagram of wire-wrapped rod assembly construction

Engel^[3]模型是基于实验数据拟合适用于全流 态的模型,其中:Re₁=400, Re₁=5 000。过渡区摩擦 系数由层流摩擦系数和湍流摩擦系数采用指数插值

ſ

法得到,模型如式(5)、(6)所示:

$$F = \begin{cases} \frac{110}{Re} & Re \leq Re_{L} \\ \frac{110}{Re} (1 - \phi)^{0.5} + \frac{0.55}{Re^{0.25}} \phi^{0.5} & Re_{L} < Re \leq Re_{T} \\ \frac{0.55}{Re^{0.25}} & Re > Re_{T} \end{cases}$$

$$6 = \frac{Re - 400}{4\ 600} \tag{6}$$

Bublis^[5]模型基于前人的工作修正层流区域的 模型,其中:Re1=400, Re1=5 000。过渡区摩擦系数 由层流摩擦系数和湍流摩擦系数采用指数插值法得 到,模型如式(7)、(8)所示:

Q

$$F = \begin{cases} \frac{T_{w}}{T_{b}} \frac{300}{\sqrt{H}} \frac{\left(\frac{F}{D}\right)}{Re} & Re \leq Re_{L} \\ \frac{T_{w}}{T_{b}} \frac{300}{\sqrt{H}} \frac{\left(\frac{P}{D}\right)^{1.5}}{Re} (1-\phi)^{0.5} + M \frac{0.316}{Re^{0.25}} \phi^{0.5} & Re_{L} < Re \leq Re_{T} \\ M \frac{0.316}{Re^{0.25}} & Re > Re_{T} \end{cases}$$

$$\phi = \frac{Re - 400}{4\,600} \qquad (8) \qquad \log\left(\frac{Re}{Re}\right)$$

1

式中: T_w 为壁面温度,K; T_b 为流体温度,K; ϕ 为过渡 因子。

Cheng^[6]提出适用于带绕丝组件棒束的摩擦压 降模型,分为简单模型(CTS)和复杂模型(CTD),并 总结出临界雷诺数与P/D的关系。复杂模型能够对 不同类型子通道的阻力系数加以区别,简单模型则 等效整个组件。CTS模型如下所示,过渡区摩擦系 数由层流摩擦系数和湍流摩擦系数采用指数插值法 得到,模型如式(9)~(14)所示:

$$F = \begin{cases} \frac{C_{bL}}{Re} & Re \leq Re_{L} \\ \frac{C_{bL}}{Re} (1 - \psi)^{\frac{1}{3}} + \frac{C_{bT}}{Re^{0.18}} \psi^{\frac{1}{3}} & Re_{L} \leq Re \leq Re_{T} \\ \frac{C_{bT}}{Re^{0.18}} & Re_{T} \leq Re \end{cases}$$

$$\lg\left(\frac{Re_{\rm L}}{300}\right) = 1.7\left(\frac{P}{D} - 1\right) \tag{10}$$

$$\lg\left(\frac{Re_{\rm T}}{10\ 000}\right) = 0.7\left(\frac{P}{D} - 1\right) \tag{11}$$

$$\psi = \frac{\lg\left(\frac{Re}{Re_{\rm L}}\right)}{\lg\left(\frac{Re_{\rm T}}{Re_{\rm L}}\right)} \tag{12}$$

$$C_{bL} = \left(-974.6 + 1\ 612\left(\frac{P}{D}\right) - 598.5\left(\frac{P}{D}\right)^2\right) \left(\frac{H}{D}\right)^{0.06 - 0.085\left(\frac{P}{D}\right)}$$
(13)

$$C_{\rm bT} = \left(0.806\ 3 - 0.902\ 2\ \lg\left(\frac{H}{D}\right) - 0.352\ 6\left(\lg\left(\frac{H}{D}\right)\right)^2\right) \left(\frac{P}{D}\right)^{9.7} \left(\frac{H}{D}\right)^{1.78-2\left(\frac{P}{D}\right)}$$
(14)

式中:C_M为层流经验常数;C_M为湍流经验常数。

CTD 模型与 CTS 模型流态划分的临界雷诺数 完全一致,但C_ы、C_ы的表达式不同,具体参考 Cheng^[6]。

Chen等^[7]研究发现,Cheng^[6]提出的摩擦压降模 型在预测过渡流至湍流范围的摩擦系数时,随着雷 诺数的增大,流动状态从过渡流接近湍流时,会出现 过渡流区域的摩擦系数(F_n)随着雷诺数而增大的反 常现象,通过增加一个修正经验常数y(y>1)修正模

(9)

型在过渡流区间错误的预测结果,修正模型如式 (15)所示:

$$F_{Tr} = \frac{C_{\rm bL}}{Re} \left(1 - \psi\right)^{\frac{1}{3}} \left(1 - \psi^{\gamma}\right) + \frac{C_{\rm bT}}{Re^{0.18}} \psi^{\frac{1}{3}} \qquad (15)$$

