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Abstract 

Raman spectroscopy, as a label-free optical technology, has widely applied in tumor 
diagnosis. Relying on the different Raman technologies, conventional diagnostic 
methods can be used for the diagnosis of benign, malignant and subtypes of tumors. 
In the past 3 years, in addition to traditional diagnostic methods, the application of 
artificial intelligence (AI) in various technologies based on Raman technologies has 
been developing at an incredible speed. Based on this, three technical methods from 
single spot acquisition (conventional Raman spectroscopy, surface-enhanced Raman 
spectroscopy) to Raman imaging are respectively introduced and analyzed the diag-
nosis process of these technical methods. Meanwhile, the emerging AI applications of 
tumor diagnosis within these methods are highlighted and presented. Finally, the chal-
lenges and limitations of existing diagnostic methods, and the prospects of AI-enabled 
diagnostic methods are presented.

Keywords:  Raman spectroscopy, Raman imaging, SERS, Artificial intelligence, Tumor 
diagnosis

Introduction
Tumor is a serious threat to human life and health of major diseases. Malignant tumor 
(cancer) is one of the main causes of human death. According to an estimation from the 
world health organization (WHO) in 2019, cancer is the first or second leading cause of 
death before age 70 in 112 countries, ranking the third or fourth in the other 23 coun-
tries [1]. Because of the lack of cancer screening and cognitive deficiency for the strategy 
of “early detection, early diagnosis and early treatment”, the high or low 5 years of tumor 
patient survival rate becomes one of the key elements of life quality index.

At present, there are three main methods to detect tumors: tumor markers, imaging, 
and histopathology. The tumor marker detection is used for early tumor monitoring 
from the perspective of molecular biology, which is susceptible to individual differences 
and certain benign diseases [2–4]. Only several kinds of cancers have specific markers, 
such as alpha-fetoprotein, a tumor marker of liver cancer. Imaging diagnosis method 
is usually only used as an auxiliary means in clinical practice [5–7]. Because imaging 
diagnosis method only can initially identify of the shape and size of the tumor, can’t 

*Correspondence:   
liuyuhong@tsinghua.edu.cn

1 State Key Laboratory 
of Tribology in Advanced 
Equipment, Tsinghua University, 
Beijing 100084, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43074-023-00098-0&domain=pdf
http://orcid.org/0000-0001-9364-0039


Page 2 of 42Qi et al. PhotoniX            (2023) 4:22 

accurately identify the benign and malignant tumors qualitatively, with the high false 
positive ratio. Histopathology is the "gold standard" for the clinical application of tumor 
diagnosis [8–10], which can be traced back 100 years [11]. In this method, the benign 
and malignant, cell type and cancer subtype as well as the stage of the tumor can be 
identified by means of biopsy from the tissue and cell scale for further treatment of 
tumor. However, histopathology is a very complex subject with high professional and 
experience requiring for a long training cycle. To sum up, the existing methods of clini-
cal cancer diagnosis have the problems of long diagnosis time, severe trauma, and high 
misjudgment rate, and relying heavily on the subjective experience of doctors.

Tissue and cell carcinogenesis are a very complex process, which will affect the con-
tent and structure of nucleic acids, proteins, and other biological macromolecules [12]. 
Therefore, there are differences in the morphology and composition of normal tissue/
cell and cancerous tissue/cell at the molecular and/or cellular levels. Meanwhile, these 
differences can be detected optically, in the form of different intensity, peak location, 
peak width, etc. [13]. Then the position and/or intensity of these peaks can be analyzed 
corresponding to the transformation of cells and tissues, so as to realize the monitoring 
and diagnosis of tissue and cell cancerization [14].

Raman spectroscopy is a light scattering technique, whereby utilizes the differ-
ences between incident light wavelength (λincident) and scattering light wavelength 
(λscattering) for chemical analysis [15]. The elastic scattering is called Rayleigh scatter-
ing (λscattering = λincident), where the inelastic scattering is called Raman scattering which 
divided into anti-Stokes Raman scattering (λscattering < λincident) and Stokes Raman scatter-
ing (λscattering > λincident). Meanwhile, Raman spectroscopy, a label-free optical technology 
with the advantages of specificity, can also be used to analyze the biochemical charac-
teristics of substances by such factors as the position and/or intensity of Raman peak 
[16]. Since the content and structure of biomacromolecules will change in the process of 
tissue and cell carcinogenesis, while Raman spectroscopy is mainly based on the interac-
tion between light and molecules to obtain the information of molecular vibration and 
rotation. Therefore, we utilize the Raman spectroscopy to tumor detection. Spontane-
ous Raman scattering, as a rare phenomenon in comparison with its counterpart Ray-
leigh scattering, is typically identified as an insensitive technique [15]. However, with the 
technological advancement of highly efficient laser sources, low-noise detectors, valid 
filters and high-throughput optics, this applicability has significantly improved [17–19]. 
The commercial instrument “Confocal Raman Microscope”, which integrates the optical 
magnification power of laser and direct visualization of the sample, has widely appli-
cated in tumor diagnosis.

Although the confocal Raman microscope can integrate the optical magnification 
power of laser and direct visualization of the sample and has widely applicated in tumor 
diagnosis, the intensity of spontaneous Raman scattering signal is weak and the anti-
interference ability is poor. In practical applications, it usually takes a long integration 
time to obtain the spectrum with acceptable signal noise ratio (SNR), which is not con-
ducive to spectral acquisition and fast image formation. Given these shortcomings, 
surface-enhanced Raman spectroscopy (SERS), a very excellent Raman enhancement 
technology, is based on the combination of Raman spectroscopy and nanomateri-
als, which can realize highly precise target detection [20–22]. The SERS phenomenon 
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occurs on the local surface of some specially prepared metal or nonmetal conductor, 
where mainly caused by two mechanisms, called chemical enhancement mechanism 
and electromagnetic enhancement mechanism [20]. The former mainly emphasizes the 
adsorption between the metal substrate and adsorbed molecules, while the latter mainly 
for local field and dipole emission [23]. Thus, when adsorbed to a biomolecule, these 
nanoparticles result in greatly enhanced Raman spectrum signal by plasmon resonance. 
Recently, with high specificity, high sensitivity, rapidity and trace analysis, SERS is get-
ting more and more frequently investigated in the field of tumor diagnosis.

Raman imaging technique is to study the molecular structure and dynamic charac-
teristics by the interaction between light and matter [24, 25]. It can not only obtain the 
spectral information of light emission, absorption, and scattering, as well as the three-
dimensional spatial imaging information, but also obtain the geometric shape, molecu-
lar structure, and dynamic characteristics of the research object [26, 27]. Hence, Raman 
imaging can be applied to the rapid imaging of tumor tissues to diagnose the subtypes 
and types of tumors according to the morphological and color changes of the imaging 
results [14, 28–30]. Especially the stimulated Raman histology (SRH), a label-free opti-
cal imaging method, provides rapid, label-free, sub-micrometer-resolution images of 
unprocessed biologic tissues, which has achieved rapid tumor diagnosis combining deep 
learning [31].

Based on widely applications of the Raman spectroscopy in the cancer diagnosis field, 
this article reviews the latest research and progress in the application of Raman spec-
troscopy in tumor diagnosis published between 2020 and 2022. It is mainly introduced 
from three aspects: Raman spectroscopy for tumor diagnosis, SERS for tumor diagnosis, 
Raman imaging for tumor diagnosis (Fig. 1). The conventional Raman spectra usually are 
utilized for tumor diagnosis by single spot acquisition, with simplicity but weak-signal 
highlighted. Therefore, the SERS are combined the Raman scatting and nanomaterials 
to enhance the Raman signal for tumor diagnosis, with high specificity, high sensitiv-
ity. However, these two techniques only leverage the Raman signal collected from the 
samples, but ignoring the morphological or positional information, especially in cells 
or tissues, which will affect the accuracy of diagnosis. Raman imaging technology can 
not only utilize the collected Raman signal, but also display the morphology or location 

Fig. 1  Schematic illustration of AI application of Raman spectroscopy and Raman figures for cancer diagnosis
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information of the samples, which greatly improves the carrying capacity of the output 
information, but also increases the complexity of information processing. Whereas fac-
ing these complex Raman images, artificial intelligence (AI) has shown greater process-
ing power for tumor diagnosis. Herein, the conventional procedure for tumor diagnosis 
based on three aspects are overviewed, with the introduction of the AI application in this 
data processing procedure. Through the introduction of the above three aspects, Raman 
spectroscopy will be a novel scientific approach for tumor diagnosis in the future. Espe-
cially, Raman imaging analysis combined with artificial intelligence may even replace the 
diagnosis process of pathologists, which will greatly promote the medical development 
of intelligent tumor diagnosis.

Raman spectroscopy for tumor diagnosis

Raman spectroscopy can be easily collected from the commercial instrument “Confocal 
Raman Microscope”, which has widely applied in tumor diagnosis. Data processing is 
vital for tumor diagnosis based on Raman spectroscopy. Conventional spectrochemical 
analysis methods are to process the original Raman data through several simple algo-
rithm and then output the results, manually identify the difference between the output 
data of normal samples and cancerous samples, and judge the belonging of unknown 
samples, such as such as principal components analysis (PCA), linear discriminate anal-
ysis (LDA), quadratic discriminant analysis (QDA), partial least squares (PLS), etc. [32]. 
These methods have great advantages in the processing of small sample data. However, 
with the development of technology, the amount of data obtained has increased signifi-
cantly, making it difficult to calculate and extract subtle variations in complex hidden 
features from big data by conventional methods. Machine learning is a system that can 
acquire and integrate knowledge autonomously, find hidden features to significantly 
amplify the difference between normal and cancerous samples, and independently judge 
the affiliation of unknown samples, such as support-vector machines (SVM), random 
forest (RF), etc. Machine learning has been widely used in the field of biomedical pho-
tonics. In addition, AI is a kind of computational model abstracting the neural network 
of human brain from the perspective of information processing. It has the characteris-
tics of nonlinear, unlimited, strong adaptability and fault tolerance. In contrast, non-AI 
methods mainly start from the data itself, extract features through matrix transforma-
tion and other methods, and finally conduct classification and regression through mod-
eling. In this chapter, we first introduce the conventional procedure in tumor diagnosis 
based on Raman spectroscopy, and then focus on the AI application in tumor diagnosis.

Conventional procedure

The conventional procedure for tumor diagnosis based on Raman spectroscopy 
necessitates (i) sample preparation; (ii) spectral acquisition; (iii) data processing 
and analysis. Raman microscope mainly collect the Raman spectroscopy from the 
tissues, cells, body fluids, and other raw materials. After collecting spectra, Raman 
spectroscopy data are used multiple methods for computational processing and 
analysis. Conventional methods for diagnosing Raman spectroscopy data usually uti-
lize Raman peak intensity comparison or various multivariate statistical analytical 
methods. Cancers in different parts of the body have been diagnosed among these 
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conventional methods, such as: brain cancer [33–40], breast cancer [41–44], esopha-
gus cancer [45], leukemia [46], liver cancer [47], lung cancer [48–50], oral cancer 
[51, 52], ovarian cancer [53], salivary gland neoplastic [54], rectal cancer [55], skin 
cancer [56, 57] (Table 1).

