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Abstract. The present study is devoted to investigate the chirped gap solitons with Kudryashov’s law of self-
phase modulation having dispersive reflectivity. Thus, the mathematical model consists of coupled nonlinear
Schrödinger equation (NLSE) that describes pulse propagation in a medium of fiber Bragg gratings (BGs).
To reach an integrable form for this intricate model, the phase-matching condition is applied to derive equiv-
alent equations that are handled analytically. By means of auxiliary equation method which possesses Jacobi
elliptic function (JEF) solutions, various forms of soliton solutions are extracted when the modulus of JEF
approaches 1. The generated chirped gap solitons have different types of structures such as bright, dark,
singular, W-shaped, kink, anti-kink and Kink-dark solitons. Further to this, two soliton waves namely chirped
bright quasi-soliton and chirped dark quasi-soliton are also created. The dynamic behaviors of chirped gap
solitons are illustrated in addition to their corresponding chirp. It is noticed that self-phase modulation and
dispersive reflectivity have remarkable influences on the pulse propagation. These detailed results may enhance
the engineering applications related to the field of fiber BGs.

Keywords: Chirped gap solitons, Bragg gratings, Kudryashov’s law.

1 Introduction

The new technology in information industry depends broadly on optical fibers since its presence as a prominent mechanism
that transmits light and signals over long distances and local area networks or computer networks [1–5]. The field of optical
fibers can lead to further developments in the engineering and industrial applications that serve wide ranges of sectors [6, 7].
In particular, the essential applications of optical fibers include telecommunications, sensors, bio-medicals, and fibre lasers
[8–13]. The process of transmitting data is made by the soliton propagation due to the balance between chromatic dispersion
(CD) and fiber nonlinearity. Unfortunately, the low contribution from CD may causes a restriction in the transmission
scenario. This crisis can be effectively manipulated by making use of Bragg gratings (BGs) technology which compensates
for low CD. In the last decade, many experts around the world have extensively studied the dynamic of solitons in fiber BGs
with different forms of nonlinear refractive index such as Kerr law, quadratic-cubic law, parabolic law, polynomial law,
parabolic-nonlocal combo law and many others [14–20]. Additionally, the characteristic of soliton propagation associated
with the frequency chirp influence has been being studied continuously through the years as the chirp has significant
advantages including pulse compression and amplification in optical fiber [21–27].

Rece, a significant model known as Kudryashov’s equation (KE) [28] was developed to study the soliton pulse propa-
gation in the field of nonlinear optics. The KE is considered as a part of the family of nonlinear Schrödinger equation
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and it is generated from a law of refractive index. Since its appearance in 2019, the KE has been discussed by many scholars
to deal with some physical features like conservation laws and optical soliton behaviors by means of various integration
schemes and techniques such as Lie symmetry analysis, extended sinh-Gordon equation expansion method, complete dis-
criminant system for a polynomial, new mapping method, unified auxiliary equation scheme, improved modified extended
tanh-function approach, extended trial function method and unified ansätze framework. Different soliton structures were
derived such as bright, dark, singular, bright-dark, singular-dark solitons and others. For more details about obtained
results, reader is referred to the references [29–36]. The governing KE is given by

iqt þ aqxx þ
b1
qj j2n þ

b2
qj jn þ b3 qj jn þ b4 qj j2n

 !
q ¼ 0; ð1Þ

where the first term represents the time evolution and i ¼ ffiffiffiffiffiffiffi�1
p

. The term with the coefficient a stands for the group
velocity dispersion while the terms with the coefficients b1, b2, b3, b4 describe the effect of self-phase modulation
(SPM). In the literature, some generalized models of equation (1) are discussed to investigate optical solitons by apply-
ing distinct strategies, see as example references [37–39].

The model of KE can be also implemented to fiber BGs to examine its influence on the pulse propagation. For example,
Zayed et al. [16] detected the applicability of KE to fiber BGs with dispersive reflectivity and Kerr law of nonlinear refrac-
tive index when n = 1, n = 2 n = 3. Using the extended Kudryashov’s scheme, both chirped and chirp-free optical solitons
are retrieved and they are found to have the forms of dark and singular soliton profiles. It is necessary to be mentioned that
the chirping associated to these solitons is expressed in terms of constant. Our current work aims to investigate the chirped
gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity when n = 2. Herein, we assume
that the chirp has a form of nonlinear function.