式中:y(y>1)为修正经验常数,CTS(CTD)中,y=14, UCTD中,y=7。

前文述及棒束数量(Nr)变化会对摩擦系数产生 影响,本文基于 CTS 模型提出新的摩擦压降模型, 在§3将重新构建以Nr、P/D、H/D为自变量的层流经 验常数 C_{bl}和湍流经验常数 C_{bT}的表达式,在§4结合 实验数据求解出 C_{bl}、C_{bT}和 y。Liang 等^[10]结合近年 来新增的实验数据更新了 Cheng^[6]提出的临界雷诺 数定义式,如式(16)、(17)所示:

$$Re_{\rm L} = 350 \left[10^{1.45 \left(\frac{P}{D} - 1 \right)} \right]$$
(16)

$$Re_{\rm T} = 9 \ 640 \left[10^{0.7 \left(\frac{P}{D} - 1 \right)} \right] \tag{17}$$

本文模型临界雷诺数的定义采用式(16)、(17)。 需要求解的常数为新的层流经验常数C_{bl}、新的湍流 经验常数*C*_{br}以及过渡流的修正经验常数y。

2 不同介质的实验数据

Chen等^[8]收集了2011年以前80组带绕丝棒束 组件的摩擦压降实验数据,并且求解出各组实验数 据的C_{bL}和C_{bT},其中有19位学者提供了79组C_{bT},10 位学者提供了22组C_{bL}。本文将补充2011年后至今 的带绕丝棒束组件实验数据,其中有8位学者提供 了11组C_{bT},3位学者提供了4组C_{bL}。可收集的带绕 丝棒束实验数据如表1所示,实验数据的排序方式 见表注。有20位学者提供了52组数据,共有1753 个数据点。除了LYU等^[12-13]、Pacio等^[24]和Kennedy 等^[25]为铅铋介质实验数据,Engel^[3]层流与过渡流和 Hoffmann^[26]为钠介质实验数据之外,其他所有实验 数据均为水介质实验数据。在§3中,求解C_{bL}和C_{bT} 的表达式时,需用到Chen^[8]以及本文补充的实验数 据(以下简称数据库),而§4进行统计分析时仅使用 表1中的实验数据。

表1 实验数据 Table 1 Experimental data

					P				
作者ID	P/D	Nr	H/D	年份 Year	<i>D</i> / mm	$D_{\rm w}$ / mm	C _T	CL	数据点Points
Marten13 ^[6]	1.041	37	17.01	1982	15.98	0.66	0.159 7	46.43	19
Chiu1 ^[11]	1.067	61	8	1977	12.73	0.8	0.240 2	88.00	35
Chiu2 ^[11]	1.067	61	4	1977	12.73	0.8	0.471 9	160	41
Marten21 ^[6]	1.072	37	8.34	1982	15.51	1.12	0.157 0	71.00	19
Engel ^[3]	1.082	61	7.698	1979	12.85	0.94	0.277 7	99.42	61
Marten32 ^[6]	1.101	37	12.31	1982	15.11	1.53	0.206 6	75.31	19
LYU1 ^[12]	1.116	7	25	2020	15	1.64	0.131 4	_	30
LYU2 ^[13]	1.116	61	25	2016	15	1.64	0.167 0	_	40
Rehme11 ^[2]	1.125	7	8.33	1967	12	1.5	0.182 7	_	22
Rehme21 ^[2]	1.125	19	8.33	1967	12	1.5	0.299 5	_	27
Rehme22 ^[2]	1.125	19	12.5	1967	12	1.5	0.200 0	_	29
Rehme23 ^[2]	1.125	19	16.67	1967	12	1.5	0.168 2	_	31
Rehme24 ^[2]	1.125	19	25	1967	12	1.5	0.145 2		30
Rehme25 ^[2]	1.125	19	33.33	1967	12	1.5	0.136 1		46
Fan ^[14]	1.151	19	11.16	2020	12.9	1.95	0.219 8		57
Cheng ^[6]	1.154	37	13.4	1986	15.04	2.26	0.200 1	92.88	39
Itoh1 ^[6]	1.176	127	38	1981	5.5	0.9	0.161 5	75.21	22
Grazzini ^[15]	1.18	91	23.95	1971	6.68	1.2	0.180 4	_	6
Ohshima1 ^[16]	1.18	127	38	2017	5.5	0.9	0.157 0	75.92	11
Vaghetto ^[17]	1.189	61	30	2018	15.9	3	0.143 0	75	49
Ohshima3 ^[16]	1.2	271	22	2017	7.5	1.4	0.180 0	_	6
Song ^[18]	1.2	19	23.1	2020	20	3	0.178 0	_	6
Choi ^[19]	1.2	271	24.84	2003	7.4	1.4	0.185 7	_	91
Ohshima2 ^[16]	1.21	169	47.2	2017	6.5	1.32	0.156 8	76.4	19
Itoh2 ^[6]	1.214	169	47.4	1981	6.5	1.32	0.159 7	76.44	17

