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Abstract. The objective of the present study is to examine the behaviors of chirped optical solitons in
fiber Bragg gratings (BGs) with dispersive reflectivity. The form of nonlinear refractive index represents
polynomial law nonlinearity. By virtue of phase-matching condition, the discussed model of coupled nonlinear
Schrédinger equation is reduced to an integrable form. Consequently, chirped optical solitons having various
profiles such as W-shaped, bright, dark, kink and anti-kink solitons are derived. Further to this, the chirp
associated with these soliton structures are extracted. The impact of dispersive reflectivity, self-phase
modulation and cross-phase modulation on the pulse propagation is investigated and it is induced that the
changes of self-phase modulation and cross-phase modulation cause a marked rise in soliton amplitude which
is subject to minor variations by dispersive reflectivity. The physical evolutions of chirped optical solitons
are described along with the corresponding chirp to pave the way for possible applications in the field of fiber

BGs.
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1 Introduction

The existence of soliton in the filed of optical fibers has
made a wide improvement in various sectors of our life such
as communications, medical, aerospace and many others
[1-3]. In communications, for example, soliton operates as
one of the effective carriers that transmit huge information
through optical fibers over transcontinental and transocea-
nic distances [4-8]. Basically, soliton in fiber-optic commu-
nication systems is known as optical soliton which denotes a
light pulse propagating through a nonlinear optical medium
without any change in its shape and velocity [9-11]. The
emergence of optical soliton is based on controllable interac-
tion of dispersion and nonlinearity of the pulse propagation.
The investigation of optical soliton behaviors can be done
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through discussing a model of the nonlinear Schrédinger
equation (NLSE) or its generalized forms [12-16].

During propagation scenario within an optical fiber,
soliton is found to be badly affected by the low count of
chromatic dispersion (CD) and hence the data transmission
is obfuscated. This problem can be handled via applying a
new technology, namely, dispersion compensating fiber.
One of the perfect candidates for this role is Bragg gratings
(BGs) because of their low loss, small footprint, and low
optical nonlinearity. Practically, BGs provides induced dis-
persion to replenish the low count of CD and sufficiently
ensure the smooth formation of solitons which are transmit-
ted along fibers for intercontinental distances. Based on the
physical nature of fiber BGs medium, the self-phase modu-
lation arises from the nonlinear refractive index structures
which has different types such as Kerr law, quadratic-cubic
law, parabolic law, polynomial law, parabolic-nonlocal
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combo law and many others. This diversity of forms of non-
linear refractive index leads to create distinct forms of
NLSE.

Various studies in literature are implemented in the area
of fiber BGs under the influences of different types of non-
linearity to examine the behaviors of optical solitons by
making use of powerful integration schemes. For instance,
Biswas et al. [17] scrutinized coupled NLSE in fiber BGs
with parabolic form of nonlinearity. They extracted three
forms of solitons called bright, dark and singular solitons.
With the aid of modified simple equation, dark and singular
optical solitons to fiber Bragg gratings with Kerr law are
obtained by a group of authors [18]. The latter model is
studied as well in presence of the four-wave mixing terms
[19]. As a result, chirped and chirp-free bright, dark and
singular solitons are revealed. Moreover, solitons in fiber
BGs with five forms of nonlinear refractive index are
investigated using the sine-Gordon equation method [20].
Distinct structures of solitons including bright, dark, singu-
lar and combo singular solitons are retrieved. For more
details about the previous studies that discussed optical
solitons in fiber BGs, the reader is referred to the references
[21-35].

The recent experimental studies declare that optical
solitons with nonlinear chirping have effective role in engi-
neering applications such as the design of fiber-optic ampli-
fiers, spread spectrum communications, photonic and
optoelectronic devices. Hence, a lot of intensive theoretical
works are directed to the investigation of chirped solitons
in fiber-optic media. Many experts have dealt with various
mathematical models to derive miscellaneous types of
chirped solitons by means of several analytical techniques.
Some of obtained soliton structures include kink, dark
and bright solitons [36-39]; chirped self-similar bright and
kink solitons [40]; dark-dark and bright-bright soliton pairs
[41]; chirped self-similar gray and kink waves [42], see also
[43-46]. Our present work focuses on deriving chirped opti-
cal soliton solutions in fiber BGs. The nonlinear chirping
associated to each soliton solution is also created.