For sample preparation, tissues are the most directly and widely collected for tumor 
diagnosis. About the tissues, most researcher prefer to utilize the unprocessed sur-
gical tissues, because the processed procedures of formalin fixation paraffin-embed-
ding (FFPE) may influence Raman spectroscopy measurements. Indeed, Ning et  al. 
[41] evaluated the diagnosis analysis capabilities of unprocessed surgical samples and 
dewaxed FFPE samples by collecting the Raman spectroscopy from different tissues 
(Fig.  2a). The results demonstrated that the dewaxing process significantly altered 
the biochemical composition of the tissues, particularly lipids, proteins, and carot-
enoids. Even though, the analytical result showed that PCA-LDA method and PLS-
discriminate analysis (DA) method could distinguish the target tissue types effectively 
with satisfying overall accuracy in which the former of 88.3%, the matter of 93.0%. 
Although this study confirmed that FFPE sections had diagnostic potential with mul-
tivariate analytical model, biochemical changes still emerged, which may influence 
the accuracy. Therefore, it is preferable to use untreated samples.

In addition to tissues, body fluids are also easily accessible samples that are widely 
used to monitor various bodily functions and health conditions. Raman spectroscopy, 
a label-free analytical technique, has been proven useful in probing the blood compo-
nents and the whole blood for over 40 years [93]. Blood is a vital bodily fluid respon-
sible for numerous physiological functions, which contains plasma, erythrocytes (red 
blood cells), leucocytes (white blood cells) and platelets (thrombocytes). When an 
organ of the body becomes cancerous, the biochemical changes to the composition of 
blood follows. Therefore, researchers have utilized Raman spectroscopy to detect the 
changes for tumor diagnosis. For example, brain cancer [40], esophageal cancer [45], 
lung cancer [49]. In addition to blood as an important body fluid, saliva and urine 
are also readily available body fluids for tumor diagnosis. Raman spectra combined 
with saliva and/or urine have applied for tumor diagnosis, such as oral squamous 
cell carcinoma [52]. Particularly, Maitra et  al. [45] collected Raman spectra from 
four kinds of human body liquid (plasma, serum, urine, saliva) to detect esophageal 
stages through to esophageal adenocarcinoma (Fig. 2b). For saliva and urine samples 
the analysis model achieved 100% classification for all classes, while for plasma and 
serum, the model achieved excellent accuracy in all esophageal stages (> 90%).

Cells are more delicate at the detection scale than tissues, so cell detection based 
on Raman spectroscopy can be used for cancer screening. Raman spectroscopy on 
live cells can classify among different disease stages, and play a significant role clini-
cally as a diagnostic tool for cell phenotype. For instance, breast cancer cells [44, 58], 
colorectal cancer cells [58, 59], lymphoma cells [60]. Besides, extracellular vesicles 
(EVs) secreted by cancer cells provide a crucial insight into cancer biology and could 
be leveraged to enhance diagnostics and disease monitoring. Penders et al. [92] pre-
sent a single particle automated Raman trapping analysis (SPARTA) system, a dedi-
cated standalone device optimized for single particle analysis of EVs (Fig.  2c). They 
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Table 1  Raman spectroscopy for tumor diagnosis

Sample Methods Diagnosis Ref

Tissue PLS-DA Brain cancer [33]

PCA-LDA [36]

PCA [37, 38]

PCA-QDA [39]

PLS-DA Breast cancer [35]

PCA-LDA, PLS-DA [41]

PCA-LDA [42, 43]

PCA-LDA Liver cancer [47]

KCA, PCA Lung cancer [48]

PLS-DA [49]

PCA-LDA [50]

PCA-LDA, PLS-LDA Oral cancer [51]

PCA-LDA Rectal cancer [55]

PLS-DA Skin cancer [56]

PLS-DA [57]

Peak comparison Ovarian cancer [53]

Cell PCA Breast cancer [44]

PCA-LDA Breast cancer [58]

PCA-LDA Colorectal cancer [58]

PCA Colorectal cancer [59]

PCA-QDA Lymphoma [60]

Serum PCA-LDA Brain cancer [40]

GA-QDA Esophageal cancer [45]

PLS-DA Lung cancer [49]

Saliva GA-QDA Esophageal cancer [45]

PCA-LDA Oral cancer [52]

Plasma GA-QDA Esophageal cancer [45]

Urine GA-QDA Esophageal cancer [45]

Bone marrow superna-
tants

PLS-DA Leukemia [46]

Tissue SVM Brain cancer [61]

RF, BT [62]

SVM Breast cancer [63]

KNN Cervical cancer [64]

SVM, KNN, RF, etc Kidney cancer [65]

SVM [66]

SVM Meningiomas [67]

1D-CNN Bone tumors [68, 69]

1D-CNN Breast cancer [70]

1D/2D-CNN Chondrogenic Tumor [71]

1D-CNN Colon cancer [72]

1D-CNN Laryngeal cancer [73]

2D-CNN Lung cancer [74, 75]

1D/2D-CNN [76]

1D-CNN Oral cancer [77, 78]

1D/2D-CNN Pancreatic cancer [79]

1D-CNN Skin cancer [80]
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demonstrate that the dedicated SPARTA system can differentiate between cancer and 
noncancer EVs with a high degree of sensitivity and specificity (> 95% for both).

After sample preparation, it turns to collect Raman spectroscopy from sample. The 
commercial instrument “Confocal Raman Microscope”, which integrates the optical 
magnification power of laser and direct visualization of the sample, has widely appli-
cated for Raman spectroscopy data acquisition. Different instruments equip different 
wavelength lasers, where different wavelengths of excitation light produce different sam-
pling effects. The scattering intensity of visible light is higher than near infrared (NIR), 
while the NIR excitation was used to minimize tissue autofluorescence. Therefore, the 
appropriate laser wavelength should be selected according to the samples.

Data processing is vital for classification of different types of tumor tissues. The 
acquired spectra are firstly filtered, normalized, and corrected then classified by a vari-
ety of algorithms and methods. The advantages, limitations and corresponding suitable 
application of different data processing methods are as Table 2. For the conventional 

Table 1  (continued)

Sample Methods Diagnosis Ref

Cell SVM, RF Bladder cancer [81]

SVM Breast cancer [82]

RF Breast cancer [83]

SVM Central nervous system tumor [84]

SVM Osteosarcoma [69]

KNN, SVM Pancreatic cancer [85]

Serum RF, SVM Brain cancer [86]

BT Colorectal cancer [87]

SVM Ovarian cancer [88]

SVM, KNN Pancreatic cancer [89]

CNN Brain cancer [90]

RNN, CNN Brain cancer [91]

RNN, CNN Lung cancer [91]

Plasma SVM Ovarian cancer [88]

Urine SVM Ovarian cancer [88]

BT Boosted tree, CNN Convolutional neural network, GA Genetic algorithm, KCA K-means cluster analysis, KNN K-nearest 
neighbors, LDA Linear discriminate analysis, PCA Principal component analysis, PLS-DA Partial least squares discriminant 
analysis, QDA Quadratic discriminant analysis, RF Random forest, RNN Recursive neural network, SVM Support-vector 
machines

Fig. 2  Sample preparation for tumor diagnosis by Raman spectroscopy a White light micrographs of stained 
and unstained frozen healthy breast tissue section [41]; b Raman spectra of human body liquid (plasma, 
serum, urine, saliva) to identify cancer [45]; c Cryo-transmission electron microscope image of EVs [92]
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data processing methods, the Raman peak intensity comparison is the most straight-
forward method [53], which usually utilizes the intensity of several characteristic peaks 
or the ratio of a pair of characteristic peaks to distinguish. This method is suitable 
for spectral data with obvious characteristic peaks and large differences, and is more 
effective for small sample data. Once the sample data size increases, the accuracy is 
not high. Therefore, for vast amounts of data, abundant multivariate statistical analysis 
methods are often used to analyze spectral differences and distinguish the tissues. The 
multivariate statistical analysis methods contain PCA [37, 38, 44, 48, 54] (Fig. 3a), PCA-
LDA [36, 40–43, 47, 50–52, 55] (Fig. 3b), PLS-DA [33, 35, 41, 49, 56, 57] (Fig. 3c), PLS-
LDA [51] (Fig. 3d), PCA-QDA [39, 60] (Fig. 3e), K-means cluster analysis (KCA) [48], 
genetic algorithm (GA)-QDA [45] (Fig. 3f ). PCA can effectively reduce the spectrum to 
a certain number of principal components (PCs) that account for significant spectral 
variance, thus retaining important spectral data while removing background noise [94]. 
PLS is also a data-reduction algorithms, which can be used to reduce individual spectra 
down to a few key factors [95]. PCA is the unsupervised method and ideal for explora-
tory studies but cannot distinguish well among samples that do not differ significantly 
between groups, while PLS is the supervised method where the characteristic variables 
of each group can be better selected to distinguish and the relationship between sam-
ples can be determined. PLS can be shown to be better than PCA to prepare for clas-
sification [96]. Although these two methods can also directly classify spectral data, the 
accuracy is relatively low, so classification methods need to be further used, which typi-
cally rely on the clustering technique and discriminate analysis methods. KCA is a pop-
ular option of the clustering technique, while LDA and QDA are the popular options 
of DA methods. For clustering technique, KCA method is an unsupervised clustering 
method of data exploration that helps to explore and discover data structures in a large 
amount of data with simple algorithm principle and fast processing speed [48]. How-
ever, KCA method utilizes the K given in advance, where the choice of K value is dif-
ficult to determine. And the result of KCA method is not necessarily global optimal, but 

Fig. 3  Multivariate statistical analysis for tumor diagnosis by Raman spectroscopy a PCA analysis result of 
tumoral tissue and healthy margin [54]; b PCA-LDA analysis result of breast cancer [43]; c PLS-DA analysis 
result of different cancers [35]; d PLS-LDA analysis result of oral cancer [51]; e PCA-QDA analysis result of 
meningiomas [39]; f GA-QDA analysis result of esophageal cancer [45]
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only local optimal. Therefore, KCA method is suitable for samples with large differences 
between groups. For DA methods, LDA is a powerful supervised technique for achiev-
ing class classification, but it can overfit if the number of spectra is insufficient [95]. 
Therefore, a general guideline for applying a supervised technique is to have the num-
ber of spectra 5–10 times bigger than the number of variables [97], for example, using 
a PCA prior stage, hence PCA-LDA. PCA-LDA is the commonest method among the 
multivariate statistical analysis methods. QDA is the variant of LDA, where the both 
have similar algorithm characteristics. The difference is that LDA should be used when 
the covariance matrix of different classified samples is the same, while the QDA should 
be used when the covariance matrix of different classification samples is different [98]. 
In addition, the downside of QDA is that it cannot be used as a dimension reduction 
technique. Genetic algorithm is a branch of evolutionary computing, which simulates 
natural selection and genetic mechanisms to find optimal solutions. Meanwhile, GA is 
a general optimization technique and is applied for feature selection, where the feature 
selection is commonly applied as a stage prior to classification as a means to prevent 
overfitting and to circumvent the “curse of dimensionality” [99]. Therefore, GA method 
can be used for feature extraction of data and then QDA classification method is used 
for sample analysis.