续表									
作者ID	P/D	Nr	H/D	年份 Year	<i>D</i> / mm	$D_{\rm w}$ / mm	C_{T}	$C_{\rm l}$	数据点Points
Wakasugi1 ^[20]	1.221	91	14.29	1971	6.3	1.27	0.224 1		11
Wakasugi2 ^[20]	1.221	91	20.63	1971	6.3	1.27	0.196 2	_	12
Wakasugi3 ^[20]	1.221	91	30.16	1971	6.3	1.27	0.167 8	_	11
Wakasugi4 ^[20]	1.221	91	41.27	1971	6.3	1.27	0.162 0	_	12
Rehme12 ^[2]	1.233	7	8.33	1967	12	2.8	0.286 3		36
Spencer ^[21]	1.252	217	51.74	1980	5.84	1.42	0.159 9	85.72	65
Padmakumar ^[22]	1.255	217	30.3	2017	6.6	1.65	0.186 6	87.72	50
Chun ^[23]	1.256	19	25	2001	8	2	0.188 2	98.33	161
Rehme13 ^[2]	1.275	7	8.33	1967	12	3.3	0.356 1	_	28
Rehme16 ^[2]	1.275	7	12.5	1967	12	3.3	0.252 5	_	32
Rehme17 ^[2]	1.275	7	50	1967	12	3.3	0.117 6	_	33
Rehme26 ^[2]	1.275	19	12.5	1967	12	3.3	0.285 3	_	31
Rehme27 ^[2]	1.275	19	50	1967	12	3.3	0.131 9	_	33
Rehme31 ^[2]	1.275	37	12.5	1967	12	3.3	0.311 0	_	31
Rehme32 ^[2]	1.275	37	50	1967	12	3.3	0.140 8	_	33
Pacio ^[24]	1.279	19	40	2016	8.2	2.2	0.163 5	_	51
Kennedy ^[25]	1.282	127	40.4	2019	6.55	1.8	0.163 9	_	42
Hoffmann1 ^[26]	1.317	61	16.67	1973	6	1.9	0.263 0	_	30
Hoffmann2 ^[26]	1.317	61	33.33	1973	6	1.9	0.170 5	_	34
Hoffmann3 ^[26]	1.317	61	50	1973	6	1.9	0.162 2	_	34
Rehme14 ^[2]	1.343	7	8.33	1967	12	4.48	0.535 7	_	31
Rehme15 ^[2]	1.417	7	8.33	1967	12	5	0.832 4	_	27
Rehme41 ^[2]	1.417	19	8.33	1967	12	5	0.930 4	_	30
Rehme42 ^[2]	1.417	19	12.5	1967	12	5	0.448 4		29
Rehme43 ^[2]	1.417	19	16.67	1967	12	5	0.317 4		31
Rehme44 ^[2]	1.417	19	25	1967	12	5	0.206 1	_	32
Rehme45 ^[2]	1.417	19	50	1967	12	5	0.157 9	_	31

周涛涛等: 全流态工况下绕丝棒束内的摩擦压降模型研究

注:1) 2011年之前部分数据遗失或不可查;2)数据排列以节径比为第一次序,棒束数量为第二次序,螺径比为第三次序 Notes: 1) Partial data before 2011 were missing or untraceable; 2) The data are arranged in the first order with the *P/D*, *Nr* as the second order, and *H/D* as the third order

3 经验常数表达式的确定

3.1 湍流

Liang 等^[10]的研究表明:一个几何参数确定的装置,当*Re*一定时,边子通道的摩擦系数最大,中心子通道的摩擦系数和边子摩擦系数大小相当,角子通道的摩擦系数最小。考虑到棒束数量的变化将会影

响子通道数量的变化,而子通道数量的变化将会影 响截面摩擦系数,因此构建棒束数量与子通道数量 的函数关系,则可以表征棒束数量对截面摩擦系数 的影响。棒束数量的变化范围太大(7~271),构建函 数关系较为困难,引入一个基数n,以n为中间变量 来构建棒束数量与子通道数量的函数关系,如表2 所示。

表 2 组件数量与子通道数量的函数关系 Table 2 The number of components as a function of the number of subchannels

	Tuble 2	The number of components us u		iumitit)
项目	组件数量	中心子通道数量	边子通道数量	角子通道数量
Item	Number of robs	Number of center subchannels	Number of edge subchannels	Number of corner channels
基数n	$3n^2 + 3n + 1$	$6n^2$	6 <i>n</i>	6
Cardinality				

各类子通道数量占总子通道数量的比例如图2 所示,边子通道数量和中心子通道数量占总子通道 数量的比例随着n的增加迅速增加,当n=7时,两类子通道的比例达到98.2%,此时中心子通道和边子

通道贡献了绝大部分权重的截面摩擦系数,当n>7, 角子通道数量占比越来越小,其贡献的截面摩擦系 数可忽略不计。图3(a)是Rehme^[2]中的实验数据, 当P/D、H/D一定时,n增加时, C_{tr} 在增大,且P/D越 大、H/D越小时, C_{tr} 增加速度越明显;图3(b)是数据 库的实验数据(每个图例代表该作者所有实验数 据),随着n增大, C_{tr} 增加速度减缓,当n>7时, C_{tr} 变 化不大。控制P/D、H/D一定时,通过对比不同阶次 多项式拟合结果,采用五次多项式能较为准确地表 征两者相关性,如式(18)所示:

$$C_{\rm bT} = f\left(\frac{P}{D}, \frac{H}{D}\right) (an^{5} + bn^{4} + cn^{3} + dn^{2} + en + f)(18)$$

式中:n取自然数, $1 \le n \le 7$; $a \le b \le c \le d \le c$,f为待定的常数; $n \ge 7$ 时,湍流经验常数 $C_{ist} = f(7)f(P/D, H/D)$;f(P/D, H/D)是以 $P/D \le H/D$ 为自变量的函数(若要用Nr