The most substantial purpose of this study is to inquire
into the dimensionless form of the coupled NLSE in fiber
BGs having polynomial law of nonlinearity given by [47, 48]

iq, + aire + (bila* + il g+ (dilal" + Ald’ |7 + ailr|')a

+(Ulal” + milgl'|r” + ml a7l + pil ) g + ihig, + ki =0,

(1)
iri+ a2, + (bolrl” + eolal’)r + (dalrl* + flrP|af + galal")r

+ (LIr® + ma|rl'gI” + nalr*|gl" + polal®)r + ihars + kag =0,
(2)

where the functions ¢(z, t) and 7(z, t) indicate forward and
backward propagating waves, respectively, while a; for
j =1, 2 denote the coefficients of dispersive reflectivity.
The terms having b; account for the coefficients of self-
phase modulation (SPM) whereas the terms with ¢; repre-
sent the cross-phase modulation (XPM) for cubic nonlin-
earity portion. Regarding quintic nonlinear part, d; are

the coefficients of SPM while f; and g; are the coefficients
of XPM. For septic nonlinearity, I; are the coefficients of
SPM while m;, n; and p; are the coefficients of XPM.
Finally, h; stand for inter-modal dispersion and k; repre-
sent detuning parameters. All of the coefficients are real
valued constants and i = v/—1.

This work is essentially devoted to investigating chirped
optical solitons in fiber BG with polynomial law of nonlin-
ear refractive index. The coupled NLSE (1) and (2) is dealt
with analytic strategy and reduced to an integrable form
under the phase-matching condition. Then, soliton solu-
tions are created by implementing two forms for the
method of undetermined coefficients. The corresponding
chirp to each soliton solution is also derived as a nonlin-
ear function in terms of the reciprocal of intensity. The
physical interpretations of constructed optical solitons are
displayed.

2 Mathematical analysis and reduction of
governing model

Our aim now is to analyze the system of coupled NLSE (1)
and (2) and to reduce it to an integrable form. To achieve
this process, a complexvariable transformation is assumed
as

q(z, t) = ul(f)ei(T(r)ﬂut)7 3)

r(z,t) = up(7) 107, (4)

where 1 = z — vt while w and v are real constants indicat-
ing the wave number and the soliton velocity. The func-
tions wu(t) and wup(t) stand for the amplitudes of the
solitons whereas Y(t) represents the nonlinear phase
shift. The corresponding chirp is identified as dw(z,t) =

—ag[T(r) — wt] = —Y'(1). Substituting (3) and (4) into
T

the coupled system (1) and (2) and then separating the

imaginary and real components, one can arrive at

a1 Uy — aup X + (v—h)wu Y + ouy + ks + bud + cyugud

+diud + frduy + grunuy + Lol + moudul + nuduy + pruud =0,
()

CLQUI{ — d2U1T,2 + (V — hQ)UQT, + wuy + k2u1 + bzu; + CQUQU?
+dyuy + frusu; + goupuy + buy + mousu; 4+ nousul + pyusul =0,

(6)
and

(hy — v)uy + a1 (u X" 4 2u,X') = 0, (7)

(h2 — V)’U/; + G/Q(UIT” + 2ulT/) =0. (8)

To manipulate the equations obtained above, the following
relation is proposed as
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Uy = PUy, (9)

where p # 1 is a real constant. Subsequently, the set of
equations (5)—(8) change into

pau] + [w+ pki + (v — hy) Y — palT’Z]ul + (b + pPe))
+(di + p°fi + p*g)u] + (b + p*ma + p'ny + p°p))u =0,
(10)
au) + [po + ks + p(v — b)Y — UQTIQ]U] + (p*bs + peo)u?
+(0°dy + p°fo + pga)ul + (p7ly + p’ma + pPna + ppy)uf =0,
(11)
and

(hy = V)uy + pay (i, X" + 2w, T') = 0, (12)

p(hy — v)uy + ax(u X" + 2u, Y') = 0. (13)

From the integrability of equations (12) and (13), one can
obtain

T,_V—hq 51’(1172 (14)
o 2pa1 pay ’
—h Sau;?