Although multivariate statistical analysis methods yielded high accuracy, these meth-
ods pose a limitation toward improving accuracy, especially facing large data sets. 
Therefore, it is critical to search more accurate methods for tumor diagnosis. With the 
development of computer science and technology, the machine-learning classification 
with neural network was applied for tissue diagnosis yielding higher sensitivity and 
specificity.

AI application

With the advances in artificial intelligence, machine learning (ML) has been applied in 
tumor diagnosis based on Raman spectroscopy with higher accuracy. Herein, the con-
ventional ML methods, SVM, RF, have harvested high accuracy for many years. Recently, 
deep learning, a branch of the machine learning, has achieved more excellent accuracy 
for tumor diagnosis. From the literature, these ML methods have applied in different 
parts of the body, such as in bladder cancer [81], bone tumors [68], brain cancer [61, 
62, 86, 90, 91], breast cancer [63, 70, 82, 83], central nervous system tumor [84], cervi-
cal cancer [64], chondrogenic tumor [71], colon cancer [72, 87], kidney cancer [65, 66], 
laryngeal cancer [73], lung cancer [74–76], meningiomas [67], oral cancer [77, 78], oste-
osarcoma [69], ovarian cancer [88], pancreatic cancer [79, 85, 89], skin cancer [80, 100, 
101] (Table 1).

For classical ML methods, the advantages, limitations and corresponding suit-
able application of different ML methods are as Table 2. SVM is a generalized clas-
sifier for binary classification, which seeks to determine the optimal hyperplane that 
maximizes the distance between the hyperplane and the nearest data sample in a 
high-dimensional space [102]. SVM can avoid local optimum and “curse of dimen-
sionality”, and is less prone to overfitting. However, the prediction accuracy of SVM 
method highly depends on the kernel function, and SVM method has poor training 
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efficiency when processing large-scale data. Therefore, SVM method is powerful in 
dealing with nonlinear, multi-dimensional problems, peculiarly those with limited 
samples [103]. Nowadays, SVM is the most widely used method for tumor diagno-
sis based on Raman spectroscopy, whatever the tissues as original sample prepara-
tion [61, 63, 65–68, 77], or cells as original sample preparation [69, 81, 82, 85, 100, 
101], body fluids as original sample preparation [84, 86, 88, 89]. Other ML methods, 
such as boosted tree (BT) [62, 87], k-nearest neighbors (KNN) [64, 65, 68, 85], RF 
[62, 65, 83], also have applied for tumor diagnosis. BT method is an ensemble learn-
ing method, whose main idea is to assemble a weak classifier into a strong classifier. 
When using the boosted tree approach as learning algorithm, there is no need to do 
feature normalization/normalization for different types of data, and it is easy to bal-
ance runtime efficiency and accuracy. Whereas, BT method is sensitive to abnormal 
data and easy to overfit. Hence, BT method is suitable for low dimensional data, and 
the number of model layers should not be too high. RF method, as an ensemble learn-
ing method, can effectively reduce the risk of overfitting by leveraging the strategy 
of bagging and random feature selection to construct several decorrelated decision 
trees and output their average predictions [104, 105]. But the RF method has rela-
tively lower learning speed, which is willing to dealing with those with limited sam-
ples. KNN is a nonparametric, supervised learning classifier that uses proximity of a 
single data point to classify or predict groupings [106]. KNN method can yield high 
precision and is insensitive to outliers, while with relatively large time complexity 
and space complexity. Therefore, KNN method is suitable for small-size samples and 
low-dimensional data. O’Dwyer et al. [81] utilized 11 classification method for differ-
ent grade bladder cancer cells and normal cells, including SVM, RF, PLS, PCA-LDA, 
PCA-QDA, PCA-KNN, marginal relevance (MR)-LDA, MR-QDA, MR-KNN, MR-RF, 
MR-SVM method (Fig. 4a). And the results showed that cells can be distinguished by 
using a variety of approaches with accuracy, sensitivity, and specificity in excess of 

Fig. 4  AI method for tumor diagnosis by Raman spectroscopy a Different grade bladder cancer cell 
classification accuracy of the 11 classifiers [81]; b Three classic CNNs (AlexNet, ResNet, and GoogLeNet) model 
structure for diagnosis of glioma [90]; c RNN model structure for diagnosis of lung cancer and glioma [91]; d 
The conversion from the Raman spectral signal into 2D Raman spectrograms [74]; e Raman encoding figures 
[76]
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95%, especially the SVM methods with the best performances of 0.996 accuracy, 0.996 
sensitivity and 0.996 specificity.

For deep learning methods, convolutional neural network (CNN), one of the most 
popular basic deep leaning architectures, has been widely used tumor diagnosis based 
on Raman spectroscopy, where the original sample preparation can be obtained from 
tissues [68, 70, 73–80] and body fluids [90, 91]. CNN simulates the structure and func-
tion of biological neural networks in computers, which mainly contains three basic oper-
ations, i.e., the convolution, activation, and pooling. Convolution extracts the feature 
maps from the inputs with a kernel matrix, while the activation is to map its inputs into 
another space nonlinearly and is usually operated after the convolution, then pooling is 
a subsampling strategy, including max-pooling and average-pooling [32]. Indeed, a gen-
eral CNN model is basically composed by several convolution, activation, and pooling 
layers and sometimes ties several fully connected layers. AlexNet, ResNet, and Goog-
LeNet are three kinds of classic CNNs, where the differences lie in the structure of the 
network. The initial AlexNet was proposed by Sutskever et al. [107] with 8 layers. It uti-
lizes local response normalization to solve the overfitting problem and utilizes multiple 
GPUs to accelerate the performance of the model, shorten the training time, and bal-
ance the training speed and accuracy of the model [107]. The initial ResNet was pro-
posed by He et al. [108] with 152 layers. It utilizes a residual algorithm to significantly 
improve the ability of a neural network to extract features. The use of residual blocks is 
to solve the vanishing and disappearing gradient problems with ordinary CNNs by not 
only deepening the depth of the network but also by improving the performance of the 
network [108]. The initial GoogLeNet was proposed by Szegedy et al. [109] with 22 lay-
ers. GoogLeNet introduces the “inception” new module, which connects filters with dif-
ferent sizes and dimensions into a new filter. Compared with other deep CNN models, 
GoogLeNet reduces the number of parameters and layers in the network and improves 
the utilization of computing resources inside the network [109]. After these excellent 
CNN models were proposed, researchers can further modify various models accord-
ing to their own data, so as to establish required models and achieve high classification 
accuracy. In short, CNN can directly extract features from input data and classify the 
observed objects, but limited by the quality and features of the data. However, CNN is 
the first choice in most of the modeling tasks (classification and regression) because of 
the simple architecture and the ease of use. Tian et al. [90] utilized three classic CNNs, 
AlexNet, ResNet, and GoogLeNet, to build the classification model for diagnosis of gli-
oma (Fig. 4b). The accuracy rates of the AlexNet, ResNet, and GoogLeNet models were 
98.50%, 98.24%, and 99.50%, respectively, where GoogLeNet model yielded the best clas-
sification effect with the specificity and sensitivity of 98.98% and 98.48%, respectively. 
Meanwhile, other deep learning architectures are also used in tumor diagnosis and have 
achieved unprecedented success, such as recursive neural network (RNN) [91] (Fig. 4c). 
RNN is a type of neural networks with cyclic connections [110]. Compared with CNN, 
RNN has the characteristics of storing more long-term sequence information and min-
ing temporal and semantic information in the data, which has a strong ability to learn 
the nonlinear data behavior of time sequence [91]. Considering the Raman spectroscopy 
can be regard as a special sequence, RNN may have more applications in Raman spec-
troscopy data classification.
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Among these papers, most deep learning architectures utilized the Raman spectra as 
1D data to fed into models for training and testing [68, 70, 77, 78, 80], however, 2D figures 
would be a better choice as inputs compared with 1D data for deep learning. Therefore, 
our group first proposed an unusual method wherein we considered the Raman spectral 
signal as a sequence and then converted it into a 2D Raman spectrogram by spectral 
short-time Fourier transform (SSTFT) [74, 75] (Fig. 4d). This novel method combined 
with deep learning yielded excellently accurate diagnosis of lung tissues. Subsequently, 
we extended the transformation approaches of converting the 1D Raman spectroscopy 
into 2D figures (Fig.  4e) and proposed a new concept called the Raman encoding fig-
ure, which can improve the accuracy [76]. Three new methods are proposed and imple-
mented for the Raman spectrum conversion, i.e., spectral recurrence plot (SRP), spectral 
Gramian angular field (SGAF), and spectral Markov transition field (SMTF). For typi-
cal Raman spectrum, it contains two kinds of internal information, one for wavenum-
ber position information, the other for intensity information. Particularly, SMTF is the 
conversion based on wavenumber position information, and SSTFT is the conversion 
based on wavenumber position information and intensity information. But for multiple 
spectra, they not only contain internal information, but also external information, such 
as shape information. Especially, SRP is the conversion based on structure of wavenum-
ber series, while SGAF based on wavenumber series. The inclusion of different kinds of 
information in the conversion results in different performances. Furthermore, due to the 
more information involved in the transformation, SRP and SGAF methods are suitable 
for more complex original spectra, while SSTFT and SMTF are suitable for less varied 
spectra. These 2D-CNN methods all yielded more than 95% accuracy, 94% sensitivity, 
and 96% specificity when tested, where the SRP with best performances (98.9% accu-
racy, 99.5% sensitivity, 98.3% specificity), followed by SGAF, SSTFT, and SMTF. Mean-
while, we compared the diagnostic performances of the 2D-CNN method with that of 
the 1D-CNN method, which utilized the 1D Raman spectra as inputs and yielded a test 
accuracy of 94.1%, a test sensitivity of 91.8%, and a test specificity of 96.4%. In addition, 
Conforti et al. [71] proposed a chondrogenic tumor classification through wavelet trans-
form of Raman spectra, which combines the hybrid 1D-2D deep learning classification 
process applied on Raman spectra both raw and after wavelet transform. The 1D deep 
learning classification makes it possible to distinguish between the tumor’s early stages 
and more advanced ones with great accuracy, while the 2D deep learning classification 
yield the high accuracy classification between the tumor’s malignant and non-cancerous 
stages, especially the 2D deep learning classification. Typical SSTFT method is limited 
by wavenumber (or frequency) resolution due to the application of a single wavenumber 
window. Here, Conforti et  al.[71] proposed the continuous wavelet transform (CWT) 
method to solve this problem by using short windows at higher frequencies and long 
windows at lower frequencies, where the CWT method can be continuously changed 
during the procedure to still obtain a valid multi-resolution analysis. Finally, this method 
can classify Raman spectra obtained from bone tissues with high accuracy of 97% accu-
racy. This method extends the application of converting 1D Raman spectrum to 2D 
Raman encoding figure as deep learning input, and also shows that the conversion of 1D 
Raman spectrum to 2D Raman encoding figure has huge application space and can pro-
vide a reference method for tumor diagnosis based on Raman spectra. Overall, the 2D 
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Raman encoding figure combined with deep learning shows great potential for diagnos-
ing tissues and may provide a novel analysis method for other spectral techniques.

