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Abstract. Infrared spectroscopy is often used to spot differences between benign and malignant tissue. Due to
the proliferation of tumorous cells, the composition of tissue changes drastically. In the consequence shifts occur
in its optical properties that are indicated by spectral biomarkers in the so-called fingerprint region. In this
work, we propose a new concept for a sparsified multi-spectral measurement of the most important and
informative biomarker signals. The results of a data-driven feature selection approach show that a reliable
discrimination of the tissue is still possible, even though utilizing only a small fraction of the measured data.
A selected arrangement of only a few narrow-band quantum cascade lasers could provide proficient signal-
to-noise ratios and can noticeably reduce the data acquisition time. Consequentially, real-time applications will
be possible in short-term and in-vivo diagnostics in the long-term. First measurements of silicone phantoms
validate the imaging capability of the sensor concept.
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1 Introduction

Most spectral information in analyses of biological struc-
tures in human tissue is found in the broad (mid-infrared)
MIR region [1]. In order to achieve reasonable signal-to-
noise ratios (SNR) throughout the complete spectrum,
either the light source has to be utterly powerful, the detec-
tor more efficient or the spectrum averaged over multiple
measurements [2]. Whereas the former yields an increased
energy consumption and naturally more waste heat that
has to be dealt with, the latter entails a longer acquisition
time. Both of which is not ideal for preferential real-time
and intra-operative tissue discrimination with spectral
measurement technologies.

Thus, modern MIR spectrometers tend to use quantum
cascade lasers (QCLs), that are more powerful light sources
with a higher spectral irradiance than conventionally used
thermal SiC sources [3–5]. When confined to narrower
bands, e.g. in gas analyses of particular media, a real-time
analysis of the spectrum is viable [6]. Since most discrimina-
tive information in tissue spectra is also found in these
distinct peaks (i.e. biomarkers) [7], the logical conclusion
is that a single targeted approach to using only the rele-
vant areas yields a drastic decline of the spectral acquisition
time. Therefore, we want to concentrate on narrowbanded

distributed feedback (DFB)-QCLs with center wavelengths
that provide most discriminative power. A more recent
approach in prostate cancer diagnostics is encouraging a
similar approach utilizing breath analyses for early stage
detection [8].

For a first estimate of the discriminability of human
tissue with an extremly sparsified infrared (IR) spectrum,
we measured urothelia and urothelial carcinoma of bladder
entities. By utilizing several different data-driven feature
selection (FS) methods [9–13], we show that only a small
fraction of the original MIR spectrum is necessary to reli-
ably separate benign from malignant urothelia.

According to that, we introduce an optical design for
an attenuated total reflectance (ATR) spectrometer that
enables the spatially resolved real-time discrimination of
bladder tissue and show first measurements with a
monochromatic light source. Simulations validate these
measurements and show limits in the spatial resolution.

2 MIR spectroscopy of urological specimen

In this work, we have used the commercially available
Fourier-transform infrared spectroscopy (FT-IR) spectrom-
eter Spectrum Two� by PerkinElmer in combination with
an ATR accessory that incorporates a diamond crystal. A
spectral range from 4000 to 450 cm�1 is available with this
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setup. The spectrometer additionally provides a plunger
with an adjustable pressure p.

An overview of the constituents of intact bladder walls
is given in Figure 1a. Since more than 90% of bladder cancer
occurs in the transitional cells (urothelium [14]) and ATR
spectroscopy is well suited for shallow measurements, we
focus on these tightly packed innermost layers. The urothe-
lium usually consists of 3 to 6 cell layers with cell sizes of
10–50 lm [15]. Urothelial cancer can further be categorized
into papillary bladder tumor (pTa), non-muscle invasive
tumor (carcinoma in situ [CIS] and pT1), and muscle inva-
sive tumors (pT2–pT4 [16]). The investigated tumors are
staged between pT0 and pT4a.

