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Abstract 

Orbital angular momentum (OAM) detection underpins almost all aspects of vor-
tex beams’ advances such as communication and quantum analogy. Conventional 
schemes are frustrated by low speed, complicated system, limited detection range. 
Here, we devise an intelligent processor composed of photonic and electronic neurons 
for OAM spectrum measurement in a fast, accurate and direct manner. Specifically, 
optical layers extract invisible topological charge information from incoming light 
and a shallow electronic layer predicts the exact spectrum. The integration of optical-
computing promises us a compact single-shot system with high speed and energy 
efficiency (optical operations / electronic operations ~ 103 ), neither necessitating 
reference wave nor repetitive steps. Importantly, our processor is endowed with sali-
ent generalization ability and robustness against diverse structured light and adverse 
effects (mean squared error ~ 10(−5) ). We further raise a universal model interpretation 
paradigm to reveal the underlying physical mechanisms in the hybrid processor, as 
distinct from conventional ‘black-box’ networks. Such interpretation algorithm can 
improve the detection efficiency up to 25-fold. We also complete the theory of opto-
electronic network enabling its efficient training. This work not only contributes to the 
explorations on OAM physics and applications, and also broadly inspires the advanced 
links between intelligent computing and physical effects.

Keywords:  Orbital angular momentum spectrum, Deep learning, Optoelectronic 
neural networks, Optical computing, Diffractive deep neural networks

Introduction
Vortex beams carrying orbital angular momentum are ubiquitous in optical sciences. All 
OAM states of light constitute a Hilbert space, providing a new avenue to high-capacity 
communications [1], micro-manipulation [2], and quantum information processing [3]. 
Consequently, precise and efficient detection of OAM distribution or OAM spectrum 
becomes pivotal for these promising applications. Several previously proposed detec-
tion methods such as interferometry [4, 5], diffractometry [6, 7], and coordinate trans-
formation [8, 9] are suitable for only detecting the existence of OAM within a limited 
range but inappropriate to extract accurate power distribution of OAM states. To this 
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end, schemes based on mode projection and phase retrieval are explored [10–12] yet 
requiring not only many repetitive steps in data acquiring and postprocessing but also 
strict experimental calibration. Rotational Doppler effect is also employed to construct 
an OAM complex spectrum analyzer [13] at the cost of complicated detection setup and 
low speed. Another sequential weak and strong measurements in single-photon sce-
narios successfully reconstructs complex probability of 27-dimensional OAM states [14] 
but still fall short in terms of system conciseness and working speed. In short, despite of 
these realizations [4, 6, 8–11, 13–18] the limitations of detection speed, accuracy, range, 
robustness, generalization ability, and system conciseness hinder their practicability 
towards stable, fast and accurate information transfer in the modern age.

Along with enduring efforts in vortex beams comes the development of artificial intel-
ligence. In particular, deep learning (DL) [19], has gradually revolutionized wide-ranging 
disciplines such as genetics [20], biomedical diagnosis [21] and physics [22]. In optics, 
data-driven DL algorithms are becoming pervasive tools to augment performance and 
to infuse new functionalities in imaging [23], holography [24], ultrafast photonics [25], 
optical metrology [26], etc. Recently, DL is also introduced to recognize OAM modes 
[27–31] due to their inherent ability to analyze complex patterns. However, the distin-
guishment of degenerate intensities patterns carrying different OAM spectra becomes a 
major challenge. More importantly, previous DL-related endeavors based on digital sig-
nal processing techniques often face poor generalization ability due to their ‘black-box’ 
nature and heavy computational consumption.

The flourishment of DL drives inconceivable demands for computing hardware espe-
cially at the era of big data. The computing power required to train or execute state-
of-the-art DL models increases vastly while people’s expectation on faster computing 
speed is still high. On the other hand, the development of integrated electronic circuits 
is unable to keep pace with the well-known Moore’s law. Owing to the advantages of low 
latency, high energy efficiency and parallelism, photonics thus establishes itself in a cen-
tral position when seeking alternative technologies for continued performance improve-
ments [32, 33]. Many seminal photonic computing schemes are proposed recently 
[34–39]. Among them, wave-optics-based Diffractive Deep Neural Network (D2NN) 
distinguishes itself with great flexibility  [35, 40], depth advantage [41], and scalability 
[42]. In addition to many machine-vision demonstrations [35, 42], it has been success-
fully incorporated into the diffuser imaging system [43], pulse shaping system [44], opti-
cal logic operation system  [45], along with extension to different wavelengths [46–49].

Here, we demonstrate a single-shot measurement scheme called POAMS (proces-
sor for OAM spectrum) with high speed and interpretability, leveraging a hybrid opto-
electronic neural network (Fig.  1). An optical diffractive network is synergized with a 
shallow electronic readout layer to predict the exact OAM spectrum for incoming 
structured light in a regressive manner. The obtained results on unknown experimen-
tally generated single and multiplexed modes show that POAMS could be an optimal 
solution compared with the most advanced alternatives (see Supplementary Table S1 for 
comparison details), featuring several critical properties: (1) high speed and energy effi-
ciency: it works at microsecond level with most computation operations (~ 99.98% of all 
operations) optically conducted which cost little to no energy; (2) high accuracy: it can 
reconstruct sophisticated even random relative weights with mean squared error (MSE) 
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around 10(−5)~10(−3)    ; (3) conciseness: it entails neither reference wave nor repeti-
tive measurements with a system size of ~ 100�× 100�× 200� ; (4) high robustness: it 
exhibits successful results even in the presence of adverse effects such as atmosphere 
turbulence and spatial dislocations; (5) great generalization ability: it functions well 
on experimental modes with diverse OAM spectra but without necessitating massive 
experimental training data; (6) great extendibility: it is implanted onto directly calculat-
ing OAM complex spectrum (i.e. the relative power and phase distribution). Moreover, 
we propose an efficient training method for optoelectronic models and demonstrate a 
universal model interpretation/visualization algorithm to comprehend the underlying 
physical mechanisms of our hybrid processor thus (1) removing the ‘black-box’ nature of 
neural networks and (2) benefitting system detection efficiency improvement. The syn-
ergy of optical and electronic neurons promises us a powerful and concise platform to 
facilitate OAM-based high speed information processing and to explore new opportuni-
ties and mechanisms of hybrid optoelectronic neural networks.