In conclusion, the key of tumor diagnosis based on Raman spectroscopy is to find the 
difference between normal and cancerous samples. It is relatively unremarkable to look 
for such differences from the Raman characteristic peaks. Therefore, a variety of Raman 
spectral data methods have been developed to improve the diagnosis and recognition 
rate, from multivariate statistical methods, to classical machine learning methods, and 
finally to deep learning. Especially facing a large amount of data, deep learning can yield 
a better diagnosis and recognition rate. In the future, we should start from two aspects: 
data volume and further classification to achieve accurate diagnosis in view of the com-
plexity of tumor diagnosis. On the one hand, the magnitude of sample data should be 
improved to explore the classification effect of various diagnostic methods in the case 
of large data volume and find better solutions. On the other hand, appropriate data pro-
cessing methods should be selected for further typing of cancerous samples to achieve 
accurate diagnosis of cancerous subtypes.

SERS for tumor diagnosis

SERS is a very excellent Raman enhancement technology, which can realize highly pre-
cise target detection. SERS substrate preparation is the key of tumor diagnosis based 
on SERS, because the appropriate substrate can greatly improve the intensity of Raman 
signal and is more conducive to the diagnosis of tumors. Therefore, SERS based tumor 
diagnosis is more suitable for detection of samples with low concentration, such as the 
detection of tumor biomarkers. Since the SERS substrates greatly improve the intensity 
of Raman signal, the data processing of SERS spectrum was relatively simple. The con-
ventional methods mainly utilize peak intensity comparison and multivariate statistical 
analysis. Meanwhile, artificial intelligence methods are also being used to improve diag-
nosis accuracy. In this chapter, we first introduce the conventional procedure in tumor 
diagnosis based on SERS, and then introduce on the AI application in tumor diagnosis.

Conventional procedure

The conventional procedure for tumor diagnosis based on SERS necessitates (i) sam-
ple preparation and nanoparticles (NPs) preparation; (ii) spectral acquisition; (iii) data 
processing and analysis. The first step of the preparation process is mainly divided into 
sample preparation and nanoparticle preparation. After preparation, the Raman micro-
scope would collect the Raman spectroscopy from the preprocessing samples. Then, the-
ses Raman spectra would be processing and analysis for tumor diagnosis, for example, 
bladder cancer [111–113], brain cancer [114–116], breast cancer [117–126], cervical 
cancer [127], gastric cancer [128], liver cancer [129–132], lung cancer [133, 134], mela-
noma [135, 136], nasopharyngeal cancer [137], osteosarcoma [138], pancreatic cancer 
[139], prostate cancer [140–142], salivary gland neoplastic [143], thyroid cancer [144] 
(Table 3).

For samples preparation, tissue [114] or tissue homogenates [115, 143] have been 
relatively less studied as samples unlike conventional Raman spectroscopy diagnos-
tic methods. Besides, it is difficult to gain the tumor tissues via traditional biopsies 
repeatedly for analysis. Therefore, body fluids, easily accessible samples, are widely 



Page 16 of 42Qi et al. PhotoniX            (2023) 4:22 

Table 3  SERS for tumor diagnosis

Sample Target Substrates Methods LOD Diagnosis Ref

Tissue - Ag NPs@Ag NR PCA 5.0 × 10−9 M Brain cancer [114]

Tissue homoge-
nate

- Ag films PCA - Brain cancer [115]

- Ag films PLS, PCA - [116]

- Ag films PCA, PLS-DA - Salivary glands 
carcinoma

[143]

Cell mRNA Au nanoclusters - 3.4 pM Bladder cancer [111]

miRNA Ag nanopillar - 451 zmol, 1.65 
amol

Breast cancer [117]

Creatinine Ag NRs PCA, PLS-DA 5.3 μM [118]

miRNA Au NPs - - [119]

miRNA Au NPs - 1 pmol/L [121]

EGFR TiOx - 1 nM [124]

Exosome Au NRs - 5.3 × 103 parti-
cles/mL

[125]

- Au NP colloid PCA-LDA - Breast esopha-
geal & liver 
cancer

[145]

CSCs Ni-based nano-
probes

PCA - Breast cervical & 
lung cancer

[146]

VEGF Fe3O4/Au NPs - 2.3 pg/mL Melanoma [135]

CTCs Au NPs - - [136]

Telomerase Au NPs - - Lung cancer [147]

Blood CTCs Au-rGO@anti-
ErbB2

- 5 cells/mL Breast cancer [120]

CTCs TiO2 NPs - 2 cells/mL [126]

CTCs Au NPs - - Liver cancer [131]

CTCs Ag2O-
4MPY-rBSA-FA

- 1 cell per mL [132]

MMPs Au NPs - 0.07 ng/mL Nasopharyngeal 
cancer

[137]

Plasma - Ag NPs PCA-LDA - Bladder cancer [112]

Exosome Au NSs - 2.4 particles/mL Lung cancer [134]

Exosome Au NPs PCA - Osteosarcoma [138]

- Ag NPs PCA-LDA PLS-
DA

Thyroid tumors [144]

Serum - Ag NPs PCA-QDA Gastrointestinal 
tumors

[128]

Albumin Ag colloid PCA-LDA - Liver cancer [129]

AFP Au@AgNCs/
MoS2

- 0.03 pg /mL [130]

- Ag NPs PCA-LDA - Prostate cancer [140]

AR-V7 protein Au films - 16 μg/ mL [141]

PSA Au NPs - 0.9 pg/mL [142]

Urine mRNA Au nanoclusters - 3.4 pM Bladder cancer [111]

- Ag colloid PCA-LDA - [113]

Tear - Au/HCP-PS PCA-LDA - Breast cancer [122]

Exhaled breath Aldehydes Ag NPs@ZIF-
67/g-C3N4

- 1.35 nM Lung cancer [133]

Biomarker solu-
tion

EpCAM, CEA Ag nanoforest - 0.2 pmol Colorectal 
cancer

[148]
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used to diagnose tumor, such as tears [122], serum [123, 128, 129, 140–142], plasma 
[112, 144], urine [113]. Since SERS can significantly improve the Raman signal inten-
sity, researchers are more inclined to detect samples with finer scale. Cells are more 
delicate at the detection scale than tissues, so cell detection based on SERS can be 
used for cancer diagnosis, such as breast cancer cell [118, 145], hepatoma cell [145], 
esophageal cancer cell [145], bladder cancer cell [111].

In addition, tumor biomarkers, a non-invasive and rapid analysis, has recently dem-
onstrated the potential to solve the limitations of conventional biopsy. Because of 
the low abundance and chemical complexity of these materials, SERS, a very excel-
lent Raman enhancement technology, is appropriate for detection and analysis tumor 
biomarkers. Recently, several researches have conducted about tumor biomarkers by 
SERS, such as aldehydes in exhaled breath [133], carcinoembryonic antigen (CEA) 
[148], circulating tumor cells [120, 126, 131, 132, 136], epithelial cell adhesion mol-
ecule (EpCAM) [148], epidermal growth factor receptors (EGFR) [124], exosomes 
[125, 134, 138], matrix metalloproteinases (MMPs) [137], micro RNAs (miRNAs) 
[117, 119, 121], mRNA [111], p16/Ki-67 [127], prostate specific antigen [142], pro-
tein [130, 141]. In addition to tumor biomarkers, other biomolecules related to tumor 
growth and dissemination are also detected by SRES technology to monitor or diag-
nose tumor changes, for example, cancer stem cells [146], cell lysates [118], proteases 
[137], telomerase [147], vascular endothelial growth factor [135].

For nanoparticles preparation, noble metal NPs are the mostly applied for tumor 
diagnosis with the advantages of low cost and easy synthesis, such as Au [111, 119–
123, 125, 131, 134–137, 141, 142, 145, 147], Ag [112–115, 117, 118, 127–129, 132, 133, 
140, 143, 144, 148, 155], where the single metal as the original nanoparticle (Fig. 5a, 
b). However, the single SERS nanoparticle has its own shortcomings, the bimetallic 
nanoparticle substrate such as Au@Ag [130] combines the advantages of two metals 

Table 3  (continued)

Sample Target Substrates Methods LOD Diagnosis Ref

Cell CTCs Ag layer KNN - Breast cervical 
laryngeal liver 
lung ovarian 
cancer

[149]

- Ag layer SVM - Lung cancer [150]

EVs Au nanohole LR - Ovarian cancer [151]

Serum - Au NPs PCA-SVM - Cervical & 
breast cancer

[123]

- ZnO/AgNP/
AuNP

1D-CNN - Liver cancer [152]

EVs Au-CD81-EVs-
EphA2-Au

CT - Pancreatic 
cancer

[153]

Urine - Ag colloid SVM - Liver cancer [154]

CSCs Cancer stem cells, CEA Carcinoembryonic antigen, CTCs Circulating tumor cells, CT Classification tree, CNN 
Convolutional neural network, EGFR Epidermal growth factor receptors, EpCAM Epithelial cell adhesion molecule, EVs 
Extracellular vesicles, Au NRs Gold nanorods, Au NSs Gold nanostars, KNN k-nearest neighbors, LOD Limit of detection, 
LDA Linear discriminate analysis, LR Logistic regression, MMPs Matrix metalloproteinases, NCs Nanocubes, PLS Partial 
least squares, DA Discriminate analysis, PCA Principal component analysis, PSA Prostate specific antigen, QDA Quadratic 
discriminant analysis, Ag NPs silver nanoparticles, Ag NRs silver nanorods, SVM Support-vector machines, VEGF Vascular 
endothelial growth factor, AFP α-fetoprotein



Page 18 of 42Qi et al. PhotoniX            (2023) 4:22 

(Fig. 5c), which maybe have better SERS enhancement effect. Except these noble met-
als (Au/Ag), other transition metals such as Ni [146] also produce an enhanced effect 
and have been applied for tumor diagnosis (Fig. 5d). Oxide semiconductors such as 
TiO2 [124, 126] also have a SERS enhanced effect and have been utilized for detecting 
the cancer biomarkers (Fig. 5e).