T = p(V 2) + 2y 7 (15)

2 as Ao

where J; and J, are the integration constants. Since equa-
tions (14) and (15) are equivalent, they give rise the con-
straint condition of the form

(CLQ — ,02a1)V’UJ% — (h1a2 — hngal)u% + 2(51a2 — 52[)0,1) =0.
(16)
To reduce the level of complexity in the system of equations

(14) and (15), we assume that

52/)(11 = 51012; (17)

and, as a consequence, equation (16) collapses to the
expression for the velocity of the soliton as

v — h1a2 — h2p2a1

18
as — p2a1 ( )
As a result, the chirp can be written as
Vv — hl 51U_2:|
ow(zx, t) = — +—L. 19
(=) { 2pa par (19)

Plugging (14) and (15) into equations (10) and (11), respec-
tively, we find

5 —hy)’
palulll_ilul—?)_’_ (V 1)
P

b 2 3
1o, ur + (b + per)uy

+ pk, +

+(di + p*fi + ptg)ul + (h + p*my + piny 4 p°py)uf = 0,
(20)

2(y — hy)®
pw+k2+M
4(12

52(12

" 1 -3

a2u1 - B 2“] +
pray

u + (p*by + pea)ul

+(p°ds + P+ pgo) i + ('l + pPmy + pPn + ppy)u] = 0.
(21)

Integrating the last equations, this leads to

2
2 51 -2
pypu; ———u; "+
1 pa 1

(V — h1)2

o + pk; + Ipa,

1
u +§(b1 + p’er)uy

‘ , 1 . ,
+3(di+ i+ pt )+ (b4 pPma 4 phin + p"py)u + 2 =0,

(22)

Wl =

2(y — 2
ot by 1+ P = P2)

2
/2_516‘2 -2y
at) — ——5 Uy
ay

1, ., )
ui + 3 (p*bs + pea)u)

4(12

; 1 ;
+3 (074 P+ pga)uy + 7 (p"l + PPy + pPny + ppa)i + 201, = 0,

(23)

W=

where u; and u, are the constants of integration.
Equations (22) and (23) are equivalent under the follow-
ing conditions presented as

Qe = pag, (24)
2 o h 2 7 h 2
po iy 4 L0 e ) o
4a, 4pay
PPby + pey = by + pcy, (26)
p’dy+ p’fo+ pgo = di + p°fi + p' g1, (27)

Pl + pPmy + pPny 4 ppy = i+ pPmy + ptna + p°py,
(28)

Mo = [y (29)

As both equations (22) and (23) are equivalent, the rest of
procedure in this work are performed through tackling
equation (22). Let us introduce the variable transformation
given by

@ =F, (30)

which enables us to convert equation (22) into

/2 45? ("*}Ll)2 2 2 3
pa F'" ——L+ 8 F+4|w+ pky +———|F +2(b + p’c))F
P dpa
4 2 4 4 2 4 6 5
+§(d1+Pfl+P91)F + (L4 p*my + p*ny 4 p°p ) F” = 0.

(31)

Equation (31) can be rearranged to have the form
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(v— h1)2

F b 2e))F?
1pa, +3(bi +pc1)

pa Frn+4u, + 4o+ pky +

(11 + p*my + p'ng + p°p) ) F! = 0.
(32)

(di+p°fi + p'g) F* +

COIOO

3 Chirped soliton solutions

To derive the chirped soliton solutions, the method of
undetermined coefficients with two forms having the
hyperbolic secant and tangent functions is employed to
equation (32). Then, the obtained solutions are inserted
into the relation (30) together with (3) to arrive at the
chirped optical solitons for the coupled system (1) and (2).