Results
Processor for OAM spectrum

A general structured light E(ρ, θ , z) can be characterized by spatially mathematically 
decomposing onto orthogonal vortex modes:

where (ρ, θ , z) are cylindrical coordinates, KP and KN denote positive and negative OAM 
spectrum bounds for a given detection scenario (normally |KP | = |KN | and they could be 
infinite), and cℓ(ρ, z)represents complex coefficient function with respect to certain heli-
cal mode. Here we limit our attention to the degree of OAM by setting 
cℓ(ρ, z) = aℓLG0,ℓ(ρ, z) with LG0,ℓ(ρ, z) = LG0,ℓ(ρ, θ , z)exp(−iℓθ) representing the 
radial amplitude of Laguerre-Gaussian model LG0,ℓ(ρ, θ , z) (radial index 0, azimuthal 

(1)E(ρ, θ , z) =
KP

ℓ=KN
cℓ(ρ, z)exp(iℓθ) ,

Fig. 1  Illustration of the hybrid processor for OAM spectrum measurement. The incident structured light 
with certain OAM distribution is firstly processed by the diffractive optical neural network, whereby the OAM 
information is transformed into high-dimensional sparse feature in the photoelectric detector plane. For this 
model, the optical-diffraction-based processing part can ‘split’ the input beam into two main lobes that are 
related to positive and negative topological charges respectively. Once the complex optical field is turned 
into real-numbered intensity patterns, the shallow fully connected layer can recover the OAM spectrum in a 
regressive manner (see detailed model in Methods)
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index ℓ ). Therefore, the normalized complex coefficient aℓ = |aℓ|exp(iϕℓ) contains OAM 
spectrum information where the amplitude of aℓ satisfies 

∑KP

ℓ=KN
|aℓ|

2
= 1 and ϕℓ indi-

cates intermodal phase with respect to a global reference phase. The OAM spectrum 
that elucidates the relative power distribution of all components can thus be expressed 
as a vector s =

[∣
∣aKN

∣
∣2,

∣
∣aKN+1

∣
∣2, . . . ,

∣
∣aKP

∣
∣2
]
 (see derivation in Supplementary Note 1). 

Calculating s from a given structured light is generally not easy and can be treated as an 
inverse problem. Figure  1 illustrates the workflow of our system to retrieve the OAM 
spectrum ŝ  . Accordingly, the whole picture of information processing in our scheme can 
be expressed as:

with FE and FO the electronic regression function and the optical-diffraction-based 
wavefront transforming function respectively, and FN the natural quadratic (nonlinear) 
function brought by photoelectric effect of a sensor. The optical neural network is com-
posed of five cascaded phase layers with fixed distance (40�) and each layer is endowed 
with 2002 programmable neurons. They serve as a special mapping to project the inci-
dent complex optical wave into a latent feature space once trained. The transformed 
complex features are switched to measurable real signals by the photoelectric sensor. 
Then the real features are fed into the shallow electronic fully connected layer (FCL) to 
obtain the spectrum (detailed in Methods). Note that earlier approaches involving all-
optical D2NN or hybrid D2NN are normally applied for classification tasks in machine 
vision such as MNIST database [35, 50]. The POAMS in this work is distinctive from 
previous endeavors because OAM spectrum retrieval is a regression photonic prob-
lem in essence, which is rather challenging if only using optical neurons due to lack of 
nonlinearity. In this regard, the POAMS represents a new physical ‘smart sensor’ [38] 
in structured light processing in addition to recent demonstrations in fiber nonlinearity 
compensation [51] and optical computational imaging [43].

Results and analysis

The proposed system architecture is shown in Fig. 1, where we craft the OAM spectrum 
analyzer during iteratively training with error backpropagation technique. The objective 
function can be expressed as:

where L
(
s, ŝ; θo, θE

)
 refers to the loss function comparing the processor’s output ŝ  and 

ground truth s , and θo, θE are optical and electronic neurons. The efficient training of 
hybrid networks is notoriously challenging [50] meaning that though parameters θo and 
θE are updated simultaneously, they are not balanced initially resulting in static optimi-
zation of θo . We introduce two more hyperparameters (see Eq. (17) in Methods) for the 
smooth convergence of the hybrid model as shown in Fig. 2(a). The latter two terms with 
constant C , known as L2 regularization, are added as penalties to prevent overfitting and 
to increase model parameter sparsity. More training details are in Supplementary Note 
2.

