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Introduction
Since super-resolution fluorescence microscopy can resolve biological structures at the 
nanometer scale, effectively overcoming the limitation in resolution capacity of diffrac-
tion-limited optical microscopy, it has been considered a powerful technique to allow us 
to probe into many fundamental processes of life, such as the inner workings of cells and 
the ultrastructures of organelle dynamics [1–4].

Among a variety of super-resolution methods, stimulated emission depletion (STED) 
microscopy is the most promising due to its high spatial resolution and temporal reso-
lution [5, 6]. STED microscopy employs a second laser beam (STED beam) in the con-
focal setup to rapidly deplete the excited state of fluorophores back to their ground 
state, which requires the stimulated emission to win the competition with spontaneous 
fluorescence emission within a few nanoseconds [7, 8]. The STED beam has a dough-
nut-shaped focal intensity distribution with zero intensity at the center, and its overlap 
with the excitation laser beam results in a smaller residual fluorescence spot, thereby 
sharpening the point spread function (PSF) and improving resolution. Nevertheless, 
the strong power of the depletion laser is prone to cause photodamage in the biological 
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samples and photobleaching of the fluorophores, which prevents the wide adoption of 
STED for practical long-term live-cell imaging.

To address this issue, in addition to developing adequately photostable and live-cell 
compatible highly fluorescent labelling reagent, researchers also explore computational 
algorithms that can transform a captured low-resolution image into a high-resolution 
one without the need for directly applying super-resolution fluorescence microscopy to 
live-cell imaging. There has been research presenting deep-learning-based algorithms 
where they build a generative adversarial network (GAN) or deep Fourier channel atten-
tion network (DFCAN) to achieve super-resolution and cross-modality image transfor-
mations [9, 10]. The networks do not require modeling of the image-formation process 
or manually tuning of the parameters. Although these algorithms can enhance the reso-
lution of diffraction-limited low-resolution images to match those obtained by super-
resolution microscopy, they are not applicable to confocal images of microtubules and 
microfilaments, particularly with live-cell imaging, and the resolution of their network 
output images needs to be further improved. To overcome this limitation, we propose 
an efficient resolution enhancement algorithm based on deep learning. We note that 
automatic feature extraction is a remarkable advantage that deep learning has over con-
ventional machine learning algorithms, and deep learning has more complex ways of 
connecting layers together with a larger amount of computing power than previous net-
works [11, 12]. All these advances have kindled a lot of interest in this approach. Recent 
applications of deep learning to image processing have been implemented successfully in 
a variety of research fields [13–18].

In our approach, we achieve super-resolution by building a two-channel attention net-
work (TCAN) architecture and training the network to learn representations of infor-
mation in both the spatial domain and the frequency domain. This enables the network 
to precisely map the diffraction-limited input images into super-resolved ones. TCAN 
framework requires neither special instrumentation nor special fluorophores, and does 
not constrain the pixel sizes or imaging modalities of the input images. Even if they are 
different from those in the training data, our network is still capable of super-resolv-
ing the low-resolution input images. This also promotes the application of our TCAN 
model to various fields of view (FOV) of input images. More importantly, we use this 
model, trained with only the static images, to achieve a long-term live-cell imaging, cap-
turing the dynamic microtubules with finer structures and a higher resolution. This cir-
cumvents the need to acquire long time-lapse STED images of microtubules dynamics, 
which suffers from photobleaching/phototoxicity and remains challenging. Compared 
with STED, we demonstrate a superior algorithmic performance by inferring super-res-
olution images of diverse biological structures in terms of higher signal-to-noise ratio 
(SNR) and better image quality. We also improve the resolution of dual-color confocal 
images of microtubules and filaments, and their relative positions and crosstalk are bet-
ter revealed by our method.

Methods
In theory, deep learning can be considered as using algorithms for acquiring struc-
tural descriptions from training data examples. A model is built to contain the struc-
tural information extracted from the training data, and then those structures or the 
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model can be employed to predict unknown data. In reality, we use low-resolution 
(confocal)—high-resolution (STED) image pairs of the same view as the training 
data examples, and build TCAN model to learn the mapping from low-resolution 
image to its corresponding high-resolution image by capturing the feature represen-
tations of these training data.