3.1 First expression with hyperbolic tangent function

We express that the solution of equation (32) has the form

F(t) = op + o, tanh(o37) + aptanh®(ast), (33)
where oy, o, oo and og are constants to be identified.
Substituting the ansatz (33) into equation (32) and then
equating all coefficients of all powers of tanh(o37) to zero,
one can obtain a system of algebraic equations that
determines the value of constants oy, a1, a5 and a3. Solving
this system brings about the following sets of solutions.

Set 1

(a)—i—pk + 4pu )

oy = 34
0 B(bl + P Cl) ( )
o = O, (35)

2((0 + pk; + ¢ 4pa1 )
oy = — 36
’ (b1 + p*c1) (36)
(37)

under the constraint conditions

dy+ p*fi + p'g, =0, (38)
L+ p*my + piny 4 p°p, = 0. (39)

Substituting (34)—(37) into (33) and using the relations (30)
and (9) along with (3) and (4), we arrive at an exact solu-
tion in the form of chirped bright soliton for the coupled
system (2) and (3) as

2(”*""”( an oty 1 P :

= - o feobirtgin i(p(x)-wt)

(=, 1) = |: UEE) 1—-3tan h T eile@-ot)
2<ru+ﬂ1‘71+(“4 ::‘])2> otpk Jr(\-—}11)2 -

r(z,t) =p {M 1—3 tan h? %1— ello(m—ot)

(40)
)(pal) > 0. The associated chirp

where 4
pay

(w+ ki +

is presented as

—hi)2
; 5 2(«)+pk1+(‘4ﬂ];1]) )
_ |y + 01 _

560(1.’ t) = 2pa1  pa 3(bi+p2er)
(=hy) - D)
xll—Stan h2< W%‘c)]}
Set 2
(w-i—pk + ‘4,0};1 ) (42)
oy = —
’ (b1 + p%cr)
o = 0, (43)
2(w + pk; + ¢ 4pa1 )
oy = , 44
’ (b1 + p%cy) 44)
o+ pky +
oy PR (45)
pa

under the constraint conditions (38) and (39). Substitut-
ing these outcomes into (33) and using the relations
(30) and (9) together with (3) and (4), we obtain the
chirped bright soliton for the coupled system (2) and (3)

given by
(=hp)?
2(a)+pk1+ T ) (v=hp)?
m w+pk1+ _1m1 i _

— _ S o(1)—wt)

q(z,t) = CETI) sec h el ,
2<<0+pk1+( '/JI)Z) (u+ﬂk1+( —)? (¢(7) )

— _ 4pay i(p(1)—wt
r(z,t) =p Trraysec h el ,

(46)

where (w+pk1+ v—h) )(pal) <0 and (w+pk1+ v—hi) )

4pay 4pay

(b + p?c1) < 0. The chirp expression is addressed as

51 (w+pk1+ \4;21 )

ow(z,t) = — voh o
2041 pay (b + p%cy)
-1
o + pk; + o
sec h’ —#r . (47)

pay



J. Eur. Opt. Society-Rapid Publ. 19, 30 (2023) 5

Set 3
(—hy)?
2(w + [)k‘l + T
o = — 48
! (b1 + p%cy) (48)
2<w+pk * 4ﬂa>)
= — 49
" (b + 7o) “9)
o =0, (50)
CU+ k + V h1
oy = u} (51)
pa

under the constraint conditions (39) and

— ) ,
16 <cu + pky + (V471)> (dy + p*fi + ') = 3(by + p*cr)”.
P
(52)
Exploiting (33)—(51) with (33) and using the relations (30)

and (9) together with (3) and (4), we present the chirped
dark soliton pair for the coupled system (2) and (3) as

1
, !
i <w+pkl+<r;23)_> +pk +("7h1)2
q(z,t) = [W 1+tan h(4\/— %‘r gilo(-on
1
2<zu+p1\1+ ) w+pk Jr("*hlJ2 ° )
r(z,t)=p [ Tﬂ:’)l {1 + tan h( - %‘C eilo@=ot)