组件排布的几何特征会影响组件进出口的压差,计算燃料组件的摩擦压降常使用 P/D、H/D 为自变量 拟合摩擦压降模型。图4(a)是 Cheng^[6]和 Rehme^[2]中的实验数据,保持 n、H/D一定时,C_{bT}随着 P/D 的增大而增大。C_{bT}与 P/D 符合指数增长的关系,但以 P/D=1.1 界限,两边指数增长速度不一致; 图4(b)中同样可得。如式(19)所示:

式中:g>0为待定常数,P/D<1.1的值与P/D>1.1的值 不同;P/D的范围为1.04<P/D<1.42;f(H/D,n)是以 H/D、n为自变量的函数。

12

图 5(a)是 Rehme^[2]中的实验数据,保持 n、P/D 一定时,当 H/D<35时,C_{bT}随着 H/D 的增大而减小, 当 H/D>35时,C_{bT}随着 H/D 而增大,构造一个对勾函 数(一次函数与指数函数的组合)表征该变化,图 5 (b)中同样可得。由于 H/D 的取值范围很大,计算时 对其取对数处理;对比图 5(a)中图例1 和图例6 的数

图4 C_{bT} 与节径比P/D的关系 (a) Marten 和 Rehme 实验数据,(b) 数据库数据 Fig.4 Relationship between C_{bT} and P/D (a) Marten's and Rehme's experimental data, (b) Database data

为自变量,由表2求反函数即可)。

图 2 子通道数量占总子通道数量的比例 Fig.2 The ratio of the number of subchannels to the total number of subchannels

据发现,P/D的大小将会影响指数函数的指数i的大小 $(i_1 < i_2)$ 。如式(20)所示:

$$C_{\rm bT} = f\left(\frac{P}{D}, n\right) \left(h \lg\left(\frac{H}{D}\right) + \left(\lg\left(\frac{H}{D}\right)\right)^{i+j\frac{P}{D}} \right) \quad (20)$$

图 5 C_{bT} 与螺径比H/D的关系 (a) Rehme 实验数据,(b) 数据库数据 Fig.5 Relationship between C_{bT} and H/D (a) Rehme's experimental data, (b) Database data

式中:*h*、*i*、*j*为待定常数;*H*/D的范围为8≤*H*/D≤55;*f* (*P*/D,*n*)是以*P*/D、*n*为自变量的函数。

综上所述,湍流区的摩擦压降模型如式(21) 所示:

$$C_{bT} = k \left(an^{5} + bn^{4} + cn^{3} + dn^{2} + en + f\right) \left(\frac{P}{D}\right)^{g} \left(h \lg\left(\frac{H}{D}\right) + \left(\lg\left(\frac{H}{D}\right)\right)^{i+j\frac{P}{D}}\right)$$
(21)

式中:k为待定常数。

3.2 层流

在层流区的数据十分有限,一共有26组, Cheng^[6]基于单个裸燃料棒的阻力系数与绕丝阻力 系数的关系,假设层流经验常数 C_{bL} 与湍流经验常数 C_{bT} 具有相似性。由表2可知,棒束数量与子通道数 量是一一对应的,其对摩擦系数的影响也是固定的, 因此,假设 $C_{bL}=f(n)f(P/D,H/D)$ 中f(n)的表达式与 式(18)一致。对比图6和图4、图7和图5,层流经验 常数 C_{bL} 与湍流经验常数 C_{bT} 的趋势是基本一致的, 验证了上述假设。构造层流经验常数 C_{bL} 的新表达 式如式(22)所示:

$$C_{\rm bL} = k \left(an^5 + bn^4 + cn^3 + dn^2 + en + f\right) \left(\frac{P}{D}\right)^g \left(h \lg\left(\frac{H}{D}\right) + \left(\lg\left(\frac{H}{D}\right)\right)^{i+j\frac{P}{D}}\right)$$
(22)

过渡流的修正经验常数y将在§4第1部分进行 求解。

图6 C_{bl} 与节径比P/D的关系 Fig.6 Relationship between C_{bl} and P/D

4 经验常数表达式的求解及摩擦压降模型 的统计分析

平均相对误差(Mean Relative Error, MRE)能反 映预测值自身的离散程度, MRE 越小, 则自身预测

值离散程度小;相对误差的均方根(Root Mean Square, RMS)用来衡量预测值与实验值的整体偏差, RMS越小,表明预测值与实验值的整体偏差小。

$$\delta = \frac{F_{\rm c} - F_{\rm m}}{F_{\rm m}} \times 100\% \tag{23}$$

$$MRE = \frac{\sum_{i}^{N} \delta}{N}$$
(24)

$$RMS = \sqrt{\frac{\sum_{i}^{N} \delta^{2}}{N}}$$
(25)