As stated above, this study focuses on the model of Kudryashov’s equation (KE) in fiber medium having BGs effect. The
vector-coupled KE reads [16]

iqt þ a1rxx þ f1q

b1 qj j4 þ c1 qj j2 rj j2 þ d1 rj j4 þ
g1q

h1 qj j2 þ k1 rj j2 þ l1 qj j2 þm1 rj j2� �
q

þ n1 qj j4 þ p1 qj j2 rj j2 þ s1 rj j4� �
q þ ia1qx þ b1r ¼ 0; ð2Þ

irt þ a2qxx þ
f2r

b2 rj j4 þ c2 rj j2 qj j2 þ d2 qj j4 þ
g2r

h2 rj j2 þ k2 qj j2 þ l2 rj j2 þm2 qj j2� �
r

þ n2 rj j4 þ p2 rj j2 qj j2 þ s2 qj j4� �
r þ ia2rx þ b2q ¼ 0; ð3Þ

where the functions q(x, t) and r(x, t) stand for forward and backward propagating waves, respectively, whereas aj for
j = 1, 2 represent the coefficients of dispersive reflectivity. In the coupled equations above, bj, hj, lj and nj indicate the
coefficients of self-phase modulation (SPM) and cj, dj, kj, mj, pj and sj denote the cross-phase modulation XPM, respec-
tively. The coefficients fj and gj represent the combination of SPM and XPM. Finally, aj account for inter-modal disper-
sion and bj define detuning parameters. All of the coefficients are real valued constants and i ¼ ffiffiffiffiffiffiffi�1

p
.

The following sections of paper are formatted as follows. In Section 2, the governing model is analyzed and reduced to an
integrable form. Section 3 displays the derivation of chirped gap solitons with the aid of auxiliary equation method. The
structures and behaviors of created solitons are discussed and described in Section 4. Finally, the summary of obtained
results is given in Section 5.

2 Mathematical analysis of governing model

In order to reduce the coupled-KE give by (2) and (3) to an integrable form, its complex structure is analyzed using the
transformation given by

q x; tð Þ ¼ w1 nð Þei / nð Þ�xtð Þ; ð4Þ

r x; tð Þ ¼ w2 nð Þei / nð Þ�xtð Þ;
ð5Þ

where n = x � mt while x and m are real constants indicating the wave number and the soliton velocity. The two functions
w1(n) and w2(n) account for the amplitudes of the solitons whereas the function /(n) represents nonlinear phase shift.

The corresponding chirp is identified as dx x; tð Þ ¼ � o
ox

/ nð Þ � xt½ � ¼ � d/ nð Þ
dn

.

J. Eur. Opt. Society-Rapid Publ. 19, 40 (2023)2



Inserting (4) and (5) into the coupled system (2) and (3) and breaking down into the imaginary and real components, we
reach

a1w002 þ xw1 þ b1w2 þ m� a1ð Þw1/
0 � a1w2/

02 þ f1w1

b1w
4
1 þ c1w

2
1w

2
2 þ d1w

4
2

þ g1w1

h1w
2
1 þ k1w

2
2

þ l1w
2
1 þm1w

2
2

� �
w1 þ n1w

4
1 þ p1w

2
1w

2
2 þ s1w

4
2

� �
w1 ¼ 0; ð6Þ

a2w001 þ xw2 þ b2w1 þ m� a2ð Þw2/
0 � a2w1/

02 þ f2w2

b2w
4
2 þ c2w

2
2w

2
1 þ d2w

4
1

þ g2w2

h2w
2
2 þ k2w

2
1

þ l2w
2
2 þm2w

2
1

� �
w2 þ n2w

4
2 þ p2w

2
2w

2
1 þ s2w

4
1

� �
w2 ¼ 0; ð7Þ

and

a1 � mð Þw0
1 þ a1 w2/00 þ 2w0

2/
0� � ¼ 0; ð8Þ

a2 � mð Þw0
2 þ a2 w1/00 þ 2w0

1/
0� � ¼ 0: ð9Þ

To handle this complexity, we assume

w2 ¼ cw1; ð10Þ
where c 6¼ 1 is a real constant. Accordingly, the set of equations (6)–(9) are converted into