After sample preparation and nanoparticle preparation, the Raman spectroscopy 
acquisition will be the next step. Compared with the spontaneous Raman signal inten-
sity, SERS greatly improved the Raman signal intensity, so commercial Raman spec-
trometers could be directly used in the process of Raman spectroscopy data acquisition. 
At the same time, some miniaturized Raman spectrometers, such as hand-held Raman 
spectrometers [148] or portable Raman spectrometers [122, 128, 133, 147], can be used 
for signal acquisition because the Raman signal has been greatly improved, which can 
better achieve a fast, flexible, and convenient acquisition process.

Data processing and analysis is the final and vital step for tumor diagnosis by SERS, 
which can be divided into two types: detection of biomarkers or biomolecules and diag-
nosis classification. The limit of detection (LOD) is used to evaluate the detection ability 
of the former, while the accuracy, sensitivity and specificity to demonstrate the classi-
fication capacity of the latter. At the same time, the limit of quantification (LOQ) can 
also be used for evaluate the detection ability of the detection of biomarkers or biomol-
ecules [118]. Moreover, several researches can simultaneously achieve the detection of 
biomarkers and diagnosis of cancer [118].

For detecting the biomarkers biomolecules, the LOD of circulating tumor cells (CTCs) 
in the peripheral blood of cancer patients could reach 1 cell per mL [132], 2 cells/mL 
[126], up to 5 cells per mL [120]. The LOD of two miRNA markers for breast cancer 
(miR-21 and miR-155) was 451 zmol and 1.65 amol respectively [117],while the LOD of 
exosomal miRNA reaching as low as 1 pmol/L [121]. The LOD of mRNA for detection of 
bladder tumor could extend 3.4 pM [111]. The LOD of exosomes can achieve the detec-
tion limit of 2.4 × 103 particles/mL [134], 5.3 × 103 particles/mL [125]. Furthermore, Kim 
et al. [148] successfully detected the cancer biomarkers (EpCAM, CEA) in tiny amount 

Fig. 5  SERS substrate a Au substrate [122]; b Ag substrate [118]; c Au@Ag substrate [130]; d Ni substrate 
[146]; e TiO2 substrate [126]
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of sample solutions (~ 2 μl) with as low as 0.2 pmol of the protein biomarkers. Er et al. 
[130] developed a SERS immunosensor and exhibited a wide linear detection range 
(1 pg/mL to 10 ng/mL) with a LOD as low as 0.03 pg/mL toward α-fetoprotein with good 
reproducibility and stability. Lin et al. [137] have designed the metal carbonyl nanobar-
codes for detecting MMPs with strong sensitivity (LOD 0.07 ng/mL). Turan et al. [142] 
introduced a novel designed sensor for detection of prostate specific antigen with the 
LOD and LOQ of 0.9 pg/mL and 3.2 pg/mL, respectively. Keshavarz et al. [124] achieved 
semiconductor materials (TiOX) as a SERS template to diagnose breast cancer with the 
LOD of 1  nM. Huang et  al. [133] successfully achieved the ultrasensitive detection of 
aldehydes in exhaled breath of lung cancer patients with a LOD 1.35 nM. Liu et al. [118] 
yielded a high sensitivity for the detection of creatinine with a low LOD of 5.3 μM and a 
LOQ of 17.68 μM. Huang et al. [135] traced vascular endothelial growth factor (VEGF) 
in cell lysis samples with an excellent limit of detection of 2.3 pg/mL under the optimum 
conditions.

For tumor diagnosis classification based on SERS, statistical analysis methods are usu-
ally used to analyze spectral differences and achieve the tumor diagnosis, which is the 
same as the conventional method for tumor diagnosis classification based on Raman 
spectroscopy. The multivariate statistical analysis methods contain PCA [114, 115, 138], 
PCA-LDA [112, 113, 122, 129, 140, 144, 145], PLS [116], PLS-DA [143], PCA-QDA 
[128]. Among using PCA method, Kowalska et al. [115] proved that tumor brain sam-
ples can be discriminated well from the healthy tissues by using only three main prin-
cipal components with 96% of accuracy, while Li et al. [114] reported that healthy brain 
tissue and Grade II gliomas as low grade gliomas as well as Grade III and Grade IV as 
high-grade gliomas can be clearly distinguished by three-dimensional PCA. Moreover, 
Han et  al. [138] identified the osteosarcoma by combining SERS and matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry profiling of exosomes with 
all 100% sensitivity, specificity, and accuracy. Among PCA-LDA method, Hu et al. [113] 
utilized SERS for detecting urine metabolites of bladder cancer with the total diagnostic 
sensitivity and specificity 100% and 98.85%, respectively, while Qian et al. [112] utilized 
SERS of pretreated plasma samples to predict disease recurrence in muscle-invasive 
bladder cancer patients undergoing neoadjuvant chemotherapy and radical cystectomy 
revealing a high accuracy of 85.2% in prediction of disease recurrence. Especially for 
determination of cancer stages, Gao et al. [129] screened liver cancer (LC) at different 
tumor (T) stages by serum albumin, in conjunction with SERS and finally classified the 
early T (T1) stage LC vs. normal group and advanced T (T2–T4) stage LC vs. normal 
group, yielding high diagnostic accuracies of 90.00% and 96.55%, respectively by PCA-
LDA method. For PLS/PLS-DA method, Kowalska et al. [116] reported that the differ-
entiation between primary and secondary brain tumors SERS data was completed PLS 
method with a very high 85% of accuracy, while Czaplicka et al. [143] analyzed salivary 
glands carcinoma, tumor and healthy tissues and their homogenates by SERS and PLS-
DA method, showing correlation accuracy as 0.98 with sensitivity 0.97, and specificity 
0.89. In addition, Avram et al. [128] utilized PCA-QDA method for classifying gastro-
intestinal tumors by different testing models, where the results showed that the classi-
fication accuracy yielded by combining SERS analysis of serum with C-reactive protein 
levels, neutrophil counts, platelet counts and hemoglobin levels was superior (accuracy 
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83.33%) to the classification accuracy yielded by SERS profiling alone (accuracy 76.92%) 
and to the one yielded by blood tests (accuracy 73.08%). In a word, multivariable statisti-
cal analysis methods are commonly used with spectral data processing, no matter the 
tumor diagnosis method based on Raman spectroscopy or the tumor diagnosis method 
based on SERS. Similarly, AI methods, as a complement to conventional methods, will 
serve as a superior method to improve the accuracy of tumor diagnosis.

AI application

Since SERS can greatly improve the detection signal of samples, the tumor diagnosis 
methods based on SERS are mostly used for the detection of small molecules such as 
cells and biomarkers, resulting in the collected Raman signal processing often used for 
the calibration of detection limits. Of course, some Raman signals are used for classifi-
cation diagnosis, where researchers usually utilized multivariate statistical methods for 
classification. Even so, artificial intelligence methods also provide unique methods for 
classification diagnosis to improve accuracy, such as breast cancer [123, 149], liver can-
cer [152, 154], lung cancer [150], ovarian cancer [151], pancreatic cancer [153] (Table 3).

For typical ML methods, SVM is the most widely used method for classification. 
Dawuti et al. [154] utilized urine SERS combined with SVM method to identify liver cir-
rhosis (sensitivity 88.9%, specificity 83.3%, and accuracy 85.9%) and hepatocellular car-
cinoma (sensitivity 85.5%, specificity 84.0%, and accuracy 84.8%), while Fang et al. [150] 
also implemented SERS technique combined with SVM to identify and distinguish non-
small-cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cells from normal 
cells including blood cells and immortalized lung cells, where achieving the classifica-
tion accuracy of 98.8% between NSCLC cells and normal cells and reaching the accu-
racy 100% in the classification of SCLC cells and normal cells, as well as SCLC cells and 
NSCLC cells (Fig. 6a). Except SVM method, Banaei et al. [153] applied the classification 
tree method to the analysis of the expression level of EVs biomarkers in pancreatic can-
cer, chronic pancreatitis, and normal controls individuals, measuring the sensitivity and 
specificity as 0.95 and 0.96, respectively (Fig. 6b). Moreover, Ćulum et al. [151] discrimi-
nated the EVs isolated from different ovarian cancer cell lines by a logistic regression-
based machine learning method with ∼99% accuracy, sensitivity, and specificity.

Deep learning is an advanced machine learning method that can be used to discrim-
inate various data accurately. Furthermore, deep learning has been applied for tumor 
diagnosis based on SERS. Fang et al. [149] utilized the feature peak ratio method, PCA 
combined with KNN, and residual network to classify the SERS spectra from blood 
cells and tumor cells. The results show that the ratio method and PCA combined with 
the KNN could only identify some tumor cells from blood cells, but residual network 
method could quickly distinguish various tumor cells and blood cells with an accuracy 
of 100% (Fig. 6c). This indicates that deep learning has great potential in tumor classi-
fication and diagnosis. In addition, Cheng et al. [152] constructed a convolutional neu-
ral network classifier for recognizing serum SERS spectra as deep learning inputs. The 
1D-CNN method achieved a prediction accuracy of 97.78% on an independent test data-
set randomly sampled from normal controls, hepatocellular carcinoma cases, and hepa-
titis B patients (Fig. 6d).
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In conclusion, the key of tumor diagnosis based on SERS is to find suitable enhanced 
nanoparticle substrates so as to greatly increase the original Raman signal. Since the 
original Raman signal is weak, the differences between normal and cancerous samples 
will become larger after enhancement. Therefore, the exploration of detection limit is 
a very important aspect in tumor diagnosis based on SERS. Otherwise, due to the sig-
nal enhancement brought by SERS technology, the data processing of tumor classifica-
tion and diagnosis based on SERS is easier, and multivariate statistical method is often 
used to distinguish. However, despite the multivariate statistical methods have achieved 
a high classification accuracy, but from the data processing process of tumor diagno-
sis methods based on SERS, the classification accuracy still can be improved, especially 
when artificial intelligence method is used for data processing and classification, which 
has been proved by some literatures. Whereas, there is still relatively little literature 
on these diagnostic methods using artificial intelligence [70, 76]. In the future, tumor 
diagnosis based on SERS should start from two aspects: signal enhancement and clas-
sification diagnosis. On the one side, more suitable SERS substrates with greater signal 
intensity increased should be sought from the perspectives of biocompatibility and spa-
tial distribution. On the other side, for tumor classification, new data processing meth-
ods such as artificial intelligence can be selected to provide the accuracy of classification 
and diagnosis.