TCAN model

Inspired by U-net [19] and deep Fourier channel attention network (DFCAN) [10], 
we construct the TCAN architecture based on the conditional generative adversarial 
network (cGAN) framework, as depicted in Fig.  1. It can be divided into two parts, a 
generative model and a discriminative model. The confocal image is firstly fed into the 
generative model that generates a high-resolution image. This generated high-resolution 
image, together with the STED image, is then fed into the discriminative model that 
compares these two images and estimates the probability of the generated high-reso-
lution image being the STED image. The above process is repeated in the training stage 
till the discriminative model cannot distinguish the generated high-resolution image 
from the STED image. The generative model finds optimal parameters and is forced to 
efficiently generate high-resolution image similar to the STED training image. In other 
words, the generative model achieves the modeling of resolution enhancement in a way 
of deep learning (i.e., convolution and other operations). The discriminative model plays 
a role in evaluating whether the generated high-resolution image and the ground truth 
are as close as possible. The training enables TCAN model to learn the ability of map-
ping such that it can directly infer high-resolution image when applied to new low-reso-
lution image.

Generative model

The generator in our TCAN is composed of U-net and DFCAN, enabling the network to 
learn representations of information in both the spatial domain and the Fourier domain. 
The former is proposed to learn to suppress irrelevant regions while highlighting sali-
ent structures of varying shapes and sizes, yielding improved prediction performance 
across diverse datasets [19]. The latter focuses on learning hierarchical representations 
of high-frequency information and more precise mappings form low-resolution images 
to high-resolution images. Figure 1 illustrates the structure of the generator used in this 
work. The input image is firstly fed into a convolutional block, and then the outputs of 
U-net and DFCAN are summed and go through another convolutional block to form the 
network output. Both convolutional blocks perform the following operation:

in which the output and input of the convolutional block are represented with xo and xi, 
respectively. Conv() is the convolution operation, and LReLU[] is the leaky rectified lin-
ear unit activation function [20] with a slope of α = 0.1, defined as

The architecture of U-net used in this work is illustrated in Fig. 2, which consists of 
four downsampling blocks and four upsampling blocks, and they are connected. Let dk 

(1)xo = LReLU[Conv(xi)],

(2)LReLU(x;α) = max (0, x)− α ×max (0,−x).
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be the output of the kth downsampling block, and d0 be the low-resolution input image. 
Each downsampling block includes three residual convolutional blocks, within which it 
performs

Fig. 1  The network architecture of TCAN. (a) The architecture of the generator of TCAN. (b) The architecture 
of the discriminator of TCAN
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Because the number of channels of dk − 1 changes after passing through the convo-
lutional blocks, the input of each downsampling block is zero-padded to ensure its 
direct addition to the result of three consecutive convolutional blocks. A global aver-
age pooling layer is inserted after the summation to achieve spatial downsampling.

Each upsampling block is also composed of three convolutional blocks, and we can 
derive its output as

where uk represents the output of the kth upsampling block and u0 is the output of the 
convolution layer that lies at the bottom of this U-shape network. The downsampling 
block output and the upsampling block input is concatenated by Concat{,} which can 
strengthen feature propagation and improve efficiency [21]. A nearest neighbor interpo-
lation is added in the upsampling block to achieve spatial upsampling. The last convo-
lutional layer maps the 32 channels into 1 channel that corresponds to a monochrome 
grayscale high-resolution image.