(53)

where (w+pk + ¢ 4M )(pal) < 0 and (w+pk + 4/)@))

(by + p*c1) < 0. The corresponding chirping is introduced
as

v—hy)
V_hliél 2(60+pk+ 4pa11>

ooz, 1) = — o
(1) 2pa1  pa (b1 + p?cr)
—1
w + pki + (v—h;)?
1+tan h —%r . (54)
1
Set 4
2(w+pk * 4#(1)) 55
oy = —
! (b1 + p*c1) (55)
2<w+pk1 + ”4‘)];11 )
o = , 56
' (b1 + p?cr) (56)
2% =0, (57)

W+ k 4 (=) (v— hl
o3 = —p ton ) (58)
pa

under the constraint conditions (39) and (52). Plugging
these findings into (33) and using the relations (30) and
(9) together with (3) and (4), we secure the chirped dark
soliton pair for the coupled system (2) and (3) as

Z(U+ph+ Ta l)’)
q(z,t) = |———q=z — Ll —tan h

2 (w+ pki +“;,’L]1)2>
r(@t)=p|-——gomg (1l —tan h

where (coerk + 1 4pﬂ )(pal) < 0 and (a)—l—pk 4 (=) )

4pa1

(59)

(by + p*c1) < 0. The associated chirp is caught in the form

vk 2(w+pk+4pa))

ow(z,t) = —

2pay  pa (b + p%cr)
-1
W + pk + hl
1—tan h —J‘c . (60)
pay
Set 5
Oy = 0, (6].)

_3<w+pk1+ ))

4pa1

o = , 62
' 2(dy + p2fi + p'gy) (62
2% = 0, (63)

2+ phy + 1)
o3 = ; (64)

par
under the constraint conditions (39) and
b+ p*e; = 0. (65)
Employing (61)—(64) with (33) and using the relations (30)

and (9) together with (3) and (4), we acquire the chirped
dark soliton solution for the coupled system (2) and (3) as

)2

v—h
3 ((1)+pk’1 +“_‘/,l“ll

) tan h

= _— 7/ i(p(t)—ot)

(e, 1) = 2Adi+p2fi+ptg1) € ’

1

) 2

(v—hy)
3(m+pk1+ i 2<m+/)k1+ Tor )

— [ N Y A AN ) i(o(t)—wt)
r(z.t) =p 2di+p*fit+por) tan h pay ¢ ’
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where (w + pky 4 4/”1 )(pal) >0 and

4;)@1

(w + phy + L) )(dl + p%fi + p*g,) < 0. The chirping is

procured as

3(co + pky + (V4p};1| )

ow(z, t) = — v_hlJri -
’ 20a;  pa 2(di + p*fi + p*gy)
-1
2(w+pk + ‘4;;‘1 )
tan h T (67)

pai

3.2 Second expression with hyperbolic secant function

We consider that equation (32) has an exact soliton solu-
tion identified as

F(z) = By + P sec h?(By1)

1 +sech?(By1)’

prsec h(f;7)
1 + sec h(f;7)

(68)

where Sy, 1, P2 and f3 are constants to be determined.
Applyiny ansatz (68) to equation (32) gives rise to a
polynomial in sech(fist) of various powers. Equating each
coefficient in this polynomial to zero yields a system of alge-
braic equations that induces the following sets of solutions.

Set 1

Q(w—f—pk 4 4pa1 )
(=174 9V17)pay

fs =4 (72)

under the constraint conditions (39) and

bl —+ p261 = 4(—3 —+ \/ﬁ)

(Q}+pk + v4p,:11 )(d1+p2fl +p gl)
—3(=17 +9V17)

X

(73)

Substituting (69)—(72) into (68) and using the relations (30)
and (9) along with (3) and (4), we extract the chirped
bright soliton pair for the coupled system (2) and (3) in
the form:

See Equation (74) bottom of the page

where (w+pk + ‘4;;1 )(pal) > 0 and (w—i—pk + wl )