Raman imaging for tumor diagnosis

Raman imaging can obtain more information, so it has broad application potential in 
tumor diagnosis. The processing of Raman figure is the most important part of this 
method. Compared with spectral data, Raman images carry more information. There-
fore, in the processing of Raman images, the conventional method is to directly carry 

Fig. 6  AI method for tumor diagnosis by SERS a 3D map of classification accuracy for the SVM model [150]; b 
The classification tree analysis of the expression level of EVs biomarkers [153]; c Residual network classification 
results of various tumor cells and blood cells [149]; d CNN classifier results of the independent test dataset for 
recognizing serum SERS spectra [152]
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out comparative analysis of images, or adopt multivariate statistical analysis method, 
which is feasible for small-batch images. But when faced with a large number of images, 
this method is time consuming. As an automatic method of image analysis, processing 
and mining, artificial intelligence has important application value in tumor diagnosis 
based on Raman imaging. In this chapter, we first introduce the conventional procedure 
in tumor diagnosis based on Raman imaging, and then focus on the AI application in 
tumor diagnosis.

Conventional procedure

The conventional procedure for tumor diagnosis based on Raman imaging contains (i) 
sample preparation; (ii) image acquisition; (iii) image processing and analysis. Tissues are 
the most applied materials for Raman imaging, as well as cells. Due to weak scattering 
effect, measurements of spontaneous Raman spectra with a competent signal to noise 
ratio can be time-consuming [156]. Therefore, conventional Raman spectroscopy meas-
urements are limited to smaller sample areas. For large scale sample, nonlinear optical 
technologies (coherent anti-Stokes Raman scattering; stimulated Raman scattering) have 
shown success in tissue and cell imaging for tumor diagnosis [157–159]. After collecting 
the Raman imaging, it is vital for image processing with suitable methods. Compara-
tive analysis of Raman images is the most direct method, but it is for small-scale data 
volume. When the amount of data is huge, artificial intelligence is often used for analy-
sis and diagnosis, which has achieved a very high diagnostic performance. At present, 
multiple types of tumor samples have been accurately diagnosed based on Raman imag-
ing, such as benign cementoma [160], bladder cancer [161, 162], brain cancer [163–165], 
breast cancer [163, 166–168], chondrogenic tumor [169], colorectal cancer [59, 170], gli-
oma [171], meningiomas [172], prostate cancer [156, 173, 174], spine tumors [164], skin 
cancer [175], skull base tumors [176, 177] (Table 4). In addition to diagnosing tumors 
directly, Raman imaging can also capture the components or metabolites, such as gly-
cogen [178], lipid droplets [179], in cells to analyze the differences and changes between 
normal cells and cancer cells, thus playing a role in monitoring the cancer progression 
and tumorigenesis.

For sample preparation, tissue is the most common source of samples, especially 
fresh, unprocessed biological tissues. Cordero et al. [161] utilized the entire extracted 
biopsy without thin-sectioning to characterize the tumor grading ex  vivo, using a 
compact fiber probe-based Raman imaging system. Liao et al. [167] used the adipose 
tissue in breast resections to assess the surgical margins by high wavenumber Raman 
imaging and fingerprint Raman spectroscopy, which can reduce the overall tissue 
analysis time and maintain high diagnostic accuracy. Boitor et  al. [180] presented a 
prototype device based on integrated auto-fluorescence imaging and Raman spec-
troscopy for intraoperative assessment of surgical margins during Mohs micrographic 
surgery of basal cell carcinoma (BCC), and the results showed that typically more 
than 95% of the resection area is analyzed by the Fast Raman device, which includes 
both the epidermal and deep margin, without requiring tissue trimming (Fig. 7a). In 
addition to imaging from fresh, untreated biological tissue, it is also able to image 
unstained tissue after sectioning. D’Acunto et  al. [169] utilized the 5  μm unstained 
tissue specimens for Raman imaging to the diagnosis and grading of chondrogenic 
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Table 4  Raman imaging for tumor diagnosis

CRM Confocal Raman microscope, CNN Convolutional neural network, EVs Extracellular vesicles, HAp Hydroxyapatite, LSRM 
Line scan Raman microspectroscopy, LDs Lipid droplets, PLS Partial least squares, DA Discriminate analysis, PCA Principal 
component analysis, RF Random forest, SERS Surface-enhanced Raman spectroscopy, SRH Stimulated Raman histology, SRS 
Stimulated Raman scattering, SVM Support-vector machines

Sample Target Technology Method Diagnosis Ref

Tissue - CRM Peak comparison Benign cementoma [160]

- PLS-DA Bladder cancer [161]

HAp PCA Breast cancer [166]

- - [167]

- - Chondrogenic Tumors [169]

- Peak comparison Colon cancer [170]

- - Skin cancer [175]

- SVM [180]

- SRH Cohen’s kappa Brain & spine tumors [164]

- - [165]

- Cohen’s kappa Glioma [171]

- Cohen’s kappa Meningiomas [172]

- Cohen’s kappa Sinonasal & skull base tumors [176]

- Cohen’s kappa Skull base tumors [177]

- - Central nervous system
lesions

[181]

- LSRM PCA-SVM Pituitary adenomas [182]

Cell - CRM PCA, PLS-DA Bladder cancer cells [162]

- RF Breast cancer cells [168]

EVs - [183]

Fatty acid - Cervical cancer cells [184]

Vitamin C Peak comparison Colorectal cancer cells [59]

Lipids - Endothelial cells [185]

Retinol - Glioblastoma cancer cells [186]

Cholesteryl esters - Prostate cancer cells [156]

- PCA [173]

LDs - [174]

LDs SRS - Breast cancer cell [187]

- - Cervical cancer cell [188]

Ponatinib - Leukemia cell [189]

Glycogen - Melanoma cell [178]

LDs - [179]

- - Pancreatic cancer cell [190]

Telomerase, microRNA SERS - Breast & cervical cancer cells [191]

Exosomes - Cervical cancer cell [192]

- - [193]

- - Colon cancer cell [194]

Membrane receptor - [195]

- - Glioblastoma cells [196]

Tissue - SRS SVM Glioblastomas [197]

Calcifications SVM Breast tumor [198]

- SRH CNN Brain tumor [31]

- CNN [199]

Cell CNN [200]

- CNN Gastric cancer [201]

- CNN Glioma [202]

- CNN Laryngeal carcinoma [203]
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tumors, including enchondroma and chondrosarcomas of increasing histologic 
grades. Brozek-Pluska et  al. [170] applied 16  μm sections from the nonfixed, fresh 
samples to differentiate noncancerous and cancerous human sigmoid colon mucosa 
based on Raman spectroscopy and imaging (Fig.  7b). Feng et  al. [175] adopted the 
skin sections of 20  μm thickness for rapid discrimination of basal cell carcinoma 
tumor by a superpixel acquisition approach, which expedited acquisition with two to 
five orders of magnitude faster than conventional point-by-point scanning by trading 
off spatial resolution.

Cells, as a much minute scale of observation than tissue, show more subtle signs 
of changes in the tumor. Therefore, Raman imaging of the cells can more clearly find 
the changes on the cellular scale of the tumor. Kujdowicz et al. [162] employed Fou-
rier transform infrared (FTIR) and Raman spectroscopic (RS) imaging to investigate 
bladder cancer cell lines of various invasiveness, and demonstrated that FTIR and 
Raman spectroscopy can be employed to distinguish between different bladder cancer 
cells of various malignancy (Fig. 7c). Beton et al. [59] evaluated the biochemical and 
structural features of human colon cell lines based on Raman spectroscopy and imag-
ing, and shown that normal reactive oxygen species-injured and cancerous human 
colon cells could be distinguished based on their unique vibrational properties. Paidi 
et  al. [168] utilized 3D optical diffraction tomography and Raman spectroscopy for 
optical phenotyping of cancer cells at single-cell resolution, and demonstrated that 
coarse Raman microscopy is capable of rapidly mapping a sufficient number of cells 
for training a classifier that can accurately predict the metastatic potential of cells at a 
single-cell level.

Cell imaging based on Raman spectroscopy, not only can be used to image the cel-
lular morphology, but also can be used to image the cell cytosolic microstructures, to 
achieve subcellular level analysis of the components of cancer cells. Roman et al. [174] 

Fig. 7  Conventional method for tumor diagnosis by Raman imaging a Integration of the Fast Raman device 
in the pathway of Mohs surgery [180]; b The microscopy image and Raman image of noncancerous sigmoid 
colon mucosa tissue [170]; c FTIR and RS images of cells [162]; d AF mapping images and Raman mapping 
images of live adipocytes at the time of differentiation [204]
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leveraged the Raman mapping technique to investigate lipid droplets (LDs) composi-
tion in untreated and irradiated with X-ray beams prostate cancer cells, proved lipids 
accumulation in PC-3 cells by Raman mapping technique, and revealed the heteroge-
neous composition of LDs. Suhito et al. [204] reported a novel optical method called 
“autofluorescence-Raman mapping integration (ARMI)”, which used cell autofluo-
rescence to reveal cellular morphology and cytosolic microstructures, while Raman 
mapping allowed site-specific intensive analysis of target molecules, which enables 
ultra-fast identification of cell types. The novel technique has rapidly and precisely 
analyzed the adipogenesis (Fig. 8d). Abramczyk et al. [186] utilized the Raman imag-
ing to detect molecular processes that occur in normal and cancer brain cells due to 
retinol transport in human cancers at the level of isolated organelles and found that 
aberrant expression of retinoids and retinol binding proteins in human tumors could 
be localized in lipid droplets, and mitochondria. Uematsu et al. [184] presented a new 
method for simultaneously visualizing up to five atomically labeled intracellular fatty 
acid species by Raman imaging and revealed that fatty acids with more double bonds 
tend to concentrate more efficiently at lipid droplets. Radwan et al. [185] considered 
the astaxanthin as a new Raman probe for the detection of lipids in the endothelial 
cells of various vascular beds, where the astaxanthin colocalized with lipids in cells 
could enable Raman imaging of lipid-rich cellular components with lower laser 
power. Horgan et  al. [183] presented a new strategy for simultaneous quantitative 
in vitro imaging and molecular characterization of EVs in 2D and 3D based on Raman 
spectroscopy and metabolic labelling, and showed that metabolic deuterium incorpo-
ration demonstrated no apparent adverse effects on EV secretion, marker expression, 
morphology, or global composition.

For the Raman imaging, spontaneous Raman spectroscopy gives an opportunity to 
investigate biochemical changes in biological samples [59, 161, 162, 167–170, 174, 175, 

Fig. 8  SRS/SRH/SERS method for tumor diagnosis by Raman imaging a SRS imaging of different components 
in live and fixed HeLa cells after culturing in d7-glucose medium [178]; b Workflow of SRH imaging in 
neurosurgery [165]; c Raman imaging of MCF-7, HeLa and NHDF cells treated with Au NPs-H2 and end 
assembly [191]; d Comparison of cellular features available with SRH versus conventional H&E stained slides in 
representative case of Meningioma [177]
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183–186, 204]. However, due to weak scattering effect and low resolution, spontaneous 
Raman imaging is limited to small area samples [156]. Therefore, Raman enhancement 
techniques are needed to provide signal strength to achieve higher resolution and imag-
ing effects [205]. Stimulated Raman scattering (SRS) and surface enhanced Raman scat-
tering have been applied for Raman signal amplifications to achieve tumor diagnosis.