All spectra were obtained from eleven different patients,
that have been diagnosed with bladder cancer. Every
sample has been prepared and labeled by professional
pathologists and physicians from the urology department
of the University of Tübingen. Immediately after radical
cystectomy, the bladder was transported to the laboratory.
There, it has been opened completely and the urothelial
surfaces of interest were cut into approx. 1 cm2 areas in or-
der to fit into the spectrometer. For each patient, we have
extracted two clearly separable excerpts of healthy urothe-
lium and (if available) urothelial carcinoma. A detailed
overview on the tumor staging is given in Table 1. Exam-
ples of the measured samples can be seen in Figure 1b.
Measurements have been been conducted on the inner blad-
der wall with varying pressure applied. The mean spectra of
healthy and tumorous specimen are shown in Figure 1c.
Most of the variances occur in the fingerprint region
(1800–900 cm�1, [7]).

2.1 Benefits of ATR spectroscopy

The key advantage of ATR spectroscopy compared to
transmission spectroscopy is the obsolete sample prepara-
tion. Whereas transmission spectroscopy essentially
depends on the sample thickness, ATR measurements
always only measure the first few microns in depth of the
surface. Figure 2 shows the differences between these two
types of spectroscopy.

According to Lambert’s law, the absorbance:

A ¼ ld � log eð Þ ¼ log
I 0
I
; ð1Þ

is proportional to the sample thickness d and the attenu-
ation coefficient l. It quantifies the attenuation of the
intensity I after the incident light intensity I0 has trans-
mitted through an uniformly distributed medium and is
complementary to the transmittance T = 10�A. For
well-defined transmission measurements, the samples are
usually powdered, mixed with non-absorbing powders
such as KBr and pressed into pellets of specific thick-
nesses. The attenuation coefficient:

l ¼ 4p~mj; ð2Þ
depends on scattering effects and absorption by particles
or molecules when interacting with absorbing samples,
as seen in Figure 2a. Both effects are summarized in the
absorption index j and also depend on the wavenumber

~m ¼ 1=k and thus on the wavelength k of the incident
light.

Another factor that decreases the signal intensity are
reflections at each surface. However, spectral application
usually use reference measurements without the sample
for the calculation of the signal. Therefore, only the attenu-
ation coefficient is recorded and the reflection can be
neglected.

In contrast to the transmission spectroscopy, the absor-
bance in an ATR setup does not depend on the absolute
thickness of the sample. As the evanescent wave at the
boundary surface of an internal reflective element (IRE)
can only penetrate the sample up to a certain depth,

dp ¼ k

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 sin2 h� n2

2

p ; ð3Þ

preperations of the samples are not required given that
d > dp. The refractive indices of IRE and sample are
denoted by n1 and n2 respectively and h is the angle of
incidence. The depth of penetration is defined as the
depth where the strength of the evanescent wave decayed
to approx. 37%. Typically, this depth lies in single-digit
microns when analyzing biological specimen [19, 20].
Figure 2b shows a setup with a collimated illumination
for macroscopic ATR imaging [21]. Single-point spectrom-
eters, such as the Spectrum Two�, focus the incident light
onto the boundary surface using parabolic mirrors to
enhance the SNR.

Fig. 1. Overview of measured samples: cross-section of a
bladder wall according to [17, 18] (a), freshly resected specimen
(b) and their mean spectra in the fingerprint region (c).
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According to [22], the depth of penetration cannot be
inserted in equation (1) directly, since there is no consider-
ation of the attenuation by the sample itself. Eventhough
the effective thickness,

deff ¼ n1

n2 � cos h � jt12j
2 � dp

2
; ð4Þ

linearly depends on dp, it also takes the complex transmis-
sion coefficient t12 for supercritical reflectance into
account. This depth is different for parallel and perpendic-
ular polarizations. Since the penetration depth is rather
small, one problem is the influence of other materials in
between sample and prism.

2.2 Influences of the applied pressure on the tissue
spectra

As already mentioned, we are also able to apply a defined
pressure on top of the sample using a plunger. The maxi-
mum possible pressure is pmax = 5.3 MPa utilizing a plunger
with a diameter of 6 mm. This is needed to restrain as much
water from the sample as possible in order to reduce the
interfering influences due to its high absorption coefficient
in the MIR region. Figure 1b clearly shows films of water
transpiring from the samples onto the sample area.