(2)ŝ = FE(FN (FO(E(ρ, θ , z)))) ,

(3)min
θo,θE

L
(
s, ŝ; θo, θE

)
+ C� θo �

2
2 + C� θE �

2
2 ,
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The two adjacent loss curves in Fig. 2(a) validate that the model is not overfitting 
and the training ends after dozens of epochs. The optical processing part of our con-
verged model is presented in Fig. 2(b). The resultant five diffractive layers mutually 
work to transform implicit OAM information into hierarchical features in the detec-
tor plane. Note that here these layers are not the same as those of Fig.  1 (trained 
with different hyperparameters and datasets), and the following test results are all 
based on the system in Fig. 2(b) instead of Fig. 1. Inspired by the beam steering effect 
induced by phase gradients (e.g. a focus lens), we analyze the fifth layer’s gradient 
values in Fig. 2(b6) to straightforwardly show what exactly the diffractive layers are 
doing from the perspective of optics. It turns out that as the structured light propa-
gates and interacts with these layers consecutively, the spatial wavevectors are mixed 
sufficiently in an ‘intelligent’ manner that the light fields are redirected towards dif-
ferent regions of the sensor plane. We repeat the training process several times under 
different hyperparameters and conclude that in most cases the incident optical field 
is transformed into speckle-like pattern, which contains high-dimensional features 
related to topological charges (TCs). Yet, an interesting case we obtain is the scheme 
sketched in Fig.  1: the optical part can ‘split’ the input beam into two main spatial 
lobes, where one lobe determines the OAM spectrum components with positive TCs 

Fig. 2  Training results and experimental data collection. a The loss curves of training set and validation set 
versus updating epochs. The learning rate is tuned dynamically every 15 epochs. The POAM converges after 
dozens of epochs and the inset indicates that the neural network is not overfitting. The loss value is the 
sum of 300 (one batch) samples. b Final designs of the optical diffractive network. (b1 - b5) Five cascaded 
diffractive layers with a fixed distance of 40� between two successive layers. (b6) The gradient distributions 
of the 5th layer. PS: Color-encoded gradient map. (b7) Phase value distributions of 5 diffractive layers. c The 
optical setup for generating experimental structured light. CW laser, continuous-wave laser; BE, beam 
expander; HWP, half-wave plate; BS, beam splitter; SLM, spatial light modulator; P, polarizer; L1, L2, lens. For 
each data sample, we reconstruct the complex optical fields using 4-step phase shift method as depicted in 
the inset (I1, I2, I3, I4). See details in Supplementary Note 1. d Four selective reconstruction results based on c, 
which are single mode (TC = 5), multiplexed (mul.) mode (TC = − 4, − 1, equal weights), mul. mode (TC = − 4, 
− 3, 2, 5, equal weights), mul. mode (TC = − 10 ~ 10, random weights), from left to right
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and the other determines those with negative TCs (see Supplementary Video 1). This 
phenomenon indicates that our optical neural  network is actually transforming the 
wavefront of structured field. In this way, our scheme can naturally get rid of the 
misleading brought by degenerate intensity patterns, as confronted by earlier works 
using intensity-based DL recognition algorithms [27, 28, 30, 52].

Furthermore, we calculate the statistical distributions of the optical (Fig.  2(b7)) and 
electronic (Supplementary Fig. S3) neurons. All optical neurons are initialized with value 
π . After training, though most phase values are close to π , especially for the first layer, 
the gradual trend from the 1st layer to the 5th layer reflects that the interaction region 
between the layer and local optical field expands bigger. This quantitative observation 
not only indicates that the optical part is mixing the wavevectors towards the final tar-
get but also shows that the values of both optical and electronic neurons are sparse. In 
neural network studies, parameter sparsity benefits the feature selection and model 
interpretability [53]. In optics, this sparsity could manifest the convenience of physical 
fabrication/implementation of our engineered layers as well.

Next, we present numerical and experimental results from the POAMS for different 
tasks. Though the optical layers are implemented in silico, various structured light is 
experimentally generated as blind test samples to validate the reliability of trained model. 
We first reconstruct the complex optical fields through the 4-step phase shift method 
using the experimental setup in Fig. 2(c), which is also adopted in Refs. [10, 54] for OAM 
spectrum detection (see Supplementary Note 1 and Supplementary Note 3 for details 
and comparison). Note the setup in Fig.  2(c) is not used for implementing optical lay-
ers and instead it is for generating various experimental test sets. Some representative 
results are depicted in Fig. 2(d). We can clearly see the intensity and phase imperfections 
brought by nonideal laser source, possible astigmatism and distortion, sensor’s noise, and 
other sources of error in our setup. Even so, the inference results from the processor are 
encouraging as we will exemplify in Fig. 3.

We first investigate the blind test performance on single (pure) vortex modes. We 
average the results from 30 repeated experiments and show them in Fig. 3(a). The dom-
inant diagonal values indicate that the processor outputs nearly perfect OAM spectra 
with experimental single modes input, only with a little deviation in Gaussian modes. 
Then the processor is employed to measure the spectra of multiplexed OAM beams and 
two typical results based on 30 repeated experiments are illustrated in Fig. 3(b), where 
sample 1 denotes multiplexed beam with equal weights and sample 2 represents beam 
with random weights at the OAM bases (see more in Supplementary Video 2). We can 
see a decent match between the output results and ground truths, even for very com-
plicated OAM distributions. To further evaluate the measured results quantitatively, we 
calculate the R-squared (R2 ) and mean squared error (MSE) values between the outputs 
and corresponding ground truths, as shown in Fig. 3(c). The average R2 values for single 
modes, multiplexed modes with equal weights and random weights are 0.9924, 0.9268 
and 0.8409, respectively, while the averaged MSE values are calculated as 2.878× 10−4 , 
4.822× 10−4 , 1.617× 10−4 respectively, validating the success of POAMS to detect 
OAM spectrum. Interestingly, the R2 metric reveals that the model performs better on 
single modes while the MSE metric shows better results on multiplexed modes with 
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random OAM weights. This can be partly explained by the better generalization per-
formance, due to the fact that the MSE metric and simulated multiplexed modes are 
employed as the loss function and the training dataset. Beyond that, we find the hyper-
parameter T  (also called temperature value) at the readout layer can sharpen/smoothen 
the OAM output (see Methods, Eq. (8)). To further explore the influence of T  , we train 
another 11 models with different T  values (from 0.01 to 1, logspace, each model trained 
with 60 epochs) and present the averaged MSE values upon different experimental data-
sets in Fig. 3(d). Indeed, T  can impact the convergence of the models as well as the final 
performance. With an optimized value e.g. T  ~ 10−1.2 , one can achieve better results on 
multiplexed modes or single modes or mixture of them.