We employ DFCAN in the generative model to enhance the learning ability of our 
model in the frequency domain, and its architecture is displayed in Fig. 2. A convolu-
tion layer is firstly used to generate the feature maps, and then a Gaussian error linear 

(3)dk = dk−1 + LReLU
[

Conv
(

LReLU
[

Conv
(

LReLU
[

Conv
(

dk−1

)])])]

.
k = 1, 2, 3, 4

(4)uk = LReLU Conv LReLU Conv LReLU Conv Concat d5−k, uk−1 ,
k = 1, 2, 3, 4

Fig. 2  The architecture of the generator of TCAN. (a) The architecture of U-net. (b) The architecture of DFCAN
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unit (GELU) [22] is added for nonlinearity. The GELU activation function is formu-
lated as

in which erf() denotes the error function, defined by

The output of GELU is fed into a residual group (RG), and five identical RGs are suc-
cessively used in our DFCAN model. Each of them is composed of two Fourier channel 
attention blocks (FCAB) and a skip connection. We therefore have

where y represents the input feature maps of the RG. As in Ref. [10], the feature maps in 
each FCAB are rescaled in a channel-wise manner as:

in which

In eq. (8), we use FFT() to represent the fast Fourier transform and put γ in the expo-
nent to increase the contributions of the high-frequency components. The operator abs{} 
computes the absolute value, and ReLU[] denotes the rectified linear units (ReLU) [23]. 
Mathematically, ReLU[⋅] = max[⋅, 0]. A global average pooling layer is inserted between 
ReLU and the subsequent convolutional layer for spatial downsampling. The last RG is 
followed by a convolutional layer activated by the GELU activation function. The near-
est neighbor interpolation is used to upsample the image to the same size as the ground 
truth to accommodate the inferred high-frequency information [10].

Discriminative model

Figure 1 describes the structure of our discriminator. It is a simple convolutional neural 
network (CNN) architecture that begins with a convolutional layer. Five convolutional 
blocks then follow, which are different from the convolutional blocks in the generative 
model, given by

where zk denotes the output of the kth convolutional block, and z0 is the input of the 
first convolutional block. We insert average pooling successive convolutional blocks to 
reduce the dimension, and it performs the downsampling operation by taking the spatial 
average of the feature maps in the corresponding 2 × 2 region while discarding redun-
dant information. After that, there are 3 fully connected (FC) layers and the discrimi-
nator outputs the estimated probability. It is not necessary to add a sigmoid activation 

(5)GELU[x] = 0.5x

[

1+ erf

(

x
√
2

)]

,

(6)erf(x) =
2

√
π
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0
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,
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[
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function in the discriminative model, since it has been incorporated into the loss func-
tion code of BCEWithLogitsLoss() used in our work.

Loss function

We design the loss function of the generative model as a combination of MSE, binary 
cross-entropy (BCE) and the structural similarity (SSIM) index [24]. MSE loss ensures 
prediction accuracy by penalizing the difference between the network output and 
ground truth. BCE loss recovers the minute detail from the blurred images, and SSIM 
loss enhances the perceptual quality fidelity of the output. This leads to the following 
loss function

in which X and Y are input low-resolution image and high-resolution image used as 
ground truth, respectively. G() is the generative model output, and D() is the discrimina-
tive model prediction. Ylabel is set as 1 in the process of training the generator.

The loss function of the discriminative model calculates the binary cross-entropy, i.e.

when Ylabel is set as 0 in the process of training the discriminator. Specific loss functions 
are given in Supporting Information.

Training

For each type of specimen and each imaging modality, we capture a total of ~ 80 groups 
of confocal (512 ×  512 pixels) and STED (512 ×  512 pixels) images. To prevent the 
model from being overfitting, we select ~ 60 groups of original data and perform ran-
dom cropping, rotation transformation and horizontal/vertical flipping to further 
enrich the training dataset, which eventually generate ~ 3000 pairs of confocal images 
(256 × 256 pixels) and STED images (256 × 256 pixels). For the testing dataset, we select 
the remaining ~ 20 groups of original data to augment the dataset. Wide-field and SIM 
training data pairs are generated from BioSR dataset in Ref. [10], which is a high-quality 
image dataset covering four biology structures with nine signal levels and two upscaling-
factors. We use 3000 pairs of linear low-and-high resolution images of the microtubules 
as training data, and their resolution is ~ 100 nm. The detail information of image acqui-
sition is described in Supporting Information.