The maximum pressure corresponds to an applied force
of 150 N. In the dataset, each sample has been measured
using forces in the range between 0 and 150 N with an incre-
ment of 10 per measurement.

The increasing pressing force has direct influence on the
signal quality of the transmission spectrum, see Figure 3.
When measuring without any applied pressure, the spec-
trum is clearly influenced by the remaining water within
cells and bound to molecules. For comparative reasons,
we also recorded a spectrum of pure water (dashed line).
Since water has a nearly constant level of absorption
between 1450 and 1000 cm�1, the influence can be consid-
ered as a downscaling dampening effect on the tumor

spectrum. Looking at the changes of peak intensities within
each increment, an exponential approximation towards the
signal of 100 N is noticeable.

As the signal is heavily influenced by the pressing force,
we also have to investigate the discriminability of samples
with varying water content in the next section.

3 Feature selection to optimize spectral scans

The subsequent selection of relevant wavelengths for
the spectral discrimination between healthy and diseased
urological specimen is based on the measurements described
in the previous section. This is the crucial part in engineer-
ing these types of sparse spectrometers.

In an earlier study, we have already shown that a differ-
entiation of urothelia and detrusor muscles is possible with
an extremely sparsified signal consisting of only two
wavenumbers [23]. Since there are naturally different prop-
erties between epithelial tissue and deeper muscular tissue,
which is responsible for the bladder contraction, we want
to investigate a more difficult discrimination task in this
study.

In order to select the q most relevant wavenumbers for
an optimal differentiation, we have chosen different data-
driven FS methods. When speaking of features in this
context, wavenumbers are meant. The results of classical
multivariate statistical approaches using principal compo-
nent analysis (PCA) [9, 11, 12] and linear discriminant
analysis (LDA) [13] are compared to those of a recently

Table 1. Tumor staging of the aquired spectral data using FT-IR spectroscopy. Number of patients and age information
is differentiated by gender (female/male). The average age of all 11 patients is 67.0 ± 11.1.

Subset Patients Average age pT0 pTis pT2a pT2b pT3a pT3b pT4a Sum

Urothelium 5/6 70.6 ± 12.0/64.0 ± 10.3 160 91 70 46 22 120 11 520
Tumor 3/2 77.7 ± 4.5/68.0 ± 15.6 0 0 57 45 68 117 34 321
Total 5/6 70.6 ± 12.0/64.0 ± 10.3 160 91 127 91 90 237 45 841

Fig. 2. Differences between transmission (a) and ATR spec-
troscopy (b).

Fig. 3. Spectra of an urothelial carcinoma under increasing
pressing force. Lighter colors indicate lower pressure. The
transmission is gradually reduced with increasing pressure (see
peak transmission of amide I band displayed in the inset). The
red line indicates a polynomial fit.
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developed FS algorithm called FeaSel-Net [10], that is based
on recursive elimination of the input signal in neural net-
works. Whereas both former analyses are based on linear
transformations and covariance evaluations, the latter is
inherently non-linear and promises more complex solutions
for the selection.

In total, the acquired dataset D consists of nC = 520
control spectra (healthy urothelium, C) and nT = 321 spec-
tra of tumorous tissue (T). One single measurement with a
spectral resolution of �~m ¼ 8 cm�1 consists of p = 113 fea-
tures in the fingerprint region (the region of interest). Each
spectrum is normalized dividing it by its respective maxi-
mum, such that it becomes 1.0. The difference in the
numbers of spectra is due to the pre-treatment of some
bladders, where macroscopically differentiable tumor has al-
ready been resected transurethrally and only control tissue
could be secured in a follow-up surgery. For validation
purposes, this dataset is split into two datasets using a
train-test-split ratio of 0.2. A more detailed overview on
the sets is given in Table 2. For a fair comparison of the
FS methods, the subsets are perpetually allocated.

3.1 Feature selection with PCA and LDA

As a first estimate on the separability of both classes C and
T, the multivariate analyses PCA and LDA are used.