Fig. 3  OAM spectrum results for different structured light. a The results of experimental single modes with 
TC from − 10 to 10. Horizontal axis denotes different modes under test and longitudinal axis represents 
measured OAM spectrum. b Two selective results of experimental mul. modes. #1: mul. mode with equal 
weights. #2: mul. mode with random weights. Results of (a) and (b) are calculated based on 30 repeated 
experiments. Errorbar represents standard deviation. c Quantitative metrics to assess OAM spectrum 
measurement performance on different experimental datasets. Horizontal axis: index of each sample. 
R2: R-squared. MSE: mean squared error. d Model performance comparison on different datasets versus 
temperature value T  . Each MSE value is calculated through the average on the whole experimental dataset. 
Each T  correspondes to a trained model. The opaque cyan region means that the models with corresponding 
T  values are not converged during training. The vertical gray line marks the model in Fig. 2a – b. e – f OAM 
complex spectrum on simulated mode. Left: weight. Right: relative phase
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In addition, as the complex spectrum (weight |al |2 and relative intermodal phase ϕl ) 
is reconstructed, the complex OAM state may be fully attained with prior knowledge 
of superposition principle for analyzing the in-depth optical properties (e.g. beam qual-
ity M2, wavefront at any longitudinal distance) [11, 13, 55]. We extend our processor to 
regress the OAM complex spectrum by retraining a hybrid neural network with two par-
allel FCLs, which are responsible for the readouts of weights and relative phases respec-
tively. Note the extension is rather implementable without losing the system’s speed and 
energy advantages. The blind test results in Fig. 3(e) – (f ) on simulated structured light 
are quite promising. Obtained diffractive layers and more results are shown in Supple-
mentary Video 3.

Robustness against several adverse effects

In realistic circumstances, incident structured light is prone to be distorted by many 
uncontrollable adverse factors. Consequently, pronounced channel crosstalk (or OAM 
redistribution) arises, which is detrimental for practical communication links [1, 56]. 
Therefore, the robustness of an OAM spectrum detection system is of great significance 
[57]. Here, we quantitatively analyze how the POAMS reacts when facing spatial dislo-
cations including transverse rotation (TR), longitudinal shift (LS), transverse shift (TS), 
angular shift (AS) and atmosphere turbulence (AT), as illustrated in the left panels of 
Fig. 4. The system is robust against these conditions if it can output the OAM spectra as 
the distorted ground truths. We evaluate our model on diverse test sets including pure 
vortex modes, multiplexed modes with equal intermodal weights or random intermodal 
weights.

Transverse rotation

It usually occurs when the detection module is indeliberately rotated. Additionally, as the 
optical layers in Figs. 1 and 2(b) possess no rotation symmetry, it’s necessary to explore 
whether the POAMS is rotation-invariant. As shown in the right panel of Fig. 4(a), when 
the rotation angle varies from −𝜋  to 𝜋, the averaged MSE errors barely change 10(−5)

~10(−4)  . Some randomly selected spectrum results are displayed in the inset, implying 
that the POAMS exhibits strong robustness against TR.

Longitudinal shift

Without changing OAM spectrum, distance change between the generation and detec-
tion module (i.e. longitudinal shift) will cause the deformation of incident wavefront 
induced by Gouy phase. Meanwhile, due to the divergence nature of propagating beams, 
LS also (de)magnifies beam width. As shown in Fig. 4(b), by changing LS from 0 to 1.0zR 
(Rayleigh range), the output spectra maintain accurate, leading to distance-invariance of 
POAMS. It’s mention-worthy that like any other optical systems, our model has an effec-
tive entrance pupil that can be observed from the interaction regions of the diffractive 
network as depicted in Fig. 2(b1). When the incident beam width exceeds the effective 
entrance pupil, there may be no sufficient modulation/processing and thus the processor 
loses efficacy.
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Transverse shift & Angular shift

Another crucial factor is misalignment between generation and detection module due 
to transverse or angular shift [58] as shown in the left panels of Figs. 4(c) and (d). It is 
an essential hurdle because it is unavoidable in realistic setups. Unlike TR and LS which 
will not affect the ground truth OAM spectra, misalignment can induce distinct OAM 
spectrum changes [57]. Therefore, our preliminary results on single modes imply that 
there may exist mismatch between the outputs and ground truths. Specifically, the 
induced sidelobes of single mode spectra can be suppressed after the softmax output 
layer. To compensate for such mismatch, we leverage the flexibility of electronic neu-
rons of the hybrid processor i.e. we conveniently retrain the electronic neurons (fine-
tuning) with another 16,000 distorted data samples (8000 for each) and keep the optical 

Fig. 4  Robustness analysis of the POAMS against adverse conditions. Left panel: schematic diagrams of 
different adverse conditions. In the right panel, different curves represent the MSE values between POAMS 
outputs and ground truths after distortions on different datasets. Inset: randomly selected OAM spectrum 
results (TC range: − 10 ~ 10) under corresponding adverse conditions. Every MSE value on curves is obtained 
from the average of 21 test modes. The test models in (c), (d) and (e) are fine-tuned with new electronic 
neurons to compensate for potential mismatches
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layers fixed. The blind test results are presented in Figs. 4(c) and (d). Owing to the TR 
robustness, we study TS varying from -1 to 1 (in beam width unit) and AS varying from 
−9.1× 10−3 to 9.1× 10−3(in rad) only in xoz plane. The symmetric curves indicate iden-
tical performances.