In order to accelerate the training speed and ensure the training efficiency, our patch 
size is set as 256 × 256, with a batch size of 2 due to the limitation of hardware. Note 
that TCAN works by alternating between training the generative model given the dis-
criminative model, and updating the discriminator by keeping the generator unchanged. 
Both the generative model and the discriminative model are randomly initialized and 
optimized using the adaptive moment estimation (Adam) optimizer [25], with a start-
ing learning rate of 0.0001 and 0.00005, respectively. This framework is implemented 
with Pytorch [26] framework version 1.7.1 and Python version 3.6.4 in the Microsoft 
Windows 10 operating system. The training is performed on a consumer-grade laptop 

(11)
LG|D (X ,Y ) = MSE(G(X), Y)+ SSIM(G(X), Y)+ BCE(D(G(X))− D(Y), Ylabel),

(12)
LD|G (X ,Y ) =

1

2
{BCE(D(G(X))− D(Y), Ylabel)+ BCE(D(Y)− D(G(X)), 1− Ylabel)},
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(Alienware-51r, Dell) equipped with a GeForce RTX2080 graphic card (NVIDIA) and 
a Core i9-9900K CPU @ 3.6 GHz (Intel). Our model is firstly trained with nano-beads, 
which takes ~ 12 h. After the transfer learning [27], the final models trained for cell 
nuclei and microtubules take ~ 24 h and ~ 26 h, respectively. A typical plot of the vali-
dation loss values during TCAN training is shown in Additional file  1 Fig. S1. In the 
competition process between the generator and the discriminator, the network gradu-
ally refines the learnt super-resolution image transformation and obtains better spatial 
details. We take the trained model at 200 epochs as the final testing model, which is 
sufficient for different images in our experiments. The iteration time is dependent to the 
patch and batch size.

Results and discussion
Resolution enhancement in confocal microscopy images of nano‑beads and nucleus

We begin with evaluating the performance of our proposed TCAN model using 23 nm 
fluorescent beads. The nano-bead samples are imaged on a Leica TCS SP8 STED confo-
cal microscope, and 1000 pairs of confocal-STED image patches with a size of 256 × 256 
pixels are used as training data. Our network takes the confocal image in Fig. 3a as input, 
which is unseen by the network in the training stage, and outputs a super-resolved image 
in Fig. 3b. The result of the network is compared with the image (Fig. 3c) acquired using 
STED microscopy. It can be seen that some of the nano-beads in our samples are too 
close to be discerned in the raw confocal microscopy image and STED image, while 
our method is capable of reducing artifacts and blur and resolving these closely spaced 
nano-beads, as presented in Figs. 3d-f. This is also consistent with the intensity profiles 
(Fig. 3m) along the white dashed lines in Figs. 3d-f.

We further assess the impact of the proposed TCAN by two image-based criteria: one 
is image resolution, measured by the full width at half maximum (FWHM) of the PSF, 
and the other one is image quality, estimated by the signal-to-noise ratio. There are 20 
isolated nano-beads selected randomly for the PSF measurement in the images of the 
confocal microscope and STED microscope, as well as the network output image. The 
attained FWHM of the confocal microscope PSF is 239 ± 25 nm, roughly correspond-
ing to the lateral resolution of a diffraction-limited imaging system at an emission wave-
length of 664 nm and numerical aperture of 1.4. The PSF distribution of the network 
output is even better than that of the STED system, with a FWHM of 58 ± 1 nm versus 
83 ± 9 nm, respectively. Since our method also establishes a data-driven image transfor-
mation, similar to that discussed in Ref. [9], the learned PSF does not require any prior 
information on modeling of the image formation process or its parameters.