(dy + p*fi + p*g;) <0. The corresponding chirping is

obtained as

(v=hp)?
N 5 =3\ w+pki+ Toa
do(z,t) = — |22 2L ol ,

2pa1  par ) 2\ (—=17+9V17)(di+p2fi+ptgr)

(200 | o)
= (-4 ’ i N
0 2 2 (-17 + 9\/17)(d1 + P2 h + ') (k soct)? )
(69) 16sech? | 4 NG
X [ (=94 V17) +
By =0, (70) ( ) (< ))
Itsech® | 4 TJ:IMT
_3<w + pki + ‘4/)};1 ) ) _ _
ﬁ? =38 2 4q9.) (71) "
(=17 + 9V1T7)(dy + p2f, + pigy) "~
_ 1%
) 2 (a)+ pki +(\"17pha11)2)
e 16sech™ | 4\ — g 75,077
L _3<w+pk1+ 4pa11 ) /o i(p(c)—t)
gz, t) = |= (79+ 17)+ S
2\ (=17 + 9VIT)(di + p2fi + p'g1) ’ ("’wklﬂ"l’“)z)
9 dpay
1+ sech™ | 4\ ——oms ot
1
L) )]
) 2| ot+pki+—75— u )
9 P a1
- 16sech” 4\ =m0
- . -3 (w + ki + 550 ) 01 T (0l)-0t)  (74)
r(z,t) =p|= (_ + )+ T
P12\ 7+ 9V (ds + 92 + pgy) 2("’*”"”(1 3 )
1+sech®| 4 TF’:I@T
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Set 2
(v—hy)?
5 — (g + \ﬁ) ot o i) (76)
*T\2 T 2 )\ QT+ 9vVIT)(d + P2 + play)
B, =0, (77)
3<w+pk1 + i) )
By =— = . (78)
(17 4+ 9V1T)(dy + p2f + p*gy)
2<a) + ok + “;};ﬂ)z>
By =4\ — (79)

under the constraint conditions (39) and
—4(3 4 V17)

(w+pk1+

b+ p’c =

T )(dl +p*fi + p'g1)
3(17 4+ 9V17) '

X

(80)

By virtue of these results with (68) and using the relations
(30) and (9) in company with (3) and (4), we come by the
chirped dark soliton for the coupled system (2) and (3) of
the form

See Equation (81) bottom of the page

where (w + phy + & )(pal) < 0 and (w + pky +1

4pa1 )

(dy + p*fi + p*g;) > 0. The corresponding chirping reads
as

4pa

0 5 ) 3 (w+pk1 +(‘;21)2
P (3] o J L
5 (‘/E’ t) 2pay + ay 2 (17+9\/ﬁ)(d1+p2f1+p'1g1)
- 17
2 w+pk1+(‘1phall>)
16sech? T (e,
X (9 +v1
2 tu+pk1+(‘1ﬂlzll))
14sech? TN
(82)
Set 3
by =0, (83)
B, =0, (84)
6(w + pky + 5 )
pay
=— , 85
% (b + p*c1) (85)
CL)—I—pk + V4ph1
SN Bt N VT 86
b, o (56)

under the constraint conditions (39) and

v—h)’ ,
6<w + pki +(471)> (di + p°fi + p'g)) = (b + pcr)’.
pay
(87)

Inserting (83)—(86) into (68) and using the relations (30)
and (9) together with (3) and (4), one can derive the
chirped bright soliton solution for the coupled system (2)
and (3) given by

o 16sech”| 4\/ — RETVGI
0. = 1 3(w+pk1 4pa1 ) (9 i \/ﬁ) _ (ilo()-00)
’ 2\ (A7 +9VIT)(di + p*h + p'g) 2<w+pkl+<v—hl)2) ’
9 dpay
1+sech”| 4\ — eV
r _3
2(u+pk +izh) )
. 9 pay
_— 16sech”| 4 ~ Vet
3l o+ pky +
']"(;U, t) _) 1 4pay <9 + \/ﬁ)_ ei(gp(f)ﬂ;)t)7 (81)
2\ (A7 +9VIT)(di + p*fi + ptg1) Z(Wk NW)
2 1 dpay
1+sech”| 4\/ — —aTrovipa "
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1
3
o ’11)