Atmosphere turbulence

Besides the spatial imperfections, another critical factor that distorts the structured 
light during propagation is atmosphere turbulence (AT) [59]. To demonstrate the cor-
responding robustness, we put the POAMS into different AT environments. Specifi-
cally, the modified von Karman model is employed to generate random phase plates, 
where the outer and inner scales of turbulence are set as 10  m and 0.01  m respec-
tively. AT refractive index structure parameter C2

n varies from 10−4.5 to 10−3m−2/3and 
five different phase plates are used to accumulate 500 m propagation distance in tur-
bulence. As TS and AS, AT also changes the OAM spectrum, therefore we also fine-
tune the electronic weights. Test results from the retrained model is shown in the 
right panel of Fig. 4(e).

To sum up, the POAMS exhibits considerable robustness against above five adverse 
effects from the intuitional curves shown in Fig. 4. This robustness can further verify the 
wavefront transforming nature of the optical diffractive neural network. Namely our sys-
tem is actually learning the global OAM information hidden in phase structures rather 
than memorizing the local trivial features. The analysis of LS manifests a large tolerance 
of effective entrance pupil of the system, which benefits high efficiency and signal-to-
noise ratio. As for TS, AS and AT, the OAM spectrum changes after their distortions. 
Advanced fine-tuning techniques in neural networks can help us maintain the robust-
ness of POAMS against them without compromising other advantages. Such robustness 
can effectively improve the practicability of OAM-based communication links and can 
inspire novel applications of vortex beams, e.g. the POAMS could act as a novel sensor 
for fast AT prediction [60]. Besides, we further investigate the robustness of the hybrid 
model itself including detector noise, interlayer distances and out-of-range mode inputs 
and put extended data in Supplementary Note 4.

Model interpretation

As shown in Fig.  5(a), a ubiquitous convolutional neural network (CNN) is com-
posed of several convolutional layers for extracting features and FCLs for combining 
learned features. Despite the popularity of CNN-enabled breakthroughs, a criticism 
is often raised on its ‘black-box’ nature, i.e. it is hard to explain why a given input 
produces a corresponding output [61]. On the other hand, clearly understanding 
how the neural networks work and what computations they perform can assist us 
to better improve the system. Otherwise, development of models is reduced to trial-
and–error and misleading may arise without warning or explanation when models 
collapse [62–64]. To date, researchers have developed various techniques to visual-
ize the CNN working principles e.g. t-SNE [65], CAM [66], and Grad-CAM [63]. 
Whereas, interpretation of hybrid optoelectronic neural networks still remains 
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elusive. With the aid of optical diffraction theory [35] and previous visualization 
methods [62], here we propose a methos by: (1) analyzing the complex features 
behind each optical layer and (2) connecting the high-dimensional features in the 
sensor plane with the final OAM spectrum results.

For the POAMS, we treat diffractive layers as CNN’s convolutional layers and also 
investigate the interaction between the last diffractive layer and readout layer. Spe-
cifically, we firstly present complex optical fields behind each diffraction-modulation 
unit to see how the incident structured light is processed optically. Figure 5(b) eluci-
dates the hierarchical features that the optical neural network is extracting. Though 
the features seem rambling to us, they are critical to the network. Stated differently, 
the blended OAM information of structured light is transformed to easy-separable 
high-dimensional features in the latent space, so as to be globally regressed to model 
outputs. From our theoretical model in Methods, the latent space in the detector 
plane plays a significant role in communicating complex optical signals with real 
electronic signals. On one hand, complex optical signals are turned to be real to pro-
vide greatly reduced parametric complexity. On the other hand, the compressed fea-
tures enable us to interpret how each TC number connects to the spatial regions 
in the detector plane. Particularly, here we propose a method akin to occlusion 

Fig. 5  Visualization of the POAMS. a Architecture comparison between a conventional CNN (left) and 
the POAMS (right) for further model interpretation. The red dashed rectangles represent the latent space 
connecting electronic convolutional layers (or optical diffractive layers) and FCLs. b Visualization of the 
complex optical features behind each diffractive layer. Intensity distributions are normalized. It can be seen 
that the diffractive layers can mix and redirect the spatial wavevectors ‘intelligently’. c The visualization 
workflow for searching the specific spatial regions in the detector plane that connects corresponding TC 
number. Window size (white box size): 2 × 2, stride size: 1. d Evolution of obtained characteristic graphs 
during training. Colormap encoded with TC number. Model at #108 epoch is the best model (with the lowest 
validation loss)
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sensitivity analysis in neural network studies [62], in accordance with the workflow 
in Fig. 5(c) and following steps:

 i)	 Utilize a window ahead of the detector which only leaks a portion of signals to flow 
into the readout layer and occludes others.

 ii)	 Monitor the consequence of OAM spectrum output and pick the OAM component 
which sticks out from others.

 iii)	 Repeat step ii) for massive (e.g. 200) different input modes and decide one OAM 
component with maximum likelihood.

 iv)	 Slide the window with a fixed stride across the whole plane and repeat steps i), 
ii) and iii) to obtain a feature map.