a1cw
3
1w001 þ

f1
b1 þ c1c2 þ d1c4

þ g1w
2
1

h1 þ k1c2
þ xþ b1cþ m� a1ð Þ/0 � a1c/

02
h i

w4
1

þ l1 þm1c
2

� �
w6

1 þ n1 þ p1c
2 þ s1c4

� �
w8

1 ¼ 0; ð11Þ

a2w
3
1w001 þ

f2c
b2c4 þ c2c2 þ d2

þ g2cw
2
1

h2c2 þ k2
þ xcþ b2 þ m� a2ð Þc/0 � a2/

02
h i

w4
1

þ l2c2 þm2

� �
cw6

1 þ n2c
4 þ p2c

2 þ s2
� �

cw8
1 ¼ 0; ð12Þ

and

a1 � mð Þw0
1 þ a1c w1/00 þ 2w0

1/
0� � ¼ 0; ð13Þ

a2 � mð Þcw0
1 þ a2 w1/00 þ 2w0

1/
0� � ¼ 0: ð14Þ

The system of equations (13) and (14) can be integrated to yield

/0 ¼ m� a1
2a1c

þ q1w
�2
1

a1c
; ð15Þ

/0 ¼ m� a2ð Þc
2a2

þ q2w
�2
1

a2
; ð16Þ

where q1 and q2 are the integration constants. Due to the equivalency between equations (15) and (16), one arrives at
the constraint conditions given by

a2q1 � a1cq2 ¼ 0; ð17Þ

a2 � a1c
2

� �
m� a2a1 � a1a2c

2
� � ¼ 0: ð18Þ
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From equation (18) we come by the velocity of the soliton in the form

m ¼ a2a1 � a1a2c2

a2 � a1c2
: ð19Þ

Then, the chirp expression can be addressed as

dx x; tð Þ ¼ � m� a1
2a1c

þ q1w
�2
1

ca1

� �
: ð20Þ

Using (15) and (16), the coupling equations (11) and (12) are changed into

a1cw
3
1w

00
1 �

q2
1

a1c
þ f1
b1 þ c1c2 þ d1c4

þ g1w
2
1

h1 þ k1c2
þ xþ b1cþ

m� a1ð Þ2
4a1c

" #
w4

1 þ l1 þm1c
2

� �
w6

1 þ n1 þ p1c
2 þ s1c4

� �
w8

1 ¼ 0;

ð21Þ

a2w
3
1w

00
1 �

a2q2
1

a2
1c2

þ f2c
b2c4 þ c2c2 þ d2

þ g2cw
2
1

h2c2 þ k2
þ xcþ b2 þ

m� a2ð Þ2c2
4a2

" #
w4

1 þ l2c2 þm2

� �
cw6

1 þ n2c
4 þ p2c

2 þ s2
� �

cw8
1 ¼ 0:

ð22Þ
These coupled equations are equivalent based on the conditions given by

a2 ¼ a1c; ð23Þ

f2c b1 þ c1c2 þ d1c
4

� � ¼ f1 b2c4 þ c2c2 þ d2

� �
; ð24Þ

g2c h1 þ k1c2
� � ¼ g1 h2c

2 þ k2
� �

; ð25Þ

4a1c xcþ b2ð Þ þ m� a2ð Þ2c2 ¼ 4a1c xþ b1cð Þ þ m� a1ð Þ2; ð26Þ

l2c2 þm2

� �
c ¼ l1 þm1c

2; ð27Þ

n2c
4 þ p2c

2 þ s2
� �

c ¼ n1 þ p1c
2 þ s1c4: ð28Þ

Performing the balance between the terms w3
1w01 and w8

1 in equation (21) brings about the relation

4N þ 2 ¼ 8N ; ð29Þ
which leads to N = 1/2. To ensure closed form solutions, we put forward the transformation of the form

w1 nð Þ ¼ P
1
2 nð Þ: ð30Þ

Upon implementing (30), equation (21) collapses into

P 02 � 2PP 00 þ r0 þ r1P þ r2P2 þ r3P3 þ r4P4 ¼ 0; ð31Þ
where the constants rj, (j = 0, 1, 2, 3, 4) are defined as

r0 ¼ 4q2
1

a2
1c2

� 4f 1
a1c b1 þ c1c2 þ d1c4ð Þ ; r1 ¼ �4g1

a1c h1 þ k1c2ð Þ ; r2 ¼ � 4a1c xþ b1cð Þ þ m� a1ð Þ2
a2
1c2

;

r3 ¼ � 4 l1 þm1c2ð Þ
a1c

; r4 ¼ � 4 n1 þ p1c2 þ s1c4ð Þ
a1c

: ð32Þ
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3 Chirped gap solitons