Next, we verify the practicality of the proposed TCAN by applying it to fixed HeLa 
cell nucleus. Figures  3g-i displays the input confocal microscopy image, the net-
work output result and the STED image of the same field of view, respectively. We 
observe that our method succeeds in transforming a low-resolution confocal image 
into a super-resolution image. As exemplified by the magnified images of the green 
boxes in Figs. 3j-l, TCAN resolves the densely labeled nuclear pore complexes (NPCs) 
[28] better than STED image and reduces the background noise, reaching a compro-
mise between retaining useful information and denoising. The rationale behind this 
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result is that the generator in our model benefits from both U-net and DFCAN, which 
simultaneously learns precise representation of the spatial structures and high-fre-
quency information.

To verify the improvement of our network on image quality, we compare the SNR 
of the network output to the network input (confocal image), the STED images and 
the deconvolution of the STED image. SNR is calculated according to the following 
formula in Ref. [9],

Fig. 3  Super-resolution imaging of the nano-beads and nucleus using TCAN. (a) A diffraction-limited 
confocal microscopy image of fluorescent nano-beads is used as input to the network. (b) The super-resolved 
output image. (c) The STED image of the same field of view. (d, j) Examples of closely spaced nano-beads or 
NPCs that cannot be resolved by confocal microscopy. (e, k) The trained network takes (d) and (j) as input 
and resolves the individual nano-beads or NPCs. (f, l) The STED microscopy image. (g) A diffraction-limited 
confocal microscopy image of HeLa cell nucleus is used as input to the network. (h) The super-resolved 
output image. (i) The STED image of the same field of view. (m, n) Intensity profiles along the white dashed 
lines and green solidlines in different images. Experiments are repeated with 20 images, achieving similar 
results. Scale bars, 4 μm
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where s is the mean peak value of the signal calculated from a Gaussian fit to the parti-
cles, and b is the mean value of the background (e.g. randomly selected regions which do 
not contain any objects), and σb is the standard deviation of the background. The results 
listed in Table 1 demonstrate that our proposed method can suppress noise and improve 
the image quality by different types of samples.

Resolution enhancement in confocal microscopy images of microtubules

In case the confocal-STED training image pairs are not available, our network model 
trained with images captured by different imaging modalities is still able to infer super-
resolution image. We employ 3000 pairs of wide-field and structured illumination 
microscopy (SIM) patches with a size of 256 × 256 pixels as training data, and apply the 
present framework to microtubules, a more complex structure. The results are com-
pared against the STED image and deconvolution of the STED image, and the deconvo-
lution is performed by using Huygens Software. Our TCAN model, as expected, reveals 
noticeably improved resolution in comparison with the input confocal images (Fig. 4a). 
It is worth noting that the resolution of the network output images (Fig. 4b) is indeed 
improved, especially that the regions of dense and complex microtubule structures are 
better resolved and appear sharper, compared with STED images in Fig. 4c, as exhibited 
by the magnified results of the green boxes. There are artifacts and noise between adja-
cent microtubules in the STED microscope images. For the comparison to the decon-
volution of the STED images in Fig.  4d, it can be seen that there are obvious broken 
structures, and the discontinuity is more severe for sparsely distributed microtubules. 
Here we also employ transfer learning, which uses a learned network trained with nano-
beads as the initial model, to speed up the training process for nucleus, microtubules 
and actin.

To quantitatively evaluate the overall performance of our method, we use three met-
rics, i.e., SNR, mean square error (MSE), and resolution, to measure the quality of the 
output super-resolved image. MSE numerically computes the pixel-level data fidel-
ity by calculating the difference between the resulting image and the ground truth. 
Image resolution is performed by means of decorrelation analysis, which describes 
the highest frequency from the local maxima of the decorrelation functions instead 
of the theoretical resolution [29]. These results are illustrated in Figs.  4e-g, where 
generally larger SNR and smaller MSE of the network output indicate that the con-
ventional STED images and the deconvolution of the STED image are inferior to our 
inference images. The measured resolution of input confocal image, network output, 

(13)SNR =

∣

∣

∣

∣

∣

s− b

σb

∣

∣

∣

∣

∣

,

Table 1  Quantification of SNR improvement

Types Network input (Confocal) Network output STED

Nano-beads 6.0 13.2 14.1

Nucleus 3.6 12.0 8.2

Microtubules 9.6 10.9 10.4



Page 11 of 22Huang et al. PhotoniX  2023, 4(1):2	

STED and the deconvolution of STED image in the last row of Fig. 4 are 267 ± 12 nm, 
136 ± 16 nm, 163 ± 23 nm and 101 ± 17 nm, respectively. The deconvolution of STED 
image achieves a higher resolution at the expense of obvious unstructured regions 
and even losing structural information.