式中:δ为相对误差;F_m是实验摩擦系数值;F_c是摩擦 压降模型的预测摩擦系数值。

4.1 经验常数表达式的求解

数值解是通过求解 $a \sim k \ge 10$ 个常数的变化范围 和指定求解步长,使表 1中 F_m 与 F_c 之间的 RMS 最小 来实现。变化范围是通过控制变量的方式获得:获 取 C_{bT} 的 $a \sim f$ 变化范围,可将已有实验数据点的 Re、 F_m 、P/D和 H/D,代入式(9)和(21)求解得出。以图 3 (a)为例,图 3(a)中第6组数据的 C_{bT} 最大,这组数据 具有小H/D、大P/D的特点,将这组数据点代入式 (9)、(21)可求出一组 $a \sim k$ 的上边界,同理第4组数据 的 C_{bT} 最小,这组数据具有大H/D,将这组数据点代 入式(9)、(21)可求出一组 $a \sim k$ 的下边界。 $g \sim k$ 同理 可得。使用式(9)、(21)和(22)代入每个实验数据点 的Re < n < P/D和H/D将得到一组 F_m 与 $a \sim k$ 的等式。 对于每一组 $a \sim k$,使用式(25)计算得到 RMS。对所 有集合的 $a \sim k$ 重复此过程,最后 RMS 为极小值时 $a \sim k$ 的值即为所求的常数值。

当1.04<P/D≤1.1时,层流经验常数C_{bL}如下:

$$C_{bL} = 1.196 \left(82.8 \left(\frac{n}{10} \right)^5 - 186.7 \left(\frac{n}{10} \right)^4 + 161.3 \left(\frac{n}{10} \right)^3 - 66 \left(\frac{n}{10} \right)^2 + 1.286n - 0.136 4 \right) \left(\frac{P}{D} \right)^{10.17} \left(26.22 \lg \left(\frac{H}{D} \right) + \left(\lg \left(\frac{H}{D} \right) \right)^{151.2 \frac{P}{D} - 190.8} \right)$$
(26)

当1.04<P/D≤1.1时,湍流经验常数Cыт如下:

$$C_{\rm bT} = 0.126 \left(82.8 \left(\frac{n}{10} \right)^5 - 186.7 \left(\frac{n}{10} \right)^4 + 161.3 \left(\frac{n}{10} \right)^3 - 66 \left(\frac{n}{10} \right)^2 + 1.286n - 0.1364 \right) \left(\frac{P}{D} \right)^{5.46} \left(0.4 \lg \left(\frac{H}{D} \right) \right) + \left(\lg \left(\frac{H}{D} \right) \right)^{27.51 - 27.73 \frac{P}{D}} \right)$$

$$(27)$$

$$= 24.88 \left(82.8 \left(\frac{n}{10} \right)^5 - 186.7 \left(\frac{n}{10} \right)^4 + 161.3 \left(\frac{n}{10} \right)^3 - 66 \left(\frac{n}{10} \right)^2 + 1.286n - 0.1364 \right) \left(\frac{P}{D} \right)^{10.97} \left(0.125 \ 3 \ \lg \left(\frac{H}{D} \right) + \left(\lg \left(\frac{H}{D} \right) \right)^{34.18 - 30.89 \frac{P}{D}} \right)$$

$$= 1.1 < P/D < 1.42 \ \text{F}, \ \% \% \& \ \% \& C_{\text{bT}} \ \text{yr} = 1.28$$

$$C_{bT} = 0.128 \left(82.8 \left(\frac{n}{10} \right)^5 - 186.7 \left(\frac{n}{10} \right)^4 + 161.3 \left(\frac{n}{10} \right)^3 - 66 \left(\frac{n}{10} \right)^2 + 1.286n - 0.136 4 \right) \left(\frac{P}{D} \right)^5 \left(0.128 \lg \left(\frac{H}{D} \right) + \left(\lg \left(\frac{H}{D} \right) \right)^{13.52 - 13.11 \frac{P}{D}} \right)$$

$$(29)$$

如图8所示,以Choi等^[19]的实验数据为例,现使 用求解出的 C_{bt} 和 C_{br} 表达式代入式(15), γ 在一定范 围内变化,指定 γ 可求出 F_m 与 F_c 之间的RMS。针对 表1中的所有实验数据重复上述过程,可求解出 γ 取 0~100时 F_m 与 F_c 对应的RMS。由表3可知, γ 取4时, 过渡区摩擦系数的MRE较小,RMS最小,所以 γ =4。

综上所述,本文的层流摩擦常数 C_{bL} 如式(26)、 (28)所示,湍流摩擦常数 C_{br} 如式(27)、(29)所示,过 渡流修正经验常数 $\gamma=4$ 。

表3 修正经验常数 Table 3 Modified empirical constants

		•							
修正常数y的值The value of y	100	30	20	15	10	7	5	4	3
平均相对误差 Mean relative error / %	3.59	3.26	2.98	2.69	2.08	1.25	0.10	-0.90	-2.33
均方根Root mean square / %	13.24	13.9	12.9	12.76	12.52	12.24	11.92	11.75	12.03

图8 $F_m 与 Re$ 的关系 Fig.8 Relationship between F_m and Re

4.2 摩擦压降模型的统计分析

实验数据库中数据对应的 P/D、Nr 和 H/D 超出 了部分摩擦压降模型的推荐使用范围,本文将依旧 针对整个数据库的范围来评估每个摩擦压降模型的 预测准确性,根据每个摩擦压降模型各自的定义来 流态划分的界限。通过这种方式可以评估每个摩擦 压降在推荐范围之内和推荐范围之外的预测能力, 表4概括不同压降模型的推荐使用范围,表5概括不 同压降模型的MRE和RMS。