) o phy +=
6(w+pk plh)? el T
— T i(o(1)—wt)
q(:r, t) - (b1+p2c1) 2 ¢ ’
1+sech? B T
o
%
o)
N otpky+—0
6((1)+pk|+( hl)) sec h ( _ Mlip 1-1)
— _ i(p(1)—wt)
r(z,t)=p (rtp%cr) (\/ IR ) € )
) 9 W+p, l+7lpn|
1+sech’ e Tr—

(88)
where (w + pky + 4pa )(pal) <0 and
(a) + pk1 + ‘4;;’;1 )(bl + p?c;) < 0. The chirping can be
found as

See Equation (89) bottom of the page
Set 4

4(w—l—pk1 + 4/”1 )

=— 90
ﬁO 3(b1+p Cl) ( )
B, = 4(w+pk1 + V4ﬂ};11 ) (91)
b (by + p*cr) ’
ﬁ? = 07 (92)
o+ pky + f)*
By =2 M, (93)

par

under the constraint conditions (38) and (39). Implement-
ing these outcomes into (68) and using the relations (30)
and (9) along with (3) and (4), we reach the chirped bright
soliton for the coupled system (2) and (3) in the form

)2

gz, 1) = ¢ilo)-on

3(bi+p%er) (—iy)?
0! pa
pa L
3
v—h 2 -
, o ar
4(@““*(‘;}"%) > i(o(x)-ot)
_ _ _ i(p(t)—wt
(e t)=p 3(bi+p2cr) 1 (v—iy 2 €
W+ phy+ 4,»@1
1+sech| 2 n Lt

(94)

where ( (VA‘—/)};Z)(") (pa;) >0 and (G)+pk 4 k) )

4pay

(by + p*c1) < 0. The corresponding chirping is attained as

4 0J+pk71+(“,ﬁhl>2
o v—h 5 ( 4pay
00(z, 1) = — |5 — par | S0
-1
()+pk1+< _1;:11) (95)
3sech| 2 —aq
X |1 —
@+, 1+( )
1+sec h <2\/W1>
Set 5
Bo =0, (96)
4(w+pk1 + )
pay
= 97
ﬁl (bl +p Cl) ( )
B, =0, (98)
w + pk1 + v—}:
ﬁ?, =2 Twla (99)

under the constraint conditions (38) and (39). Substitut-
ing (96)—(99) into (68) and using the relations (30) and
(9) as well as (3) and (4), a form of nonlinearly chirped
bright soliton for the coupled system (2) and (3) is con-
structed as

)2 2
(u+/71x‘1+(‘_1;21J
( —hy)? sech| 2 T
4\ o+pky - l 1
e t) = |- gt
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—h)2 sech| 2
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where (w-i-pk + 4,)@ )(P(M) < 0 and (0)+pk 4 =) )

4pay

ol—

T'(iL‘, t) =p|— ei((o(r)—wt)7

(100)

(by + p*ci) < 0. The chirping associated to this soliton

solution is presented as
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ow(z, t) =

Vb & 4o+ phy +

(—h)*
4pay

—hy)2
o+pk +—(‘4,,;11>

pay

sec h (2

(101)

par

(b1 + p2cr)

v—hy)?
w+pk1+( 4/,[1}1)
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(a)

(d)

Figure 1. The intensity profiles of W-shaped, bright, kink, anti-kink and dark solitons given by solutions (40), (46), (53), (59)

and (66).

See Equation (101) at the top of the page

4 Results and remarks

The chirped optical solitons obtained above for the coupled
system (1) and (2) differ entirely from that obtained in the
literature. In addition to that, the chirping is found to have
a nonlinear function in terms of the reciprocal of intensity.
The derived optical solitons consist of various structures
which are W-shaped, bright, dark, kink and anti-kink soli-
tons. To provide clear insight on the dynamics of solitons,
the graphical representations of the analytical results are
represented. The intensity profiles of optical solitons are
depicted by selecting suitable values of parameters.