The linear transformations underlying these methods
aim for a lower-dimensional representation of the original
spectral dataset X. This dataset is standardized along the
feature axis, making their means lf = 0 and standard devi-
ations rf = 1. Multiplying the so-called loadings matrix A
with the input yields the transformed dataset,

Y ¼ ATX: ð5Þ
We obtain this loadings matrix by solving the eigenvalue
problem for the covariancematrix or scatter matrices respec-
tively.What differs both types of transformations is that the
LDA is not only using the covariances of the features but
also profits from the prelabeled class information that is
encoded in the scatter matrices. However, both analyses
try to explain as much data as possible while using as little
latent variables q as possible (i.e. p � q). Since these vari-
ables are usually hard to interpret and even harder to mea-
sure directly, the weights of the transformation (i.e. the
loadings) are used as a measure for the feature importance,

I f ¼
Xq

i¼1

jafij; ð6Þ

where the absolutes of all weights belonging to a particu-
lar feature f are summed up.

Figure 4 qualitatively shows score plots of the trans-
formed data applying PCA and LDA on the measurements
of the two different tissue types. Each point in the scatter
plot corresponds to a sample spectrum and is colored
according to their class (C: dark and T: light blue). We used
the training set Dt, that contains all aforementioned pres-
sure variations, to calculate the weights for the transforma-
tions and plotted this set as well as the validation Dv into
the score plots. Afterwards, equation (6) is applied to each

method resulting in the three wavenumbers that are high-
lighted by red rectangles. Their values can also be found
in Table 3 together with the findings from Section 3.2.
Subsequently, we apply a second transformation using only
the information that is given by these three wavenumbers.
The resulting score plot can be retrieved from the right-
hand side. Since the first two components describe at least
more than 96% in each method, the focus lies on a q = 2
dimensional representation and all higher components can
be neglected.

Unfortunately, the results of the PCA do not look
promising for a good discriminability. The confidence inter-
vals of both classes overlap almost entirely and their means
are located at almost the exact same spot. However, the
high explained variance of the first principal component
(PC) with 95% show that the signals are highly correlated.
This correlation is pronounced, since the differences in
spectra measured with low applied pressures are always
superimposed by the water signal. Reducing the input infor-
mation to p = 3 wavenumber results in a small benefit in
terms of the overlap of means and confidence intervals,
but the classes are still not distinguishable.

As expected, the latent space of the LDA is noticeably
more structured. By drawing a line parallel to the second
LD, we are able to correctly classify the samples using the
correct value of LD1 as a threshold (dotted line). Except
from one measurement of the urothelium class, all samples
can be clearly distinguished from another. Even though the
correlation between both mean spectra in Figure 1c is
nearly q = 100%, it is still possible to transform the data
into distinct clusters using LDA.

3.2 Feature selection with neural networks

Another evaluation of the wavenumbers is done using
FeaSel-Net [10]. This is a non-linear recursive FS method,
that has recently been developed and already been used
in several analyses of Raman and IR spectra [9, 10, 23]. It
can be embedded in any 1D neural network.

During the training process of a classifier model, the fea-
ture importance,

I f Dt;f

� � ¼ � 1
nt

Xnt

i¼0

X

x2Dt;f

ŷ xð Þ � log y xð Þ; ð7Þ

is evaluated as soon as the model performs well and the
least informative features are pruned before the training
continues. The evaluation is different to linear transforma-
tions in equation (6). Here, the training dataset Dt with
p = 113 features and nt = 672 samples is masked at each
feature f. Subsequently, the impact on the classifica-
tion performance is analyzed and features are discarded,

Table 2. Overview on the data used for the FS.

Dataset Urothelium Tumor Sum

Training 413 259 672
Validation 107 62 169
Complete 520 321 841
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if the impact of masking is negligible. Therefore, we calcu-
late the cross-entropy (CE) for each prediction y and the
target vector ŷ for each subset Dt;f and average over all
samples. Low results indicate a smaller impact of the mask
and thus unnecessary features and vice versa.