Here, we define such map that identifies the connection between feature spatial 
regions and exact OAM components as the characteristic graph. Without occlusion, 
the model results show high consistency with ground truth. With a sliding window, 
we obtain such graphs shown in Fig. 5(d). The characteristic graph exhibits several 
interesting properties. First, from the evolution of these graphs in Fig. 5(d), the dis-
tribution converges after adequate training (~ 45 epochs) i.e. the general structure 
remains stable, only with tiny changes along evolution. Second, the distribution of 
the graph is globally invariant against the window size. Third, the graph tends to 
be complete during training, meaning that the graph contains all 21 OAM compo-
nents. More importantly, we find that once obtaining the graph, we are able to: (1) 
determine the existence of certain OAM component and (2) reconstruct the OAM 
spectra quite accurately, by only detecting the corresponding spatial regions at the 
graph. In other words, according to the graph, one can obtain the OAM information 
with much less scanning region and measurement steps when using a single pixel 
detector (photodiode) or with much less detector size when using an array, which 
significantly improves detection efficiency by 25-fold (see more details and discus-
sions in Supplementary Note 5, Figs. S7 to S11). This liberates us from 2D full screen 
demodulating devices [12] and detectors [10, 11] when measuring OAM to push 
the speed to the limit — now one can only use single pixel detectors to obtain the 
OAM information. We should note that although in modal decomposition approach 
like ref. [12], one can also use single pixel detector to record the intensity signals, 
the bottleneck is actually the SLM/DMD ahead of the detector used for loading the 
demodulating mask, therefore one cannot utilize the high refresh rate of the 1D 
photodetector in practice for that approach. Besides, the characteristic graph also 
reflects that the optically extracted features are sparse in the detector plane.

In short, visualization of this model helps us better understand the interaction 
mechanisms between layers. Especially, we can determine which part of intensity 
signals in the detector plane contributes to certain OAM component. In this regard, 
the POAMS is significantly suitable for structured light detection by optically 
transforming corresponding wavefronts, extracting decisive features, decoupling 
the mixed TC information and electronically combining the global features to the 
final results. Compared to all-optical or all-electronic neural networks, the POAMS 



Page 13 of 21Wang et al. PhotoniX             (2023) 4:9 	

reported in this work strikes a remarkable balance among model expressivity, appli-
cation scenario, inference speed and energy efficiency.

Discussions
Model analysis

The above results clearly show the exceptional power of the hybrid optoelectronic pro-
cessor for OAM spectrum detection. First, the POAMS contains 0.2 million optical neu-
rons and 5021 electronic neurons, leading to remarkable speed and energy efficiency. In 
other words, the optical-achieved 7.68× 1010 computation operations cost little to no 
energy and are performed nearly at the speed of light, and electronic-achieved 1.26× 107 
operations cost relative low energy using a moderate computer. Then, compared with 
existing OAM spectrum measurement methods, the POAMS functions in a direct sin-
gle-shot manner, preventing the need of strict alignment for mode projection, reference 
wave for phase retrieval, etc. This, in one way, promises us a compact and elegant system 
(approximately 100�× 100�× 200� with � the working wavelength), and in another way, 
saves time and energy (see Supplementary Note 3 for details).

For the neural network convergence, despite fruitful discussions in all-optical D2NN 
training, the instructional analysis of hybrid optoelectronic neural networks is elusive 
[50], especially in terms of smooth and direct training pipeline, which hampers the 
advanced applications of these models. In this work, we find the imbalance between 
optical neurons and electronic neurons. Specifically, the gradient-descent-based algo-
rithm updates the electronic neurons effectively but the optical parameters stay static, 
thus hindering the successful updating of the joint model. By calculating the back propa-
gation errors analytically (see Methods), we introduce two hyperparameters to augment 
the errors with respect to optical neurons, yielding a synchronized network parameter 
update.

Implementation

The overall system is composed of three parts: structured light generation, optical dif-
fractive layers and electronic readout layer. For the first part, we experimentally gener-
ate various optical states as blind test sets to evaluate the POAMS. We emphasize that 
the generalization ability of POAMS is highly satisfactory. Typically, the applications of 
DL in optics are often hindered by the need of massive labelled experimental data to 
drive the training of the network parameters because the collection of substantial exper-
imental data in optics is prohibitively time-consuming and sometimes impractical [67]. 
However, in this work even the model is trained in silico using limited simulated dataset 
(only multiplexed modes with random OAM weights), the obtained processor is capable 
of predicting experimental single modes and multiplexed modes with equal as well as 
random weights collected via the setup in Fig. 2(c) (see results in Fig. 3 and Supplemen-
tary Video 2). Training and test sets information are also presented in Supplementary 
Note 1 to fully reflect the great generalization ability. Free from experimental training 
sets and great generalization ability are desirable for real-world applications by fast 
decoding various unknown OAM beams. For the second part, we test the optical layers 
in simulation. Note that in addition to many insightful simulation studies on D2NN [40, 
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41, 68–70], some experimental advances also demonstrate the feasibility of transferring 
in silico diffractive layers to real devices [35, 47–49], indicating that the computer-opti-
mized models are also accurate and convincing. Note the working wavelength is decisive 
when physically implementing these layers. 3D printed layers have been unlocked in the 
terahertz spectral range [35], radio frequency range [48], and acoustic wave scheme [47], 
which are relatively large in size thus easy to fabricate. Considering vortex beams are 
mostly investigated in optical frequencies e.g. 532  nm, the fabrication of optical neu-
rons is harder. Even so, if with sufficient laboratory sources, we can resort to multi-step 
photolithography-etching technique [49], or five cascaded SLMs [71] or (multi-reflec-
tive) metasurface [72–74], or micro-structured liquid crystal devices [75, 76] to optically 
extract TC features. To further improve the reliability, in this work we conduct the free 
space propagation simulation based on angular spectrum method with zero padding 
[77], which has been proven to be accurate enough in holography [78]. For the third part, 
since the electronic FCL is shallow and only covers limited computational operations, 
we use a moderate computer that is qualified to achieve high speed processing. More 
importantly, the FCL can mitigate the possible discrepancy between the experimen-
tal results and simulation counterparts through adaptive training technique [42]. Spe-
cifically, given 5 fabricated optical layers, one can compensate the imperfections arisen 
from fabrication or experimental setup e.g. misalignment by only fine-tuning the elec-
tronic FCL without changing any devices as demonstrated in above robustness section. 
This can be another advantage of our hybrid system. The codes and data are available for 
the whole implementation to train/test the system and for developing new processors at 
https://​github.​com/​hao-​focus/​Model​ForOA​MLight.