Our target now is to derive the chirped gap solitons to the coupled-KE by finding the solutions of equation (31) using a new
extended auxiliary equation method [40]. This strategy provides various forms of Jacobi elliptic function solutions. To start
with, we assume that equation (31) has a solution in the form

P nð Þ ¼ g1 þ g2F
2 nð Þ

g3 þ g4F
2 nð Þ ; ð33Þ

where gj, (j = 1, 2, 3, 4) are constants to be identified and the function F(n) satisfies the first order ordinary differential
equation given by

F 0 nð Þð Þ2 ¼ A0 þ A2F nð Þ2 þA4F nð Þ4 þ A6F nð Þ6; ð34Þ
where Aj, (j = 0, 2, 4, 6) are constants to be determined. Equation (34) admits solutions having the form

F nð Þ ¼ 1
2

�A4

A6
1� f nð Þð Þ

� �1
2

; ð35Þ

where the function f(n) can be expressed in terms of the Jacobi elliptic functions (JEFs) sn(n, m), cn(n, m), dn(n, m) and
others, where 0 < m < 1 is the modulus of JEFs that degenerate to hyperbolic functions and trigonometric functions as
m approaches 1 or 0, respectively. Substituting (33) into equation (31) and using equation (34), we find a polynomial in
terms of F0(n)jF(n)l, (j = 0, 1; l = 0, 1, . . .). Collecting the coefficients of terms with the same powers and equating them
to zero yields a system of algebraic equations for gj, (j = 1, 2, 3, 4), Aj, (j = 0, 2, 4, 6) and rj, (j = 0, 1, 2, 3, 4). Solving this
system gives us the following cases of solutions.

Case 1.

g4 ¼ 0; g1 ¼
g2 8A4g3 � r3g2ð Þ

32A6g3
; g2 ¼ �g3

ffiffiffiffiffiffiffiffiffiffiffi
12A6

r4

s
; r0 ¼

g1 8A0g32g3 � 8A2g1g
2
2g3 þ 24A6g31g3 þ r3g21g

2
2

� �
2g22g

3
3

;

r1 ¼ 0; r2 ¼ 8A2g22g3 � 48A6g21g3 � 3r3g22g1
2g22g3

: ð36Þ

Family 1. If A0 ¼ A3
4 m2 � 1ð Þ
32A2

6m2
;A2 ¼ A2

4 5m2 � 1ð Þ
16A6m2

, then we arrive at the Jacobi elliptic function solutions of the coupled

equations (2) and (3) as

q x; tð Þ ¼ 1
8A6r4

�3A6r3 � 4A4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3A6r4

p
sn

A4

2m

ffiffiffiffiffiffi
1
A6

r
x � mtð Þ

� �� �	 
1
2

ei / nð Þ�xtð Þ; ð37Þ

r x; tð Þ ¼ cq x; tð Þ; ð38Þ

and

q x; tð Þ ¼ 1
8mA6r4

�3mA6r3 � 4A4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3A6r4

p
ns

A4

2m

ffiffiffiffiffiffi
1
A6

r
x � mtð Þ

� �� �	 
1
2

ei / nð Þ�xtð Þ; ð39Þ

r x; tð Þ ¼ cq x; tð Þ; ð40Þ
where r4 > 0, A6 > 0. As m ? 1, solutions (37) and (38) change to the soliton solutions given by

q x; tð Þ ¼ 1
8A6r4

�3A6r3 � 4A4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3A6r4

p
tanh

A4

2

ffiffiffiffiffiffi
1
A6

r
x � mtð Þ

� �� �	 
1
2

ei / nð Þ�xtð Þ; ð41Þ

r x; tð Þ ¼ cq x; tð Þ; ð42Þ
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while solutions (39) and (40) fall into the singular soliton solutions as