SRS amplifies the weak spontaneous Raman signal via stimulated emission by orders 
of magnitude to enable fast imaging with molecular specificity inherited from spontane-
ous Raman spectroscopy [206]. Lee et al. [178] leveraged the stimulated Raman scatter-
ing microscopy with metabolic incorporation of deuterium-labeled glucose to visualize 
glycogen in live cancer cells (Fig.  8a), and characterized different glycogen metabolic 
phenotypes in a series of mutant melanoma cell lines by this method. Tipping et al. [187] 
demonstrated the multi-wavelength SRS imaging together with spectral phasor analy-
sis to characterize a panel of breast cancer cell lines treated with two clinically relevant 
statins, and revealed the lipid droplet distribution throughout populations of live breast 
cancer cells by SRS imaging within the high wavenumber. Du et al. [179] utilized SRS 
of intracellular lipid droplets to identify a previously unknown susceptibility of lipid 
mono-unsaturation within dedifferentiated mesenchymal cells. Bae et al. [188] reported 
a unique spatial light-modulated stimulated Raman scattering microscopy to monitor 
real-time cancer treatment effects, and showed immediate apoptotic response when 
monitoring the therapeutic effect of mild alkaline solution on cancer cells. Sepp et  al. 
[189] utilized the SRS to image label-free ponatinib in live human chronic myeloid leu-
kemia cell lines with high sensitivity and specificity. Lin et al. [190] developed a deforma-
ble mirror-based remote-focusing SRS microscope, and performed volumetric chemical 
imaging of living cells.

Stimulated Raman histology, developed from SRS, utilizes the intrinsic vibrational 
properties of lipids, proteins and nucleic acids to generate image contrast, revealing 
diagnostic microscopic features and histologic findings poorly visualized with hematox-
ylin and eosin (H&E)-stained images, such as axons and lipid droplets [207], while elimi-
nating the artifacts inherent in frozen or smear tissue preparations [208]. The SRH has 
shown great potential for rapid and accurate tumor diagnosis [201–203], demonstrating 
diagnosis in near-perfect agreement with conventional H&E [31, 164, 171, 172, 176, 177, 
181]. Neidert et al. [165] established a dedicated workflow (Fig. 8b) for SRH serving as an 
intraoperative diagnostic, research, and quality control tool in the neurosurgical operat-
ing room, and suggested to optimize the process regarding tissue collection, preparation, 
and imaging during using this novel imaging modality for intraoperative diagnostic.

SERS enhances the Raman spectrum signal by plasmon resonance [20], and can also 
achieve Raman imaging for tumor diagnosis rather than acquiring the Raman spec-
tra. Liu et  al. [191] demonstrated a target-triggered regioselective assembly strategy 
of plasmonic nanoprobes for dual Raman imaging of intracellular cancer biomarkers, 
and successfully performed Raman imaging of MCF-7, HeLa and normal human der-
mal fibroblasts (NHDF) cells with this strategy(Fig.  8c). Chen et  al. [192] designed an 
Ag SERS substrate to track of the intracellular distribution of exosomes and the con-
current quantitative sensing of environmental pH, and demonstrated that exosomes first 
attached with the tumor cell surfaces, and then entered into the cells and accumulated 
in lysosomes as time prolonged. Yuan et al. [194] reported a special nanoparticle which 
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can be detected with high specificity in furin-overexpressing tumor cells, and applied in 
high-resolution image-guided surgery to precisely delineate tumor margins during and 
after resection in real-time. Burgio et al. [196] achieved the stable and specifically target-
ing SERS tags for visualization of the exact tumor borders and infiltrating foci of glio-
blastoma through application of the appropriate gold nanoparticles surface chemistry 
and by the correct balance of inert and active targeting functionalities.

For image processing and analysis, picture comparison analysis and Raman peak inten-
sity comparison is the intuitive and simple processing method. Abramczyk et al. [163] 
used Raman spectroscopy and Raman imaging to monitor changes in the redox state of 
the mitochondrial cytochromes in ex  vivo human brain and breast tissues, and found 
that the concentration of reduced cytochrome c becomes abnormally high in human 
brain tumors and breast cancers and correlates with the grade of cancer. Furthermore, 
multivariate statistical methods can also be used for image processing and analysis. 
Marro et al. [166] reported the 3D biochemical analysis of breast cancer microcalcifica-
tions, combining 3D Raman spectroscopy imaging and advanced multivariate analysis 
for investigating the molecular composition of HAp calcifications found in breast cancer 
tissue biopsies.

In particular, SRH is a novel technology that leverages laser spectroscopy and color-
matching algorithms to create images similar to the formalin-fixed paraffin-embedded 
section [176]. The key to SRH analysis and diagnosis lies in the consistency between 
SRH images and H&E sections. Fitzgerald et al. [176] assessed the time taken for results 
and diagnostic concordance between SRH images and FFPE section from the patients 
undergoing sinonasal and skull base surgery, and the results showed that the sensitivity, 
specificity, precision, and overall accuracy of SRH were 93.3%, 94.1%, 93.8%, and 93.3%, 
respectively, and near-perfect concordance was seen between SRH and frozen section 
with Cohen’s kappa of 0.89. Pekmezci et  al. [171] acquired glioma margin specimens 
for SRH, histology, and tumor specific tissue characterization, and the results yielded 
that consistency between immunohistochemistry (IHC) and SRH was near perfect with 
Cohen’s kappa of 0.84 while the substantial agreement between IHC and H&E with 
Cohen’s kappa of 0.67 and between SRH and H&E with Cohen’s kappa of 0.72. Shin et al. 
[177] evaluated the skull base tumor diagnostic accuracy beyond cancer/non-cancer 
determination and neuropathologist confidence for SRH images contrasted to H&E-
stained frozen and FFPE tissue sections (Fig. 8d), and the results revealed that SRH was 
effective for establishing a diagnosis using fresh tissue in most cases with 87% accuracy 
relative to H&E-stained FFPE sections. Straehle et al. [164] found a substantial diagnos-
tic correlation between SRH-based neuropathological diagnosis and H&E-stained fro-
zen sections (κ = 0.8), and the results showed that when diagnosing the brain and spine 
tumors, the accuracy of neuropathological diagnosis based on SRH images was 87.7% 
and was non-inferior to the current standard of fast frozen H&E-stained Sects. (87.3 vs. 
88.9%). Di et al. [172] compared the diagnostic time and accuracy of SRH images with 
the gold standard (frozen section), and results revealed that the mean time-to-diagnosis 
was significantly shorter for SRH-mediated diagnosis compared with frozen Sect.  (9.2 
vs. 35.8 min), and the diagnostic accuracy was not significantly different between meth-
ods. Einstein et al. [181] explored the non-inferiority of SRH as compared to frozen sec-
tion on the same piece of tissue in neurosurgical patients, and the results showed that 
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SRH was sufficient for diagnosis in 78% of specimens as compared to 94% of specimens 
by frozen section of the same specimen. In a word, SRH images shows a high degree of 
consistency with H&E staining sections, which provides an important prerequisite for 
rapid diagnosis using SRH. However, manual diagnosis of SRH images would undoubt-
edly increase the diagnosis time. Therefore, artificial intelligence methods should be 
sought to diagnose SRH images to reduce the diagnosis time, so as to truly apply SRH 
diagnosis to intraoperative diagnosis.

AI application

Images, as two-dimensional data, are more suitable as the input of artificial intelligence 
models. Therefore, artificial intelligence has great significance application in tumor diag-
nosis based on Raman imaging, whether using classical artificial intelligence method or 
the deep learning method. At present, Raman imaging based on artificial intelligence has 
been applied to a variety of tumor types, such as brain cancer [31, 197, 199, 202], breast 
cancer [198], gastric cancer [201], laryngeal cancer [203], prostate cancer [209] (Table 4).

For typical ML methods, SVM is a commonly used method for tumor diagnosis. Bae 
et al. [197] applied the hyperspectral SRS microscopy combined with SVM method for 
assessment of glioblastoma intertumoral heterogeneity (Fig.  9a), and found that the 
predominant proportion of glioblastoma tissue was consistent with the diagnosis from 
genomic analysis, but a significant portion of the remaining SRS image blocks in the 
specimens belonged to other molecular subtypes, implying a large degree of heterogene-
ity in glioblastoma. Yang et al. [198] leveraged hyperspectral SRS microscopy to evaluate 
the breast tumor malignancy based on tissue calcifications, and reached a precision of 
98.21% and recall of 100.00% for classifying benign and malignant cases by using SVM 
method, significantly improving from the pure spectroscopy or imaging based methods. 
Doherty et al. [209] utilized the multimodal approach of Raman chemical imaging (RCI) 
and digital histopathology to image the prostate cancer tissues, then the multimodal 
approach achieved a sensitivity of 73.8% and specificity of 88.1% for Gleason grade 3/4 
classification by SVM method.

Deep learning, as a machine learning method for large-scale image processing, has 
great application value in tumor diagnosis based on Raman imaging, especially the SRH 
combined with deep learning for tumor diagnosis. Group Orringer is the pioneer and 
leader of this diagnosis pattern. They reported a parallel workflow that combines SRH 
and deep convolutional neural networks to predict brain tumor diagnosis in near real-
time in an automated fashion, where after training on over 2.5 million SRH images in 
their CNN, the workflow could predict brain tumor diagnosis in the operating room in 
under 150 s, an order of magnitude faster than conventional techniques (for example, 
20 ~ 30 min) [31]. This amazing work shows the great potential for near real-time intra-
operative diagnosis, which streamlines the workflow of intraoperative cancer diagno-
sis and creates a complementary pathway for tissue diagnosis that is independent of a 
traditional pathology laboratory. Moreover, they also utilized the SRH and deep neural 
networks to improve the intraoperative detection of glioma recurrence, and achieved 
a diagnostic accuracy of 95.8% when facing the external SRH validation dataset [202]. 
Except the wonderful work of Group Orringer, the Group Ji also recently yielded the 
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excellent advances in SRH combined with deep learning for tumor diagnosis. They 
applied this important pattern to diagnose the laryngeal squamous cell carcinoma on 
fresh, unprocessed surgical specimens, where they demonstrated near-perfect diagnos-
tic concordance (κ > 0.90) between SRS and standard histology, and yielded the 100% 
accuracy of classifying 33 independent surgical specimens using deep-learning based 
SRS [203] (Fig. 9b). Furthermore, they recently leveraged the single-shot femtosecond 
SRS to reach the maximum speed and sensitivity with preserved chemical resolution, 
achieved < 60 s imaging the Fresh gastroscopic biopsy, and harvested the accuracy > 96% 
of predicting gastric cancer by CNN [201] (Fig. 9c).

In a word, Raman imaging has a wide application space in tumor diagnosis, because 
imaging can not only display the morphology of cells, but also show the distribution 
of cell components by using the vibration of special bonds. However, tumor diagnosis 
based on Raman imaging still has some problems such as imaging speed and resolution.