Future improvement

The presented POAMS is scalable and can be further improved. For example, precisely 
detecting structured light in the OAM basis in other optical spectra can be achieved uti-
lizing this platform. Also, one can easily extend the OAM detection range by adjusting the 
number of neurons in the last layer, without compromising other advantages. To advance 
the results reported in Figs. 3 and 4, one can scale up the training dataset by adding more 
diverse data samples. Note we do not have to start from scratch to train the network, transfer 
learning technique [79] can be employed to fine-tune the POAMS. In this work, we limit 
our attention to scalar structured beams and the engineered diffractive layers are polariza-
tion-insensitive. Vectorial counterpart is also feasible [70, 72], which could inspire efficient 
vector structured light detection. In addition to azimuthal mode spectrum this work dis-
cussed, crafting the POAMS into a radial mode spectrum can be relevant future work [80]. 
In this case, one is expected to obtain two characteristic graphs — one for ℓ and another 
for p (radial index). Since structured light is rich in members [81, 82], we expect to extend 
POAMS to other beams generally, for instance, to tailor another optoelectronic network to 
measure Bessel beams, fractional-order OAM beams, perfect vortex beams, among many 
others. But one should that the trained POAMS in this work cannot be used for predict-
ing other types of beams. Instead, one may add more training data properly to fine-tune the 
POAMS or to start from scratch for a new prediction task. Because of the proposed model 
interpretation method, one doesn’t have to use two-dimensional camaras to detect the inten-
sity signals and this liberates the potential opportunities of such hybrid systems in processing 

https://github.com/hao-focus/ModelForOAMLight
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low-intensity vortex beams such as in quantum domain [14]. Besides, the POAMS can be 
recognized as a solution to a regression problem in essence, and it could be extended to solve 
similar problems in other fields which necessitates high speed, accuracy and robustness. For 
example, we may adapt it to image generation [83], image super-resolution, natural language 
generation, etc. It’s noteworthy that in addition to those different tasks’ application, the pro-
posed model visualization method is also ready to be extended to further stimulate new 
insights and phenomena with the combination of hardware, software and algorithm.

Conclusion
In summary, we have demonstrated a compact optoelectronic processor for structured 
mode analysis, which can directly detect OAM spectrum of structured light in a fast, accu-
rate and robust manner. Our processor allows one to immediately obtain the TC informa-
tion without any interference measurements nor repetitive steps, empowered by the hybrid 
computing nature. We sharply ease the workload of deep-learning models on collecting 
massive experimental training data in obtaining a hybrid model with great generalization 
ability. We validate the performance on experimental and simulated modes with diverse 
(complex) OAM spectra even against nonideal conditions such as atmosphere turbulence, 
misalignment. In addition, we observe interesting connections between TC numbers and 
the optical neurons and consequently propose a universal model interpretation paradigm 
for hybrid neural networks, which not only help us understand the overall system but also 
further improve the detection efficiency. This study highlights the advantages of fusing 
optics and electronics in settling photonics problems through physical smart sensors. More 
specifically, this work closes a practical gap in OAM-based high-speed information pro-
cessing and facilitates both OAM and optoelectronic neural networks studies.

Methods
Forward propagation model

In addition to Eq. (2) and Fig. 1, here we provide a detailed illustration of the forward 
model. The optical computing part is based on the Rayleigh-Sommerfeld diffraction 
principles [35]. Suppose there are M diffractive layers in the system and the vectorized 
output field after the modulation of the p th layer is denoted as Ep , p = 1, 2,3, . . . ,M , 
dimensions of which are n2 × 1 with n the neuron number along one direction of the 
layer. Then the complex transform between two modulation layers can be

where diag(•) represents the diagonalization of a vector, Tp = αpexp
(
jφp

)
 with j2 = −1 

is the modulation function and Dp is the diffraction weight matrix that is related with 
propagation distance and wavelength. Since in our case only phase modulation is 
employed, we set αp ≡ 1 . We define φp = απ

[
sin

(
βθp

)
+ 1

]
 , where sin(•) function is to 

satisfy the periodicity condition of the argument and hyperparameters α and β are to 
facilitate the efficient update of these layers. Consequently, the output optical field in the 
sensor’s plane is