q x; tð Þ ¼ 1
8A6r4

�3A6r3 � 4A4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3A6r4

p
coth

A4

2

ffiffiffiffiffiffi
1
A6

r
x � mtð Þ

� �� �	 
1
2

ei / nð Þ�xtð Þ; ð43Þ

r x; tð Þ ¼ cq x; tð Þ; ð44Þ
Family 2. If A0 ¼ A3

4

32A2
6m2

;A2 ¼ A2
4 4m2 þ 1ð Þ
16A6m2

, then one can obtain the Jacobi elliptic function solutions of the coupled

equations (2) and (3) as

q x; tð Þ ¼ 1
8A6r4

�3A6r3 � 4A4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3A6r4

p
cn

A4

2m

ffiffiffiffiffiffiffi�1
A6

r
x � mtð Þ

� �� �	 
1
2

ei / nð Þ�xtð Þ; ð45Þ

r x; tð Þ ¼ cq x; tð Þ; ð46Þ
where r4 < 0, A6 < 0. As m ? 1, solutions (45) and (46) reduce to the soliton solutions of the form

q x; tð Þ ¼ 1
8A6r4

�3A6r3 � 4A4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3A6r4

p
sech

A4

2

ffiffiffiffiffiffiffi�1
A6

r
x � mtð Þ

� �� �	 
1
2

ei / nð Þ�xtð Þ; ð47Þ

r x; tð Þ ¼ cq x; tð Þ: ð48Þ
Case 2.

g3 ¼ 0; g2 ¼
4A2 � r2ð Þg1

12A0
; g4 ¼

r3g1
8A0

; r0 ¼
4 A0g32 � A2g1g

2
2 þ A4g21g2 �A6g31

� �
g1g

2
4

; r1 ¼ 0; r4 ¼ 0: ð49Þ

If A0 ¼ A3
4

32A2
6m2

;A2 ¼ A2
4 4m2 þ 1ð Þ
16A6m2

, the Jacobi elliptic function solutions of the coupled equations (2) and (3) are

secured as

q x; tð Þ ¼
A2

4 þ 4m2 A2
4 � A6r2

� �� �
1þ cn A4

2m

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
� 6A2

4

6m2A6r3 1þ cn A4
2m

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð50Þ

r x; tð Þ ¼ cq x; tð Þ; ð51Þ
where A6 < 0. As m ? 1, solutions (50) and (51) reduce to the soliton solutions of the form

q x; tð Þ ¼
5A2

4 � 4A6r2

� �
1þ sech A4

2

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
� 6A2

4

6A6r3 1þ sech A4
2

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð52Þ

r x; tð Þ ¼ cq x; tð Þ: ð53Þ
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Case 3.

g2 ¼ 0; g4 ¼ � 2g1
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A6r0

p
; r1 ¼ 0; r2 ¼ 12A0g3g

3
4 � 8A2g23g

2
4 þ 12A6g43 þ r4g21g

2
4

g23g
2
4

;

r3 ¼
� 16A0g3g

3
4 � 8A2g23g

2
4 þ 8A6g43 þ 2r4g21g

2
4

� �
g1g

2
4g3

; r4 ¼
12g3 �A0g34 þ A2g3g

2
4 � A4g23g4 þ A6g33

� �
g24g

2
1

: ð54Þ

Family 1. If A0 ¼ A3
4 m2 � 1ð Þ
32A2

6m2
;A2 ¼ A2

4 5m2 � 1ð Þ
16A6m2

, then we arrive at the Jacobi elliptic function solutions of the coupled

equations (2) and (3) as

q x; tð Þ ¼ 2A6r0g1

2A6r0g3 � A4g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A6r0

p
1þ sn A4

2m

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð55Þ

r x; tð Þ ¼ cq x; tð Þ; ð56Þ
and

q x; tð Þ ¼ 2mA6r0g1

2mA6r0g3 � A4g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A6r0

p
m þ ns A4

2m

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð57Þ

r x; tð Þ ¼ cq x; tð Þ; ð58Þ
where r0 <0, A6> 0. When m ? 1, solutions (55) and (56) become the soliton solutions given by

q x; tð Þ ¼ 2A6r0g1

2A6r0g3 � A4g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A6r0

p
1þ tanh A4

2

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð59Þ

r x; tð Þ ¼ cq x; tð Þ; ð60Þ
while solutions (57) and (58) result in the singular soliton solutions as

