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Abstract. This paper presents optical solitons with the concatenation model having spatio-temporal and
chromatic dispersions. This model can advantageously curtail the Internet bottleneck effect. Two integration
schemes yield these solitons. By utilizing the multipliers approach, the conservation laws are also derived.
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1 Introduction

One of the several models that is being lately addressed is
the concatenation of three well known equations that are
frequently visible in the field of nonlinear fiber optics. They
are the Lakshmanan—Porsezian—Daniel (LPD) model, non-
linear Schrodinger’s equation (NLSE) and Sasa—Satsuma
equation (SSE). This concatenated model first appeared
during 2014 and was studied by others to date [1-10]. There
are various aspects of this model that have beenaddressed.
These include rogue wave studies, the numerical study of
soliton solutions by the aid of Laplace-Adomian decompo-
sition scheme, the location of the conservation laws, the
Painleve analysis, the retrieval of soliton solutions using
the method of undetermined coefficients and others. Some
other features that are made to be visible are the applica-
tion of the Kudryashov’s approaches to obtain the strad-
dled solitons to the model, application of trial equation
approach to address the model, studying the model in
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birefringent fibers. Later, the model was studied with non-
linear chromatic dispersion (CD) that revealed quiescent
solitons. Moreover, the model was extended to birefringent
fibers where a full spectrum of soliton solutions were
revealed [7, 11-16].

The current paper will take these studies a bit further
along. This concatenation model is being addressed with
the inclusion of spatio-temporal dispersion (STD) as well
as the pre-existing chromatic dispersion (CD) and the
self-phase modulation (SPM) that comes with Kerr law.
The advantage of the inclusion of STD is that the velocity
of the soliton can be controlled. This can be advanta-
geously used to our benefit namely to control the Internet
bottleneck effect that is a growing problem with an ever-
increasing demand for faster Internet. This technological
marvel is being utilized for the concatenation model for
the initial once. The soliton solutions are first revealed with
the usage of two algorithmic approaches. Subsequently, the
conservation laws are derived, and the corresponding
conserved quantities are identified After providing a brief
overview of the model, the results and the respective math-
ematical analysis are exhibited.
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The concatenation model with STD is formulated as
[1-10):

Z'qt + aqyy + qu‘ + C‘q|2q + /11 I:alqzmz + aQ(qz)Qq* + 055‘(]7|2q
+ 04 4, + 256745, + %4l ]
+ i [0 Gy + %500, + 2047 4}] = 0. (1)

The wave profile, including its spatial and temporal deriva-
tives, can be described by the complex function ¢(z, t). The
linear temporal evolution of solitons is given by the first
term, while a and b are the CD and STD coefficients and
finally ¢ represents SPM. The concatenation model is the
conjoined version of three familiar, frequently visible mod-
els. For 4, = 1, = 0, the model collapses to NLSE, while
A1 = 0 or Ay = 0 give the familiar SSE or LPD equation
respectively.

2 Integration algorithms: A recapitulation

Let us examine a governing model with the structure of,
) =0. (2)

Here we can describe the wave profile, u = u(z, t), as a
function of both time and space, denoted by ¢ and =z

G(’LL, Ugy Uy Ugty Uy - -

respectively.
The wave transformation:
¢=p(z—vt), ulzt) = U(), 3)
reduces equation (2) to,
P(U,—wU', uU , 2U",...) =0, (4)

where the wave velocity is indicated by v, the wave vari-
able is denoted by &, and the wave width is represented
by the symbol pu.

2.1 Enhanced Kudryashov’'s method

The fundamental principles of the methodology can be sum-
marized as follows:

Step-1: The simplified equation (4) has a solution that
can be expressed explicitly as follows:

UE) =2+, > 4QEOR(Q), (5)

N
=1 itj=l

by the aid of the auxiliary equations,
R(&)" = R(O)’(1 - £R(£)), (6)
and

Q) = QM) - 1), (7)

where the constants in these equations include A,(i, j = 0,
1,..., N), n, x, and dy. The value of Nis determined by the
balancing principle in (4).

Step-2: The solutions derived from equations (6) and (7)
are presented as below,

4d
R(¢) = y (8)
and,
Q&) = (9)
St

where d and f are constants.

Step-3: Inserting (5) along with equations (6) and (7)
into (4), a system of algebraic equations arises. This system
can then be addressed to provide the undetermined con-
stants in (3) and (5). Finally, plugging (8) and (9) with
parametric restrictions into (5) enables us bright and dark
solitons.

2.2 General projective Riccati’s equation method

The algorithmic approach to the general projective
Riccati’s equation method is listed here as follows:

Step-1: The explicit solution for the reduced equation
(4) can be expressed as,

N

UE) =+ ¢ () ((¢) + B(9).  (10)

i=1
The functions ¢(&) and (&) satisty,

¢'(&) = —p((9),

) ; (11)
V() = o=y (&) —0¢(0),

along with,

2 &+,
(&) =0 = 20¢(8) +——¢°(), (12)
where f8;, 2(i=0,1,..., N), ¢ > 0, 6 and og are arbitrary
constants.