以实验值为横坐标,摩擦压降模型预测值为纵 坐标绘图,如图9所示,图中的点越接近于y=x这一 条线,则说明摩擦压降模型的预测值越接近实验值, 最终的预测质量越高。

从图9(a)可以发现,Novendstern^[1]模型明显不

表4 摩擦压降模型 Table 4 Friction pressure drop model

摩擦压降模型	年份	摩擦压降模型推荐范围 Recommended range of friction pressure drop model							
Friction pressure drop model	Year	Nr	P/D	H/D	雷诺数范围 Range of Re				
Novndstern ^[1]	1972	19~217	1.06~1.42	8~96	2 600~2×10 ⁵				
Rehme ^[2]	1973	7~217	1.1~1.42	8~50	1 000~3×10 ⁵				
Engel ^[3]	1982	19~61	1.067~1.082	7.7~8.3	50~1×10 ⁵				
CTD ^[6]	1986	19~217	1~1.42	8~52	50~1×10 ⁶				
CTS ^[6]	1986	19~217	1.025~1.42	8~50	50~1×10 ⁶				
BBDD ^[5]	2008	19~217	1.06~1.42	8~96	50~1×10 ⁵				
UCTD ^[8]	2018	7~217	1~1.42	8~52	50~1×10 ⁶				
本文This work	2022	7~271	1.04~1.42	8~54	50~3×10 ⁵				

表5 统计分析结果 Table 5 Statistical analysis results

摩擦压降模型 Friction pressure drop model		Novendstern ^[1]	Rehme ^[2]	Engel ^[3]	BBDD ^[5]	CTS ^[6]	CTD ^[6]	UCTD ^[8]	本文
									This work
层流	平均相对误差	-69.73	-5.83	10.07	0.64	-16.72	-28.82	-12.00	1.71
Laminar	Mean relative error / %								
	均方根	70.57	20.39	32.93	13	26.83	33.94	20.36	9.83
	Root mean square / %								
过渡流	平均相对误差	-1.01	2.07	34.64	-0.04	1.40	-4.52	-6.71	-0.9
Transition	Mean relative error / %								
	均方根	23.75	18.37	50.96	12.99	15.57	15.55	19.32	11.75
	Root mean square / %								
湍流	平均相对误差	13.41	1.24	35.29	12.98	11.25	11.70	0.57	0.50
Turbulence	Mean relative error / %								
	均方根	24.38	14.99	57.30	22.68	20.36	25.22	18.26	7.73
	Root mean square / %								
总计	平均相对误差	(6.09)	(1.66)	34.05	8.96	4.76	1.4	-3.62	-0.28
Total	Mean relative error / %								
	均方根	(24.06)	(16.79)	54.83	20.17	18.82	22.04	18.89	9.89
	Root mean square / %								

注:括号中的数据为模型推荐流态范围的值

Notes: The data in parentheses are values in the model's recommended flow range

适用于预测层流的摩擦系数,同时存在明显低估部分过渡流摩擦系数的情况,而在湍流范围内则出现明显高估摩擦系数的情况,由表(5)可知,在过渡流及湍流范围内实验数据的MRE=6.09%,RMS=24.06%。从图9(b)可以发现,Rehme^[2]模型在湍流范围内预测的质量不错,尽管在过渡流范围内预测

的质量相比于湍流范围内稍有降低,但总体而言, RMS基本都在20%以内,比较反常的现象是其在层 流区域实验数据的平均相对误差较小。有不少层流 区实验数据的相对误差大于20%,正负抵消使得其 预测质量表现得较好,由表(5)可知,在过渡流及湍 流范围内实验数据的MRE=1.66%,RMS=16.79%。

图9 不同模型预测值与实验摩擦系数的对比

(a) Novendstern 模型,(b) Rehme 模型,(c) Engel 模型,(d) BBDD 模型,(e) CTS 模型,(f) CTD 模型,(g) UCTD 模型,(h) 本文模型
Fig.9 Predicted friction coefficients of the different models vs. the experimental friction coefficients (a) Novendstern model, (b) Rehme model, (c) Engel model, (d) BBDD model, (e) CTS model, (f) CTD mode, (g) UCTD model, (h) This word model

从图9(c)可以发现,Engel^[3]模型在全流态摩擦 系数的预测值与实验值偏差均较大,只有少部分实 验数据在其预测范围内。由表(5)可知,整体实验数 据的 MRE=34.05%, RMS=54.83%。从图 9(d)可以 发现, BBDD^[5]模型在层流范围内的预测质量较高, 在过渡流范围内也有不错的表现, 但是明显高估了 湍流范围的摩擦系数,由表(5)可知,整体实验数据的MRE=8.96%,RMS=20.17%。

从图9(e)可以发现,CTS模型低估了层流区域 的摩擦系数,高估了湍流区域的摩擦系数,在过渡流 区域的预测质量较高,由表(5)可知,整体实验数据 的MRE=4.76%,RMS=18.82%;从图9(f)可以发现, CTD模型显著地低估了层流区域的实验数据,高估 了湍流区域的实验数据,过渡流区域的预测质量较 高,由表(5)可知,整体实验数据的MRE=1.4%, RMS=22.04%;从图9(g)可以发现,UCTD模型低估 了层流和过渡流区域的实验数据,湍流区域的预测 质量较高,由表(5)可知,整体实验数据的MRE= -3.62%,RMS=18.89%;从图9(h)可以发现,本文模 型在全流态范围预测质量较好,由表(5)可知,整体 实验数据的MRE=-0.28%,RMS=9.89%。