In Figure 1, we exhibit the behaviors of extracted soliton
solutions by the first form of undetermined coefficients
method along with the corresponding chirping. The plots
in Figure la display a profile of W-shaped wave that
describes the solution (40). The graphs shown in Figure 1b
demonstrate a structure of bright soliton wave which char-
acterizes the solution (46). Furthermore, the behavior of
solution (53) illustrates kink-wave soliton as shown in
Figure 1c while the plots in Figure 1d present the profile
of anti-kink wave that describes the soliton solution (59).
Additionally, the graphs of solution (66) are revealed in
Figure 1le which describe a structure of dark soliton.

Likewise, soliton solutions obtained via the second
form of undetermined coefficients method are displayed in

Figure 2 besides the associated chirp. The graphs in
Figure 2a characterize the soliton pulse with the shape of
W for solution (74). Moreover, the evolution of solution
(81) is given in Figure 2b that represents a structure of dark
soliton wave. Obviously, it can be noted that the plots in
Figure 2c¢ demonstrate a profile of bright soliton pulse
describing solution (88). Further to this, one can see that
the graphs in Figure 2d show the propagation of W-shaped
solitons which represents solution (94). Finally, the behav-
ior of solution (100) is plotted in Figure 2e that delineates a
profile of bright soliton wave.

Interestingly, the influence level of dispersive reflectiv-
ity, self-phase modulation and cross-phase modulation on
the pulse propagation is shown in Figure 1. These effects
are examined especially for the bright soliton given by solu-
tion (46), as example, with the parameter values v = k; =
h]_ = = ]., P11 = 0.5,V = 005, ) = —25, bl = —05, t=20.
One can see from Figure 3a that the soliton amplitude is
weakly affected because of the variations of dispersive
reflectivity a; in comparison to the noticeable impacts
caused by self-phase modulation b; and cross-phase modu-
lation ¢;. However, the most negative value of a; enhances
the amplitude more than the least negative value. Addition-
ally, it is obviously in Figure 3b that self-phase modulation
increases the pulse amplitude remarkably compared to
cross-phase modulation strength exhibited in Figure 3c.
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Figure 2. The intensity profiles of W-shaped, bright and dark solitons presented by solutions (74), (81), (88), (94) and (100).
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Figure 3. Effects of dispersive reflectivity, self-phase modulation and cross-phase modulation on the pulse propagation for solution
(46).
Conclusion different types of optical solitons are retrieved based on

This study discussed essentially the chirped optical solitons
in fiber BGs with dispersive reflectivity having polynomial
law of nonlinearity. The model of the coupled NLSE is
analyzed under specific conditions in order to be straightfor-
wardly integrable. Then, the soliton solutions are extracted
by means of the undetermined coefficients approach which
was given in two forms. The created optical solitons have
several structures that included W-shaped, bright, dark,
kink and anti-kink solitons. The chirping expressions associ-
ated with solitons were derived for all obtained solutions as
well. The intensities of optical solitons are illustrated in
addition to the chirping profiles. Besides, it is found that
both of self-phase modulation and cross-phase modulation
can highly amplify the soliton amplitude while there is a
weak growth of amplitude by reason of dispersive reflectiv-
ity. The results obtained are expected to serve the field of
optical fibers with BGs.

In the forthcoming work, the current model is studied
via the technique of complete discrimination system for
polynomial. Due to the intricate form of the coupled NLSE,
various implicit solutions are revealed under specific restric-
tions. Furthermore, an exotic form of the soliton ansatz
method having combination of hyperbolic secant and tan-
gent functions is applied to equation (32). Consequently,

the existence conditions. Later, we intend to further expand
our studies to incorporate Bragg gratings with cubic-quartic
form of CD or highly dispersive form of CD applied to
Bragg gratings and other structures so as to examine the
dynamics of optical solitons.
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