Step-2: The solutions to (11) are characterized by,

asech[\/a¢] _ y/otanh /5]

P(&) = Ssech[\/od + 1’ Y(é) = Ssech[\/od + 1 (13)
and,
_ ocsch[y/a¢] /o coth [\/a¢]
Ple) = desch[y/oé]+ 17 vie) = deschly/aé] + 17 (14)
for T = —1, 1 respectively and we obtain a positive integer

number N by applying the balancing principle to the
equation (4).

Step-3: Upon substituting the expressions given by
equations (10)—(12) into the governing equation (4), we
obtain an over-determined system of algebraic equations.
By solving this system of equations, we can obtain the
unknown parameters in equations (10)-(12). Finally, plug-
ging (13) and (14) into (10) allows us hyperbolic-type wave
solutions.
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3 Application to the concatenation model

We can express the solution to equation (1) as a soliton
wave, given by,

W(z,t) = U™, (15)

with,
&= k(z—ot), (16)
where v is the speed of the soliton, and U(&) represents the

amplitude component of the soliton. The phase compo-
nent ¢(z, t) is defined as,

o(z,t) = —xz + wt + Op. (17)

Here 6y is the phase constant, and « is the frequency of the
soliton. By substituting the solution form given in equa-
tion (15) into the governing equation (1) and then sepa-
rating the real and imaginary parts of the resulting
equation, we obtain:

K (a — bv — 60441 + 30720) U” + (—ar® + oy g — o7 d01®
—o + bkw) U + (¢ — A (o — o + oy + 015)
+(otg — 0tg) Aor) U + o dn kU™ + (o4 + 0t5) K> U U”
+(0ty 4 ) WK UU™ + 064 U° = 0, (18)

and,
—k(2ax — 4oy 24" + 3otz o1 + v — bicv + bw) U’

+k3(057;LQ - 4&1/{116) UW + k((ofg + OCg)ig
—2(oty + oy — 05) k) U2 U’ = 0. (19)

The evolution of the soliton speed can be obtained from the
imaginary part as follows:
_ 2aK — b — 4oy A 4 3oz Aok

- 2
v e 1 , (20)

with parametric restrictions,
(OCS + 059)/12 — 2(0(2 —+ oy — a5);L1K = O, (21)

and,

06712 — 40(1/111( =0. (22)
Equation (18) can be simplified to,
RU" + LUU" + LU + LUU” + LU

+L; U + LU = 0, (23)

with,
oy + 0 a — bv — 603 A1K% + 307 Aok
Ll = ) L2 = )
041 06121
o + o3 —ar’® + ikt — ar ko’ — @ + bro
L="%% 7 ,
o OC]/L]k
I — % L. — ¢ — Aoy — otz + oy + 05)K* + (o5 — 0g) Aaic
5 — PR 6 — P .
ok ok

(24)
The soliton velocity given by (20) is the one that carries a
control parameter namely b, the coefficient of STD. This
parameter can regulate the soliton flow in a triad juncture
by allowing the traffic to proceed in one direction and hold-
ing off the Internet traffic in the other. Such a signaling
effect can smoothen the traffic flow and mitigate the Inter-
net bottleneck effect.

3.1 Enhanced Kudryashov’s scheme

Balancing U"" with [P in equation (23) yields N = 1, which
leads to the following form of the solution:

U(E) = 20 + 2 R(E) + 210 Q(&). (25)

Plugging (25) with (6) and (7) into equation (23) provides
us the following results.

Result-1:

7(L1—Lg+9)
2Ls )

/10:/110:07 /101::‘:

k = 1/ —(LQ + L4),

 3Ly(Ly — 5L + 30) + 2L4(3L; — TLg + 59)
B 6L, + 4L, ’

Ly

9 = £/ (L1 — L)’ +8(3L +2Ly) Ls.
(26)

As a consequence, the optoelectronic wave field comes out
as

)

See equation (27) bottom of the page

Selecting y = +4d*, Ly + Ly < 0 and Ly(L; — Lg + 9) > 0
allows us a bright wave profile,

q(a?, t) =

[Li — Lg + 1 ;
+ 1 2L6 + SeCh|: _(L2 + L4)(113 _ ’Ut)i| 67,(—;cachwtnLH[))7
5

(28)

while setting y = +4d” L, + L; < 0 and Ly(L, —
Lg + ¥) < 0 enables us a singular waveform,

W(Li—Le+9)
Hddy /e

Q(xv t) =

4d* exp [\/=(Ly + Ly)(z — vt)] + zexp [—/—(Ls + Ly)(z — ot)]

67;(,,6;p+(1)t+00)_ (27)
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Q(Iv t) =

Ly — Lg+ 9 .
+ /- %csch[ (Tt L) — ) el merorn,

(29)

These solitons are also addressed together with the para-
metric restriction (L; — Lg)* + 8(3Ly + 2L4) L5 > 0.