The binary classifier model is optimized using the Adam
[24] with a learning rate g = 5 � 10�4 and the applied loss
function again is the CE. It consists of three fully-connected
hidden layers with a decreasing number of nodes per layer
(113–113–29–8–2). Nodes are activated using the non-linear
ReLU function.

This classifier is trained until the accuracy threshold
s = 95% is surpassed for De = 20 training epochs in a
row. We also implemented a decay of this threshold with
5 � 10�4 per epoch that starts as soon as the algorithm is
theoretically allowed to prune again. When these criteria
are met, the training pauses. At training halt, the feature
selection process is executed with a pruning rate of

p = 0.2 for every recursive pruning step. A convergence is
obtained as soon as p0 = 3 distilled wavenumbers are
remaining. Inherent randomness in neural networks makes
it indispensable to statistically evaluate multiple selections.
Hence, we apply FeaSel-Net 25 times in a row and create a
weighted Jaccard matrix Jw(x, y) that shows the relation-
ship amongst chosen wavenumbers, see Figure 5. The diag-
onal of this matrix corresponds to a histogram of the
selected data and show that wavenumbers 1495 cm�1,
1014 cm�1, 1022 cm�1 are all chosen seven times, which
is approximately every fourth run and more than ten times
as often as random guessing. The wavenumbers that are
chosen most often are given in Table 3.

FeaSel-Net converged in every application with the best
run’s training history depicted in Figure 6. This run
resulted in an accuracy with approx. 95% for the validation
and training data set, with the validation accuracy being
slightly higher. Since unnecessary wavenumbers are dis-
carded during the training, an overfitting effect is less likely
to be observed.

In the following, we make use of the wavenumbers
retrieved from the best run. To compare the linear and
non-linear methods, we need to apply the same reduction
of input signal for the training of another neural network
and train the model anew. Whereas the discriminative
power of the LDA gets lost using only p0 = 3 and has never
been available in PCA, the neural network approach seems
to achieve significantly better results. Figure 7 shows the
prediction of the complete dataset by an exemplary trained

Fig. 4. Comparison of the feature selection with PCA and LDA. The left side shows score plots of the complete spectra, where each
point represents one measurement. Confidence intervals with 3r are depicted as dashed ellipses and projected onto each component.
The score plots on the right are calculated using only the p0 = 3 most important features (red rectangle). Note that the discriminative
power of the LDA collapses.

Table 3. Wavenumbers of relevant biomarkers [cm�1] for
different FS methods.

FS method m̂1 m̂2 m̂3

PCA 1542 1550 1558
LDA 1158 1374 1582
FeaSel (best run) 1022 1479 1655
FeaSel (Jaccard) 1014 1022 1495

J. Eur. Opt. Society-Rapid Publ. 19, 33 (2023) 5



model. The class probability is shown on the left side. The
average probabilities are depicted with a dashed line in their
respective colors (C: dark and T: light blue). A shaded
background indicates the standard deviations. The means
of both classes are clearly separated and together with the
confusion matrix on the right, the results can be interpreted
as successful predictions.

Whilst the first model has trained using approx. 16.5k
parameters, the second model only needs 368. Using only
two percent of the original number of parameters is an enor-
mous saving of computational costs. Despite all these reduc-
tions in complexity the training accuracy is satisfyingly
good with 92.7 ± 2.9% and the validation accuracy is even
better with 95.4 ± 2.9% on average over ten optimizations
with 250 training epochs. The losses amount to 0.21 ± 0.04
for the training and 0.16 ± 0.05 for the validation.

An analysis of the impact on the classification
using smaller pressures has additionally been conducted.

When using small forces (0–10 N), an overall classification
accuracy (OCA) of 81% is achieved. This instantly gets bet-
ter when using forces greater or equal to 10 N where it is
always more than 85% OCA.

4 Multi-spectral sensor concept

With all the savings of computational costs and the findings
that a complete MIR spectrum is not necessary for tissue
discrimination, we are allowed to confine ourselves on the
spectral information from ultra-sparse illumination. There-
fore, we propose a multi-spectral approach for the measure-
ment of tissue samples using a spatially resolved ATR
measurement system.