在表4所示的8个摩擦压降模型中:在湍流区域,Rehme模型、UCTD模型和本文模型的MRE较小,本文模型RMS最小;在过渡流区域,BBDD模型、CTS模型和本文模型的MRE较小,其中BBDD模型和本文模型RMS较小;在层流区域,BBDD模型和本文模型的MRE较小,本文模型RMS较小;总体实验数据来看,CTS模型、UCTD模型和本文模型的MRE较小,本文模型和

图 10 不同模型预测值与铅铋实验摩擦系数的对比 Fig.10 Predicted friction coefficients of the different models vs. the LBE experimental friction coefficients

在相同的流动条件以及几何形状下,其符合雷 诺相似准则和几何相似准则,流动的摩擦系数将仅 仅与雷诺数有关,而与介质无关,雷诺数一致时,其 摩擦系数将一致^[27]。针对表1中铅铋介质实验数 据,利用表4中的摩擦压降模型进行检验。从图10 可以看出,Engel不适用于预测铅铋介质实验数。整 体预测质量而言,Rehme^[2]模型、BBDD^[5]模型、 CTS^[6]模型和本文模型的MRE较小,分别为 - 8.08%、6.15%、0.93%和-5.64%;Rehme^[2]模型、 CTS^[6]模型和本文模型的RMS较小,分别为 10.27%、10.86%和7.79%。综合来看,本文的模型预 测铅铋介质实验数据质量较高。

5 结语

针对7种摩擦压降模型的局限性进行分析,本 文提出一个用于预测棒束组件全流态截面平均摩擦 系数的摩擦压降模型,模型包含棒束数量(Nr)、节径 比(P/D)、螺径比(H/D)。基于现有实验数据库对上 述8个摩擦压降模型进行统计分析,可得出如下 结论:

1)棒束数量对摩擦系数具有显著影响,通过构 造棒束数量与子通道数量函数关系的方式能够提高 模型预测的质量。

2)对于水介质实验的摩擦系数而言,在湍流区域,建议使用Rehme模型、UCTD模型和本文模型, 其中本文的预测质量最高;在过渡流区域,建议使用 BBDD模型、CTD模型和本文模型,其中本文模型预 测质量最高,在层流区域,BBDD模型和本文模型的 MRE较小,本文模型RMS较小,预测质量高。综上 所述,本文提出的模型在各流态预测质量高。

3)铅铋介质实验的摩擦系数建议使用 Rehme 模型、CTS模型和本文模型,其中CTS的MRE最小, 本文模型的RMS最小。

作者贡献声明 周涛涛负责数据采集,数据分析以 及文章主体内容的撰写;刘书勇负责文章框架的构 建以及知识性内容批评性的审阅;郁杰提供研究经 费、行政和材料上的支持。

参考文献

- Novendstern E H. Turbulent flow pressure drop model for fuel rod assemblies utilizing a helical wire-wrap spacer system[J]. Nuclear Engineering and Design, 1972, 22(1): 28 - 42. DOI: 10.1016/0029-5493(72)90059-3.
- Rehme K. Pressure drop correlations for fuel element spacers[J]. Nuclear Technology, 1973, 17(1): 15 23. DOI: 10.13182/nt73-a31250.
- 3 Engel F C, Markley R A, Bishop A A. Laminar, transition, and turbulent parallel flow pressure drop across wirewrap-spaced rod bundles[J]. Nuclear Science and Engineering, 1979, 69(2): 290 - 196. DOI: 10.13182/ NSE79-A20618.
- Baxi C B, Donne M D. Helium cooled systems. the gas cooled fast breeder reactor[M]//Heat Transfer and Fluid Flow in Nuclear Systems. Amsterdam: Elsevier, 1981: 407 462. DOI: 10.1016/b978-0-08-027181-1.50013-7.
- 5 Bubelis E, Schikorr M. Review and proposal for best fit

of wire-wrapped fuel bundle friction factor and pressure drop predictions using various existing correlations[J]. Nuclear Engineering and Design, 2008, **238**: 3299 – 3320. DOI: 10.1016/j.nucengdes.2008.06.024.