Result-2:
o=/~ LQG;_:)? o =0, dig = —2nlo,
Ly —2Lg) (L
k= + (L 6)(6+Q)_L2+4L47
2L
3Ls(0 — Lg :
@:ﬂ%—5@+—l%7—g+um 0= +\/I} — AL,Ls.
A

(30)
Thus, the wave profile stands as,

See equation (31) bottom of the page

Choosing 1 = +f, (Ly — 2Lg)(Lg + 0) + 2(4Ly — Ly)Ls > 0
and Ls(Lg + 0)<0 allows us the dark and singular solitons,

See equation (32) bottom of the page
and

See equation (33) bottom of the page

respectively. These solitons are also considered with the
criterion Lz, —4L,L; > 0.
3.2 General projective Riccati's equation approach

Balancing U"” with [P in equation (23) leads to N = 1, and
hence, the solution can be expressed as follows:

U(&) = ao + 0ap(S) + Bi($).
Plugging (34) together with (11) and (12) into equation

(34)

Result-1:
3(8° — 1)k
T y ) O, ﬁ] 0, 041 0 L2(3L1 T 2L3)7
Ly 412
g =— 12 4 = PRI
5k 25k
I  Ly((60° +3) Ly + 2(3° + 2) Ly)
. 30(8* — 1) i ’
ALy + L3)(3Ly + 2L
1, = At L) 3L 1 21) (35)

300k
In this case, the nonlinear waveform turns out to be,

() [ \/T }
——————=sech|\/—2(x — vt
301 +2Ls 5 ( ) i(—Kkz+wt+0p)

gz, t) = F e

dsech [\/—7%(:5 — Ut)} +1

with the aid of the constraints (6 — 1)(3L, + 2L3) < 0
and Ly < 0. For 6 = 0, a bright soliton is recovered.

(36)

Result-2:
T:_la OCO:Oa 06120, B]:i2—\/1_5k7
V=L + 2Ls)
(=1 L3I+ 2Ly)
5K (3(° +3) Ly +2(8° — 1) Ly)”
I Ly(3Ly +2Ly) ((60% — 9) Ly +2(8* — 1) Ly)
6 = — )

30K7(3(0% +3) Ly +2(8° — 1) Ly)

(4L + L3)(3Ly + 2L3)

LS = P P
300k

L, =
) 95(3(0% + 3) KLy + 2(0% — 1)kLy)’

(23) yields the following outcomes: (37)
L 2 .
q(a:, t) — _ 6 +e 1— Ui ez(—xz+(ut+00). (31)
2L Li—2L¢)(Ls
5 fexp [i\/W—LQJrZLM(I—vt)} +7
Ls 1 (L, — 2Lg) (L ],
g(z,t) = +4/— ;Z Qtanh 5 \/( 1 2(2( 6+ 0) — Ly +4Ly(z — ’Ut) ez(—;chrerrHU)7 (32)
1 (L - 2L)(L 1
q(z, ) = £/ - ;Zr @ coth 3 \/ (L ;L)( s +0) Ly + 4Ly (z — vt) | e-retorh) (33)
5 I 5 |

2(6* — 1)Ly (3L, + 2L3) (3(26° — 7) Ly + 4(0* — 1) Ls)
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(52 1)L (52 1)Lg (BLi+2ly)
G P G Pt L A€ G P G N | G
q(z,t) = TR el rren), (38)
2 1 3 ( _
dsech {\/ 02” L]+2(bz 1)L5)\$ Ut):l +1
3(0%+1) Ly (1) LBLit2Ls)
+2 3(7-3) Li+2(0%+1) Lg coth [\/ 5(3(52—3)L1+2(52+1)L3)\$ ) i(—Katowt+0)
iz t) = (541) La(311+2L3) < 42)
_ 2\9L1 3 ( _
ocsch {\/ 5(3(5273)L1+2(52+1)L3)\x Ut)} +1

Therefore, the optoelectronic wave field appears as,
See equation (38) top of the page

with the usage of the relations (6% — 1)((3(6* + 3)L; +
2(6* — 1)Ls)L, > 0 and 3L, + 2L3 < 0. For 6 = 0, a dark
soliton is retrieved.