q x; tð Þ ¼ 2A6r0g1

2A6r0g3 � A4g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A6r0

p
1þ coth A4

2

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð61Þ

r x; tð Þ ¼ cq x; tð Þ: ð62Þ
Family 2. If A0 ¼ A3

4

32A2
6m2

;A2 ¼ A2
4 4m2 þ 1ð Þ
16A6m2

, we reach the Jacobi elliptic function solutions of the coupled equations (2)
and (3) as

q x; tð Þ ¼ 2A6r0g1

2A6r0g3 � A4g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A6r0

p
1þ cn A4

2m

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð63Þ

r x; tð Þ ¼ cq x; tð Þ; ð64Þ
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where r0 > 0, A6 < 0. As m ? 1, solutions (45) and (46) convert to the soliton solutions of the form

q x; tð Þ ¼ 2A6r0g1

2A6r0g3 � A4g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A6r0

p
1þ sech A4

2

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð65Þ

r x; tð Þ ¼ cq x; tð Þ: ð66Þ
Case 4.

r1 ¼ 0; r0 ¼
4g1 A0g32 � A2g1g

2
2 þ A4g21g2 � A6g31

� �
g1g4 � g2g3ð Þ2 ; r4 ¼

�12g3 A0g34 � A2g3g
2
4 þ A4g23g4 � A6g33

� �
g1g4 � g2g3ð Þ2 ;

r2 ¼
� 24A0g3g4 � 8A2g23 þ 4g21r4 þ 3g1g3r3

� �
2g23

; r3 ¼
�8 9A0g3g

2
4 � 6A2g23g4 þ 3A4g33 þ g21g4r4 � g1g2g3r4

� �
3g3 g1g4 � g2g3ð Þ : ð67Þ

Family 1. If A0 ¼ A3
4 m2 � 1ð Þ
32A2

6m2
;A2 ¼ A2

4 5m2 � 1ð Þ
16A6m2

, the Jacobi elliptic function solutions of the coupled equations (2) and (3)
are retrieved as

q x; tð Þ ¼
4A6g1 � A4g2 1þ sn A4

2m

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
4A6g3 � A4g4 1þ sn A4

2m

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð68Þ

r x; tð Þ ¼ cq x; tð Þ; ð69Þ
and

q x; tð Þ ¼
4mA6g1 � A4g2 m þ ns A4

2m

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
4mA6g3 � A4g4 m þ ns A4

2m

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð70Þ

r x; tð Þ ¼ cq x; tð Þ; ð71Þ
where A6 > 0. When m ? 1, solutions (68) and (69) become the soliton solutions given by

q x; tð Þ ¼
4A6g1 �A4g2 1þ tanh A4

2

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
4A6g3 �A4g4 1þ tanh A4

2

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð72Þ

r x; tð Þ ¼ cq x; tð Þ; ð73Þ
while solutions (70) and (71) result in the singular soliton solutions as

q x; tð Þ ¼
4A6g1 �A4g2 1þ coth A4

2

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
4A6g3 �A4g4 1þ coth A4

2

ffiffiffiffi
1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð74Þ

r x; tð Þ ¼ cq x; tð Þ: ð75Þ
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Family 2. If A0 ¼ A3
4

32A2
6m2

;A2 ¼ A2
4 4m2 þ 1ð Þ
16A6m2

, we reach the Jacobi elliptic function solutions of the coupled equations (2)
and (3) as

q x; tð Þ ¼
4A6g1 � A4g2 1þ cn A4

2m

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
4A6g3 � A4g4 1þ cn A4

2m

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð76Þ

r x; tð Þ ¼ cq x; tð Þ; ð77Þ
where A6 < 0. When m ? 1, solutions (76) and (77) turn into the soliton solutions of the form

q x; tð Þ ¼
4A6g1 � A4g2 1þ sech A4

2

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
4A6g3 � A4g4 1þ sech A4

2

ffiffiffiffi
�1
A6

q
x � mtð Þ

 �h i
8><
>:

9>=
>;