(4)Ep = diag
(
Tp

)
DpEp−1 ,

(5)EM+1 = DM+1

(∏M
p=1diag

(
Tp

)
Dp

)
E0 ,
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with E0 the incident structured light. Then a sensor measures the intensity distribution 
of output field A0 based on photoelectric effect, which also provides a quadratic nonlin-
ear function and can be written as

where ⊙ is the Hadamard product and E∗

M+1 represents the complex conjugate of out-
put field. Then the high-dimensional sparse features of TC turn into real numbers and 
are entered as inputs of electronic readout layers. In our case, fully connected layers are 
used to regress the results. The weighted input value of q th layer can be formulated as

where q = 1, 2,3, . . . ,N  , W q is the weight matrix between two layers, Aq−1 denotes the 
activation value of (q − 1) th layer, and Bq is the bias vector. We add nonlinear func-
tion σ(•) (Rectified Linear Units) into the electronic part and obtain activation value 
Aq−1 = σ

(
zq

)
 . At the last layer, the neurons’ input is zN . Considering that all weight 

components are non-negative and the sum of them must equal to 1, we adopt softmax(•) 
function and a temperature parameter T  to confine zN ,

where ŝ  is the OAM spectrum output (or AN ). Interestingly, T  is a hyperparameter 
called temperature value that is normally set to 1 and a higher value leads to a softer 
probability distribution in knowledge distillation studies [84]. Here we find that proper 
value of T  can improve the robustness and performance of POAMS. In other words, 
proper temperature values ( < 1 ) can successfully mitigate the channel crosstalk espe-
cially for single modes, due to the ‘sharpening effect’ T  brings [85]. Figure 3(d) clearly 
illustrates the influences of T  on model performance.

Error Backpropagation

To effectively drive the update of POAMS parameters and minimize the loss function 
L
(
s, ŝ

)
 in Eq. (3) of the main manuscript, we apply an error backpropagation algorithm. 

To implement this, we derive the key derivatives using the chain rule. First, we explore 
the derivatives of electronic layers and define the error at i th layer δi ≡ ∂L/∂zi . Then the 
error in the output layer can be directly written as

The error δq in terms of the error in the next layer δq+1 can be derived as

By combining Eq.  (9) with Eq.  (10) we can calculate the error δq for any layer 
( δ1, δ2, . . . , δN ). In this regard, the rate of change of the loss with respect to any weight 
and bias in the electronic layer can be obtained:

(6)A0 = EM+1⊙E
∗

M+1 ,

(7)zq = W qAq−1 + Bq ,

(8)ŝ = softmax
(
zN
T

)
,

(9)δL =

∂L
∂AN

⊙softmax′(zN ) .

(10)δq =

(
W

T
q+1δq+1

)
⊙σ

′

(
zq

)
.
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For the optical neurons, we first calculate the error in the sensor plane,

Then to obtain the gradient of the p th diffractive layer, i.e.

we need to derive ∂A0/∂Tp , which can be represented as

where Re(•) denotes the operation of extracting the real part of complex values. Within 
Eq. (13), ∂EM+1/∂Tp can be easily formulated as

Substituting Eq. (15) into Eq. (14) and Substituting Eq. (14) and Eq. (12) into Eq. (13), 
we have

Considering that for POAMS, only phase modulation is applied, more specifically, 
Tp = exp

{
iαπ

[
sin

(
βθp

)
+ 1

]}
 , we are able to obtain the final gradient formula of opti-

cal parameters 

In short, Eq.  (11) and Eq.  (17) represents the update of electronic neurons and 
optical neurons respectively. In the training phase, due to the nontrivial nonlinear-
ity and mature training algorithms with respect to electronic neurons, the calculated 
errors and gradients can effectively optimize W q and Bq . However, the backpropa-
gated errors cannot update θp efficiently. In other words, when we first trained the 
POAMS from the scratch, we found the optical part barely changes as training pro-
ceeds. For example, if every phase plate is initialized with π value, after ~ 30 epochs, 
the loss drops but each phase plate remains like a π-equiphase plate. This tells us that 
electronic neurons are effectively trained while optical neurons stay static (inefficient 
training). We call this the imbalance between the two types of neurons. To address 
this hurdle, we introduce α and β to enhance the corresponding gradients as indicated 

(11)
∂L
∂W q

= δqA
T
q−1

∂L
∂Bq

= δq
.

(12)∂L
∂A0

=

(
∂z1
∂A0

)T
∂L
∂z1

= W
T
1 δ1 .

(13)∂L
∂Tp

=

(
∂A0
∂Tp

)T
∂L
∂A0

,

(14)
∂A0
∂Tp

=

∂A0
∂EM+1

∂EM+1
∂Tp

+

∂A0
∂E∗

M+1

∂E∗

M+1
∂Tp

= 2Re
[
∂EM+1
∂Tp

diag
(
E
∗

M+1

)] ,

(15)∂EM+1
∂Tp

= DM+1

(∏p+1
i=M

diag(T i)Di

)
Dpdiag

(
Ep−1

)
.

(16)∂L
∂Tp

=

{
2Re

[
DM+1

(∏p+1
i=Mdiag(T i)Di

)
Dpdiag

(
Ep−1

)
diag

(
E
∗

M+1

)]}T
W

T
1 δ1 .

(17)
∂L
∂θp

=

∂Tp

∂θp

∂L
∂Tp

= diag
{
αβπcos

(
βθp

)}
diag

{
jejαπ[sin(βθp)+1]

}
∂L
∂Tp

.
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in Eq. (17) and yield the successful refreshment of the overall system. Empirically, we 
set α and β as 11 and 2 respectively. Note the final phase distribution of each diffrac-
tive layer is the result of mod(απ [sin

(
βθp

)
+ 1] , 2π ), where mod ( • , 2π ) denotes tak-

ing remainders w.r.t. 2π.
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