As depicted in Figure 8, it is possible to use an echellette
grating for example to combine all DFB-QCL onto the opti-
cal axis. The QCL are ideally chosen such that they corre-
spond to our previous findings. With well-timed shutters,
the sample is illuminated sequentially. In this configuration,
the lasers are imaged on the focal plane array (FPA)
bolometer as a reference at first. As soon as there is close
contact with the tissue, a fraction of the laser light is
absorbed depending on the tissue’s absorption coefficient
at the interface according to equations (1)–(4). The angle
of incidence is 45�.

A magnification of the IRE surface is made possible
using an 4f beam expander. The macroscopic imaging tech-
nique from Figure 2 is extended and magnified with the
imaging scale,

b0 ¼ fasphere
fPM

; ð8Þ

to obtain a mesoscopic image. For the reduction of
chromatic aberrations, a parabolic mirror (PM) with
fPM = 15 mm has been selected as the first optical element
and an aspheric lens (Thorlabs: AL72550-E3) with
fasphere = 50 mm as the second resulting in a magnification
of b0 = 3.3�. The lens as well as the right-angled prism are
made of ZnSe, since it provides transmittance in the com-
plete MIR region. The bolometer used for the light detec-
tion is a Lepton 3.5 by FLIR with 160 � 120 pixels, a
framerate of 8 Hz and a pixel size of =12 lm. Within this
work, we focus on using only one continuous wave laser
for the illumination. The DFB-QCL light source has a

Fig. 5. Weighted Jaccard matrix for 25 FeaSel-Net applica-
tions. Features that are often chosen together appear darker
than less chosen ones. The chosen features are indicated by the
red square.

Fig. 6. Training history of one FS run with FeaSel-Net. The
typical saw tooth pattern can be observed.

Fig. 7. Discriminability of neural networks restricted to an
ultra-sparse spectral input (p0 = 3).
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center wavelength of k = 9286 nm and a maximum optical
power of 79 mW.

In an experiment with silicone phantoms we validate
the image magnification and want to assess the imaging
quality, see Figure 9. The simulated image-sided airy disk
has a diameter of 102.4 lm using an aperture of the size
D = 2.1 mm. In order to have a pattern that can easily
be analyzed and validated, we have chosen a grating struc-
ture with a grating constant of g = 400 lm. We measured
the peak-to-peak distance in the absorption plot with
Dx = 106 px, which corresponds to a measured grating con-
stant of g0 = 385 lm. The difference of approximately 4%
could be explained by deformations due to an applied pres-
sure during the measurement or by fabrication errors. Since
the fabrication has been done using a 3D-printed mold,
there could be additional errors due to the printing process
parameters such as lateral motion resolution or nozzle size.

However, the results clearly show, that it is possible to
image the absorption of silicone at an IRE’s boundary sur-
face using a mesoscopic magnification setup. The slits with
absent material are visible and the simulated magnification
could be validated.

5 Conclusion

In this work, we have shown that it is possible to distinguish
tumorous from healthy tissue using sparse mid-infrared
spectroscopy in combination with IRE crystals and ultra-
sparse illumination. The selection of the most important

wavelengths for the engineering of the light source is done
using different linear and non-linear feature selection
algorithms.

Linear transformations (PCA and LDA) are not able to
cope with the difficulties induced by the superimposing
effects of water that tend to equalize the net spectra of both
classes. Especially in low pressure applications of ATR spec-
troscopy, where the water content within the tissue is at
high level, the results are sobering. Inherently non-linear
transforming neural networks are a better alternative to
discriminate the tissues and find suitable illuminating wave-
lengths. The influences of superimposition in the spectra
due to water signals on the discriminative power is only a
problem in measurements when absolutely no pressure is
applied.

Furthermore, we have proposed a concept that enables
real-time spatially resolvedmeasurements, that could poten-
tially even be used for in-vivo applications when integrated
in endoscopes for example. One of the biggest challenges will
be an economical production of such endoscopes and the
miniaturization of IR optics.
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