1
2

ei / nð Þ�xtð Þ; ð78Þ

r x; tð Þ ¼ cq x; tð Þ: ð79Þ
Based upon the results obtained above and its counterpart in [16], the term with the parameter g1 has to be neglected so as
to reach closed form solutions for the coupled KE, meaning that g1 = 0. Accordingly, equation (21) collapses to an elliptic-
type differential equation having the form

w00
1 �

r2

4
w1 �

r3

4
w3

1 �
r4

4
w5

1 ¼ 0; ð80Þ

under the restriction condition

f1a1c ¼ q2
1 b1 þ c1c2 þ d1c

4
� �

; ð81Þ

where r2, r3 and r4 are as defined in (32). Equation (80) is known to have various types of soliton solutions. One can
find, for instance, a quasi-soliton solution given as

w1 nð Þ ¼ j1sech Xnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2sech2 Xnð Þ

q ; ð82Þ

where

X ¼ 1
2
ffiffiffiffiffi
r2

p
; j4

1 ¼
12r2

2

3r2
3 � 16r2r4

� �
; j2 ¼ � 1

2
1þ r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

3r2
3 � 16r2r4

s !
; ð83Þ

provided that r2 > 0 and 3r2
3 � 16r2r4 > 0 to gurantee real values for the pulse width and amplitude. From this finding,

the coupled equations (2) and (3) possess chirped bright quasi-soliton solution in the form

q x; tð Þ ¼ j1sech X x � mtð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2sech2 X x � mtð Þ½ �

q ei / nð Þ�xtð Þ; ð84Þ

r x; tð Þ ¼ cq x; tð Þ: ð85Þ
Additionally, we can secure another form of quasi-soliton solution for equation (80) as

w1 nð Þ ¼ l1 tanh Knð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2sech

2 Knð Þ
q ; ð86Þ

where

K ¼ l1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r3 þ 4r4l2

1

q
; l2 ¼

2r4l2
1

3r3 þ 4r4l2
1
; ð87Þ
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Figure 2. Soliton intensity for q(x; t) and r(x; t) given in (47) and (48) along with chirping profile.

Figure 1. Soliton intensity for q(x; t) and r(x; t) given in (41) and (42) along with chirping profile.
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under the constraint conditions

r2 þ r3l
2
1 þ r4l

4
1 ¼ 0; ð88Þ

provided that 2r3 þ 4r4l2
1 > 0 to ensure the validity of constructing quasi-soliton wave. Making use of these results, the

coupled equations (2) and (3) has chirped dark quasi-soliton solution presented as

q x; tð Þ ¼ l1 tanh K x � mtð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2sech

2 K x � mtð Þ½ �
q ei / nð Þ�xtð Þ; ð89Þ

r x; tð Þ ¼ cq x; tð Þ: ð90Þ
In all solutions obtained above, the wave number x is an arbitrary constant, the soliton velocity m is identified in (19) and
the nonlinear phase shift /(n) can be found from (15). The chirping associated to each soliton is extracted by (20).

4 Results and discussion

As done analytically above, the implemented mathematical approach has yielded a variety of exact solutions to the coupled-
KE given by (2) and (3). These solutions describe distinct soliton structures for which the corresponding nonlinear chirp is
expressed in terms of the reciprocal of soliton intensity. The dynamical behaviors of derived soliton waves are represented
graphically to understand their physical meaning in fiber Bragg gratings medium. Thus, we illustrate the intensity profiles
of gap solitons using the model parameters. The chirping associated to these solitons is also plotted.

Figure 1 displays the behaviors of solutions (41) and (42) with the model parameters given by a1 = a2 = 1,
c = a1 = a2 = q1 = m1 = p1 = 0.5, n1 = �0.5, s1 = 1.5, A6 = 4. Based on the change in the value of A4, it can be observed
that these solutions describe two soliton structures in addition to their corresponding chirp. As it can be seen from Figure 1a,

Figure 3. Soliton intensity for q(x; t) and r(x; t) given in (52) and (53) along with chirping profile.
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Figure 4. Soliton intensity for q(x; t) and r(x; t) given in (59) and (60) along with chirping profile.

Figure 5. Soliton intensity for q(x; t) and r(x; t) given in (65) and (66) along with chirping profile.