Therefore, tumor diagnosis based on Raman imaging can be improved from the follow-
ing two aspects: One for Raman imaging technology. New Raman imaging techniques 

Fig. 9  AI method for tumor diagnosis by Raman imaging a Schematic illustration of the SRS imaging 
diagnostic platform for rapid glioblastoma subtyping by SVM method [197]; b Diagnostic results of 33 
independent cases using residual network [203]; c Confusion matrix of the three diagnostic subtypes [201]
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can be explored to improve the resolution and speed of imaging. At the same time, new 
Raman enhancement techniques can also be explored to enhance weak signals so as 
to achieve more detailed imaging of cells or tissues. The other for imaging processing 
method. In terms of diagnosis, more excellent image processing methods can be applied, 
such as artificial intelligence methods, especially when SRH technology is used, which 
will greatly improve the efficiency of diagnosis and have high accuracy.

Conclusion, challenges and outlook
Tumor ranks as a leading cause of death and an important barrier to increasing life 
expectancy in each country of the world. In view of the problems of the current tumor 
detection methods, it is urgent to develop tumor diagnosis technology with intelli-
gent attributes. According to recent studies, it is shown that Raman spectroscopy, as a 
label-free optical technique, has attracted more and more attention in tumor diagnosis, 
especially the Raman spectroscopy technique combined with AI. Here in this section, 
we compare and analyze firstly the three methods from sample acquisition, data collec-
tion and data processing, and give the clinical application direction of the three methods 
(Table 5). Then, we briefly discuss the challenges in in tumor diagnosis based on Raman 
spectroscopy, SERS, and Raman imaging, and the outlook of the future of AI for spectro-
scopic application.

For the acquisition of samples, tissues, cells, body fluids, and other kinds of specimens 
can be used to collect the Raman signals for tumor diagnosis. Conventional Raman 
spectroscopy and imaging methods can directly collect signals from samples, so as to 
achieve nondestructive testing. Compared with the other two methods, SERS need add 
the substrate as one more step, where the SERS substrate can greatly enhance the Raman 

Table 5  The comparison of three methods

SERS Surface-enhanced Raman spectroscopy

Method Sample acquisition Data collection Data processing Clinical application

Raman spectroscopy • Tissue
• Body fluids
• Cell

• Confocal Raman 
microscope
• Raman enhance-
ment instrument

• Multivariate statis-
tical methods
• Artificial intel-
ligence
• Peak comparison

• Tissue diagnosis of 
normal and cancerous
• Body fluid diagnosis 
of normal and cancer-
ous
• Cell detection for 
cancer screening

SERS • Body fluids
• Tumor markers
• Biomolecules 
related to tumor
• Cell
• Tissue
• SERS substrate 
(Addition)

• Confocal Raman 
microscope
• Handheld/ 
portable Raman 
spectrometers

• Multivariate statis-
tical methods
• Artificial intel-
ligence
• Peak comparison

• Detection and 
analysis of tumor 
biomarkers
• Detection of bio-
molecules related to 
tumor growth and 
dissemination

Raman imaging • Tissue
• Cell
• Tumor markers

• Raman enhance-
ment instrument
• Confocal Raman 
microscope
• Line scan Raman 
instrument

• Artificial intel-
ligence
• Multivariate statis-
tical methods
• Cohen’s kappa
• Peak comparison

• Tissue diagnosis of 
normal and cancerous, 
normal and cancerous 
subtypes
• Cell biochemical 
and structural feature 
analysis
• Tumor biomarker 
diagnosis
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signal of the detecting substance. However, the added SERS substrate would affect the 
natural characteristics of samples, which could not really achieve nondestructive testing, 
compared with the other two methods. Therefore, SERS is used for trace sample detec-
tion, such as tumor markers. At the same time, biocompatible SERS substrate should be 
developed to achieve better diagnostic effect.

For data collection, confocal Raman instrument is mostly applied if only spectral infor-
mation is collected. However, due to the weak spontaneous Raman intensity of the sam-
ple, SERS technology can be used to increase the signal. In this case, confocal Raman 
instrument can also be used for collection. However, in order to avoid the influence of 
SERS substrate on the sample’s own signal, some other Raman enhancement techniques, 
such as SRS, could be adopted to improve the signal. For Raman imaging of samples, 
SRS technology is often used to enhance the signal to achieve higher resolution imaging 
due to the weak Raman signal of samples themselves. However, the implementation of 
these technologies requires more expensive and larger footprint equipment. Therefore, 
it is supposed to design a cheaper Raman equipment and miniaturize the equipment to 
finally achieve efficient signal acquisition of samples.

For data processing, the data collected based on Raman spectroscopy and SERS are 
basically one-dimensional spectral data, mainly including peak intensity information 
and peak position information, while those based on Raman imaging are usually two-
dimensional picture information, including both peak intensity information and peak 
position information, as well as the information of the sample itself, such as morphology. 
Therefore, different methods are applied to process the collected data. The former two 
methods mainly use peak intensity contrast or multivariate statistical methods, where 
these methods are more accurate when dealing with small sample data, however, there is 
a bottleneck when dealing with large sample data. At this time, artificial intelligence can 
be used for analysis, especially for sample classification. The one-dimensional spectral 
data can be directly input into the artificial intelligence model, or the one-dimensional 
spectral data can be converted to the two-dimensional Raman encoding figure before 
the training and validation of the artificial intelligence model. Relatively, artificial intel-
ligence is a better choice when processing Raman images because Raman imaging con-
tains more information. It can not only process a large amount of data analysis, but also 
be more suitable for processing two-dimensional images. Meanwhile, some new artifi-
cial intelligence models, such as convolutional neural network and residual network, can 
better analyze and classify samples.

For clinical application, Raman spectroscopy can be easily obtained by confocal 
Raman instruments. Therefore, due to the easy availability of data, Raman spectroscopy 
is more suitable for the diagnosis of easily available samples, such as normal and cancer-
ous diagnosis of body fluids. In addition, the difference of Raman spectra of different 
samples mainly lies in the difference of Raman peaks and positions, which are relatively 
not obvious, so the diagnosis of Raman spectra is more suitable for simple diagnostic 
applications, such as tissue diagnosis of normal and cancerous and cell detection for 
cancer screening. However, due to the weak spontaneous Raman intensity of the sam-
ple, it usually takes a long integration time to obtain the spectrum with acceptable sig-
nal noise ratio. SERS is a very excellent Raman enhancement technology and can realize 
highly precise target detection. Therefore, SERS is very suitable for the detection of low 
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concentration biological molecules, such as tumor biomarkers, and biomolecules related 
to tumor growth and dissemination. Raman spectroscopy and SERS methods mainly uti-
lize the spectra to diagnosis, which contains less biological information. Raman imaging 
can not only obtain the spectral information, as well as the three-dimensional spatial 
imaging information, but also obtain the geometric shape, molecular structure, and 
dynamic characteristics of the research object. Hence, Raman imaging is more suitable 
for imaging tissue samples to analyze the benign and malignant tissues and subtypes. 
Further, Raman imaging can also be used to analyze cellular biochemical and structural 
characteristics, and tumor biomarker diagnosis. The appropriate method should be 
selected based on the samples and the equipment.

In a word, the diagnosis methods of tumor are constantly developing. How to detect, 
diagnose and treat tumors as early as possible is particularly crucial for human life and 
health. For early tumor diagnosis, some tumor markers can play a reference signifi-
cance. However, how to ensure the accuracy of these tumor markers is the most impor-
tant thing to realize early tumor diagnosis. For these tumor markers with small content, 
the SERS method could enhance their signal, thus achieving accurate diagnosis of early 
tumors. However, when the tumor develops to the stage of excision, imaging is usu-
ally only used as an auxiliary means, because it can only identify the initial shape of the 
tumor and cannot accurately distinguish the benign and malignant tumors. Therefore, 
endoscope/probe-based Raman diagnostic method can be applied to achieve tumor 
diagnosis and guided resection. For histopathology, the gold standard of tumor diagno-
sis, necessitates multiple processing steps, and interpretation by a pathologist, which is 
time, resource, and labor intensive. Here, the diagnostic method based on Raman imag-
ing can streamlined the tumor diagnosis, creating a complementary pathway for tissue 
diagnosis that is independent of a traditional pathology. In particular, the near real-time 
SRH + AI diagnostic method can deliver rapid intraoperative pathological diagnosis, 
greatly minish the waiting time for pathological diagnosis results with compressing the 
operation time and reducing the damage to patients.

With the development of computer science, applying AI algorithm to classify and 
diagnose Raman spectra from tumors is the key to greatly improve the accuracy of 
tumor diagnosis. Two main challenges of using AI to realize tumor diagnosis and can-
cer detection remain. The first challenge is data set acquisition. At present, the data set 
acquisition method is still manual. However, in the actual process of data acquisition, 
the specific parameters or processes used in sample preparation, instrument operation, 
data labeling and other steps vary from person to person, which will cause certain dif-
ferences in the data collected by different groups of research, so that the model estab-
lished according to the data cannot be universal. Secondly, most data sets are obtained 
from single-center sources. Although single-center studies are favored by researchers 
due to fewer restrictions on conditions and convenient cooperation, multi-center studies 
are more suitable for the application of AI for diagnosis. On the one hand, multi-center 
studies can obtain more data; on the other hand, multi-center studies can achieve data 
consistency and comparability. Thereby gaining experience in establishing standardized 
processes. The second challenge is the transparency and interpretability of the mod-
els. At present, AI research is largely results-oriented, but the black-box nature of the 
training process makes the models much less interpretable, and thus less acceptable to 
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clinicians when it comes to clinical applications. Therefore, it is necessary to establish a 
transparent model to realize the interpretability of its process, so as to dispel the doubt 
of clinicians and build trust in it. Still, the research on the interpretability and visualiza-
tion of deep learning model is still in the initial stage, and more researchers are expected 
to explore it.

Future clinical applications can be explored and studied from the following two 
aspects. The first is to do as many multi-center studies as possible. Since most current 
studies are single-center, there is poor data consistency among various studies, and in-
depth comparison cannot be made. Therefore, conducting multi-center studies can not 
only improve the consistency and comparability of data, but also establish normative 
procedures and eventually form consensus standards, laying a foundation for actual clin-
ical application. The second aspect is the equipment miniaturization. The Raman equip-
ment used by most of research covers a large area and is fixed in one location. However, 
stationary and large footprint devices are a major obstacle to clinical application and, 
in particular, to near-real-time intraoperative diagnosis. Therefore, it is necessary to 
explore and study the miniaturization of Raman equipment, which can be explored from 
two directions: handheld probe + Raman spectrometer or miniaturized portable Raman 
spectrometer.

Anyway, the tumor diagnosis method based on Raman spectroscopy has a broad appli-
cation prospect. Especially the artificial intelligence fusion with Raman spectroscopy 
can provide an effective supplement to the existing tumor diagnosis methods, and even 
replace the existing diagnostic methods in the near future.
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