- 6 Cheng S K, Todreas N E. Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles-bundle friction factors, subchannel friction factors and mixing parameters[J]. Nuclear Engineering and Design, 1986, 92(2): 227 - 251. DOI: 10.1016/0029-5493(86)90249-9.
- 7 Chen S K, Petroski R, Todreas N E. Numerical implementation of the Cheng and Todreas correlation for wire wrapped bundle friction factors-desirable improvements in the transition flow region[J]. Nuclear Engineering and Design, 2013, 263: 406 - 410. DOI: 10. 1016/j.nucengdes.2013.06.012.
- 8 Chen S K, Chen Y M, Todreas N E. The upgraded Cheng and Todreas correlation for pressure drop in hexagonal wire-wrapped rod bundles[J]. Nuclear Engineering and Design, 2018, 335: 356 - 373. DOI: 10.1016/j.nucengdes. 2018.05.010.
- 9 Panknin W, Jahn M, Reineke H H. Forced convection heat transfer in the transition from laminar to turbulent flow in closely spaced circular tube bundles[C]// Proceeding of International Heat Transfer Conference 5. September 3-7, 1974. Tokyo, Japan. Connecticut: Begellhouse, 1974: 325 - 329. DOI: 10.1615/ihtc5.2300.
- 10 Liang Y, Zhang D L, Chen Y T, et al. An experiment study of pressure drop and flow distribution in subchannels of a 37-pin wire-wrapped rod bundle[J]. Applied Thermal Engineering, 2020, **174**: 115283. DOI: 10.1016/j.applthermaleng.2020.115283.
- Chiu C, Rohsenow W M, Todreas N E. Mixing experiments in LMFBR wire-wrapped blanket assemblies [R]. MIT, Department of Nuclear Engineering, 1977.
- LYU K F, Sheng X L, Ma X D. Thermal-hydraulic Assessment of Seven Wire-wrapped rod Bundle[C]//E3S Web of Conferences. 2020, 212: 1 - 9. DOI: 10.1051/ e3sconf/202021201009.
- 13 吕科锋. 液态铅铋合金在带绕丝棒束组件内热工水力 行为研究[D]. 合肥: 中国科学技术大学, 2016.
 LYU Kefeng. Study on the thermal-hydraulic behaviors of a wire-wrapped rod bundle cooled with lead bismuth eutectic[D]. Hefei: University of Science and Technology of China, 2016.
- 14 Fan D J, Peng T J, Tang Y Z, et al. Periodicity and

transversal pressure distribution in a Wire-wrapped 19-pin fuel assembly[J]. International Journal of Energy Research, 2020, **45**(3): 1 – 14. DOI: 10.1002/er.5809.

- 15 Grazzini R, Tirelli D. Experimental determination of pressure drop of PEC reactor fuel element[R]. Comitato Nazionale Energie Nucleare, CNEN-RT/ING(71)12, 1971.
- 16 Ohshima H, Imai Y. Numerical simulation method of thermal-hydraulics in wire-wrapped fuel pin bundle of sodium-cooled fast reactor[C]//International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development. Ekaterinburg, Russian Federation, 2017: 453.
- 17 Vaghetto R, Jones P, Goth N, *et al.* Pressure measurements in a wire-wrapped 61-pin hexagonal fuel bundle[J]. Journal of Fluids Engineering, 2018, 140(3): 031104. DOI: 10.1115/1.4038086.
- 18 Song M S, Jeong J H, Kim E S. Flow visualization on SFR wire-wrapped 19-pin bundle geometry using MIR-PIV-PLIF and comparisons with RANS-based CFD analysis[J]. Annals of Nuclear Energy, 2020, 147: 107653. DOI: 10.1016/j.anucene.2020.107653.
- 19 Choi S K, Choi I K, Nam H Y, *et al.* Measurement of pressure drop in a full-scale fuel assembly of a liquid metal reactor[J]. Journal of Pressure Vessel Technology, 2003, **125**(2): 233 – 238. DOI: 10.1115/1.1565076.
- 20 Wakasugi K, Kakehi I. Pressure drop performance of fuel pin bundle with spiral wire spacer[J]. Journal of Nuclear Science and Technology, 1971, 8(3): 167 - 172. DOI: 10. 1080/18811248.1971.9735309.
- 21 Spencer D R, Markley R A. Friction factor correlation for 217 pin wire-wrap spaced LMFBR fuel assemblies[C]// Proceedings of the ANS Winter Meeting. Madison, Westinghouse Electric Corp, 1981. DOI: 10.1016/j. anucene.2020.107653.
- 22 Padmakumar G, Velusamy K, Prasad B V S S, et al. Hydraulic characteristics of a fast reactor fuel subassembly: an experimental investigation[J]. Annals of Nuclear Energy, 2017, 102: 255 - 267. DOI: 10.1016/j. anucene.2016.12.025.
- Chun M H, Seo K W, Choi S K, *et al.* An experimental study of pressure drop correlations for wire-wrapped fuel assemblies[J]. KSME International Journal, 2001, 15(3): 403 409. DOI: 10.1007/BF03185224.
- 24 Pacio J, Daubner M, Fellmoser F, *et al.* Experimental study of heavy-liquid metal (LBE) flow and heat transfer

along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016, **301**: 111 - 127. DOI: 10.1016/j.nucengdes.2016.03.003.

- Kennedy G, Tichelen K, Pacio J, *et al.* Thermal-hydraulic experimental testing of the MYRRHA wire-wrapped fuel assembly[J]. Nuclear Technology, 2019, 206(2): 179 190. DOI: 10.1080/00295450.2019.1620539.
- 26 Hoffmann H. Experimentelle Untersuchungen zur Kühlmittelquervermischung und zum Druckabfall in

Stabbündel mit wendelf'ormigen Abstandshaltern. Einflußder Ergebenisse auf die Auslegung von Brennelementen schneller natrium-gekühlter Reaktoren [D]. Karlsruhe, Kernforschungszentrum Karlsruhe, 1981.

27 陈义良,朱旻明.物理流体力学[M]. 合肥:中国科学技 术大学, 2008.
CHEN Yiliang, ZHU Minming. Physical fluid dynamics [M]. Hefei: University of Science and Technology of China, 2008.