Result-3:
3(67 + 1)K
T = 1, OCo—O, ﬁl —0, o ==+10 m,
_ DL _ 4L
T T e
. Ly((66% — 3) Ly +2(5* — 2) L)
6 — — 9

30(8* + 1)

1207 + 1113 Ly + 2L

L;, = 5]
300k

As a result, the nonlinear wave profile shapes up as,

3(0%+1) Ly { L. }
~——=—csch |/ —2(z — vt
+ 3L1+2L3 5 ( ) ei(—;cx+(ut+50)

5csch[\/—“(a: - vt)} +1 ,

(40)

q(z, t) =

with the help of the conditions 3L; + 2L3 < 0 and Ly < 0.
For ¢ = 0, a singular soliton is extracted.

Result-4:

2v/15k

=1 —_—
—(3Ly 4+ 2L3)

;o =0, o=0, ﬁl =
(6% + 1) Ly(3Ly + 2Ls)

5K(3(6° = 3) Ly +2(8° + 1) Ly)

Ly(3Ly + 2L3)((66° + 9) Ly + 2(8 + 1) Ls)

Le = —
‘ 30k%(3(8° — 3) Ly +2(3° + 1) Ly)

b

1202 + 1113 L, + 2L2
300%* ’

2(8* + 1) Ly(3Ly + 2L3) (3(28° + 7) Ly + 4(8 + 1) Ls)

Ly =

L4:

25K (3(0% — 3) Ly +2(6* + 1) Ly)”
(41)
Hence, the nonlinear waveform can be expressed as,
See equation (42) top of the page
with the aid of the restrictions ((3(6* — 3)Ly + 2(6* + 1)Ls)

L, > 0and 3L, + 2L3 < 0. For § = 0, a singular soliton is
yielded.

4 Conservation laws

Suppose (T%, T is a conserved vector associated with the
conservation law,

D, T'+ D, T" =0, (43)
valid along the solutions of the given differential equation.
In that case, it follows that,

E,D,T"+ D, T =0, (44)
where FE, represents the Euler-Lagrange operator. Fur-
thermore, assuming the existence of a non-trivial differen-
tial function @, referred to as a “multiplier,” such that,

QE =D,T'+ D, T", (45)

and @ is associated with a conserved vector, then it fol-
lows that, E,(QE) = 0. (46)

This implies that each multiplier @ results in a con-
served vector through a Homotopy operator. £ = 0 is the
differential equation and 7%, T" are the conserved densities
and fluxes, respectively.

The concatenation model with STD, gives the following
conservation laws:

1. For,

Oy = 0y = 0y = O7 (47)
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we get a nontrivial power (P) density as:

1 b(" *
T" :§|(J|2+§~5(q q,)- (48)

2. If, in addition,
Oy = Olg = 07 (49)

we arrive at conserved linear momentum (M) density,

1 1 b
TM _ _ / 2 - ) (A .
1 4] +4b9?(qqm) 534 a.) (50)

3. Conserved Hamiltonian (H) density is presented as
below,

1 1 X
T =h Lalf“(qqzm) +60<s|q|"]

17 1 <( ~* 1 <( *
+ 42 {—5057\5(61 q”z) - Za8|q‘2‘s(q qz):|

1 4 1 .
1
+ 709 (gaz,) + R(q.q))]. (51)

The expression for the bright 1-soliton solution, provided
in equation (28), can be conveniently structured as:

q(z,t) = Asech [B(z — vt)]e'l-retet+t), (52)

where the soliton’s amplitude is denoted by A, its inverse
width is modeled by B, and also its velocity is formulated
by v. Therefore, the following conserved quantities arise
from this form of the bright soliton:

> b, . 2A”
P:/ [|q2+2—(q 0, — qq’) dw:y(l—b’f)a (53)

. 7

1 o0
M= [ lala - R(aas) + 20300 )]s

4 )
A2
=33 (aB* + ax® — 3bK), (54)
and,
00 b 2 6
B Jis _ /L10(1A B o 5 4 4/’{10(614
H_[w T = =—+— (9B% + 30K” 4 5x*) t
Jotiric A? A
—% (K2 + 3) + (;LgagK + C>3—B
ad®, , o DA,
_S—B(B +3K)+6—B(UB + 3wk). (55)

5 Conclusion

In this paper, the concatenation model is revisited with the
incorporation of STD alongside the existing CD. The SPM
is with Kerr law of nonlinearity. The rational expression

for the soliton velocity placed us at an advantage of control-
ling the Internet bottleneck effect that is responsible of
slowing down the traffic flow across the globe. Such an engi-
neering marvel is being applied to the concatenation model
for the first time and this gives a true flavor of novelty to
the current paper. The results of the paper are indeed
encouraging and are applicable to various additional ave-
nues. One would next need to study this technological aspect
in birefringent fibers followed by dispersion-flattened fibers.
This would lead to the departure from the lab to a situation
where rubber meets the road. Additional effects such as
stochasticity, time-dependent coefficients to the model are
yet to be explored. These would lead to several novelties
that would be sequentially disseminated all across the board
after aligning the results with pre-existing reports [17-34].
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