Figure 6. Soliton intensity for q(x; t) and r(x; t) given in (72) and (73) along with chirping profile.
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the graph shows kink-dark soliton with A4 = 8 while Figure 1b exhibits kink wave with A4 = 2. We can clearly notice that
Figure 2 demonstrates three forms of solitons that are deduced from solutions (47) and (48) which are plotted with same
values of parameters as in Figure 1 except A6 = �4 and with different values of A4 and l1. The first soliton form represents
bright soliton wave as depicted in Figure 2a when A4 = 2; l1 = �0.5, �0.3, �0.1, the second soliton form describes soliton
wave having W shape as shown in Figure 2b when A4 = 4; l1 = 0.3, 0.6, 1 and the third wave form is dark soliton as pre-
sented in Figure 2c when A4 = �2; l1 = �1.5, �1.2, �0.9. We have also found that solutions (52) and (53) describe three
types of solitons having the former structures as shown in Figure 3 with same values of parameters as in Figure 2 and
A4 = 8, x = 1, b = 0.5. The bright soliton in Figure 3a is plotted with a1 = 1, the W-shaped soliton in 3b is plotted with
a1 = �2.5 and the dark soliton in 3c is plotted with a1 = �1. In Figure 4, the graph illustrates anti-kink soliton character-
izing solutions (59) and (60) for the values of parameters a1 = a2 = b1 = c1 = 1, c = a1 = a2 = q1 = g1 = g3 = d1 = 0.5,
A6 = 4, A4 = 8 while Figure 5 depicts dark soliton profile that represents solutions (65) and (66) where A6 = �4. Moreover,
we observe that Figure 6 presents three solitonic structures describing solutions (72) and (73) for the values of parameters
a1 = a2 = g3 = 1, c = a1 = a2 = q1 = 0.5, A4 = 8, A6 = 4. The first structure is kink-dark soliton as displayed in Figure 6a
with g2 = 1, g4 = 0.1 and g1 = 0.1, 0.3, 0.5. The second structure is kink soliton as plotted in Figure 6b with g1 = 1, g4 = 0.9
and g2 = 0.1, 0.4, 0.7. The third structure is anti-kink soliton as presented in Figure 2c with g1 = 1, g2 = 0.9 and g4 = 0.1,
0.4, 0.7. Obviously, one can see that Figure 7 demonstrates three wave forms which are bright, W-shaped and dark solitons
describing solutions (78) and (79) with same values of parameters as in Figure 6 besides g1 = 1, A6 = �4. The bright soliton
is shown in Figure 7a with g2 = 1, g4 = 0.1, 0.4, 0.8; the W-shaped soliton is shown in Figure 7b with g2 = �1.2, g4 = 0.1,
0.5, 1 and the dark soliton is shown in Figure 7c with g4 = 1, g2 = 0.1, 0.4, 0.8. The special case of chirped bright quasi-
soliton solution (84) and (85) is depicted in Figure 8 with same values of parameters as in Figure 2 and x = 1, b = n1 = 0.5.
Further to this, the chirped dark quasi-soliton solution (89) and (90) is delineated in Figure 9 with same values of param-
eters as in Figure 8 and l = 1, a1 = �0.5, �1.5, �2.5.

From the dynamical behaviors of solitons presented in Figures 1–8, it can be clearly seen that SPM causes remarkable
variations in the amplitude of chirped gab solitons. On the other hand, one can notice from Figure 9 that the width of
chirped dark quasi-soliton is severely affected by the changes in dispersive reflectivity.

Figure 7. Soliton intensity for q(x; t) and r(x; t) given in (78) and (79) along with chirping profile.
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5 Conclusion

The current work concentrated on the chirped gap solitons with Kudryashov’s law of self-phase modulation having disper-
sive reflectivity. The medium of fiber BGs is dominated by a coupled NLSE which is reduced to an integrable form by intro-
ducing specific conditions. The extended auxiliary equation method which has solutions in terms of JEFs is applied to
extract soliton solutions when the modulus of JEFs tends to 1. Due to manipulating the values of model parameters, it
is found that some of solutions construct several chirped soliton structures with their corresponding chirp. The derived
chirped soliton waves include bright, dark, singular, W-shaped, kink, anti-kink and Kink-dark solitons. In addition to this,
the behaviors of solitons point out that SPM enhances the amplitude of waves. Besides, it is noticed that the width of dark
quasi-soliton is obviously affected by dispersive reflectivity. The results in this work could reveal important details about the
dynamics of chirped gap solitons that might lead to improvements in the industrial sector related to the field of fiber BGs.
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