Fig. 4  Super-resolution imaging of the microtubules using TCAN. (a) The first column of images is 
diffraction-limited confocal microscopy images of the microtubules used as input to the network. (b) The 
second column of images is the super-resolved output images. (c) The third column of images is the STED 
images of the same field of view. (d) The fourth column of images is the deconvolution of the STED images 
of the same field of view. The green box regions are shown below at a magnified scale. (e-g) Statistical 
comparison of confocal images, output images, STED images and deconvolution of STED images in terms 
of MSE, SNR and resolution. Tukey box-and-whisker plots with outliers displayed as diamonds are shown. 
Experiments are repeated with 15 images, achieving similar results. Scale bars in the second row, the fourth 
row, the sixth row, the seventh row and the eighth row are 0.75 μm, 0.75 μm, 0.5 μm, 3 μm and 0.5 μm, 
respectively
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Figures 4e-g are plotted in Tukey box-and-whisker format. The box extends from the 
25th and 75th percentiles and the line in the middle of the box indicates the median. 
To define whiskers and outliers, the inter-quartile distance (IQR) is firstly calculated as 
the difference between the 25th and 75th percentiles. The upper whisker represents the 
larger value between the largest data point and the 75th percentile plus 1.5 times the 
IQR; the lower whisker represents the smaller value between the smallest data point and 
the 25th percentile minus 1.5 times the IQR. Data points larger than the upper whisker 
or smaller than the lower whisker are identified as outliers, which are displayed as black 
diamonds.

For deep learning methods, the training data determines what we want the neural net-
work to learn. To achieve the best results, the imaging modality for the training data 
should in principle be precisely matched to that of the input images. However, we find 
that the image quality rather than the imaging modality of the training data is a criti-
cal factor affecting the image inference performance. This can be observed from Addi-
tional file 1 Fig. S2 in Supporting Information. Even though the input images and STED 
images are captured with the same imaging platform, the output images of the network 
trained by using deconvolution of the STED images are worse than the results of the net-
work trained with high-quality SIM images. This is related to the fact that the input and 
output of the framework share a high degree of mutual information, and the quality of 
the information in the training examples has an effect on the pixel-to-pixel transforma-
tion and the resolution enhancement learned by the network. For the task of translating 
one possible representation of a scene into another, it is broadly referred to as image-to-
image translation problem [30]. They share common process of predicting pixels from 
pixels, and the network architecture used for our training, i.e., conditional GANs [31] 
have been proven to be effective in learning such mapping. In this problem the input 
and output are renderings of the same underlying structures, and the training process 
can be viewed as utilizing this mutual information between the input and label images 
to restrict the network output. Accordingly, the network pays attention to the quality of 
structures in the training examples more than the imaging platform of the training data.

Additionally, if the pixel size is large, one microtubule distributes across fewer pixels; 
otherwise, more pixels are required to show the same structure. Hence the pixel size is 
another important parameter affecting the feature representation to be learned by the 
network and the ability of the network to distinguish adjacent microtubules as separate 
objects. For instance, direct application of a network that is trained with images with a 
pixel size of 50 nm would produce acceptable biological structures only when the input 
images have pixel size of 35 nm–70 nm. Therefore, if the pixel size of the input images 
and training images are different, we upsample/downsample the input images to match 
that of the training image pairs. After the upsampling/downsampling, the neural net-
work successfully suppresses the artifacts and further improves the resolution of the 
confocal microscopy images. In Fig. 5, compared the network output images in the third 
column to the network output images in the fourth column, it is important to note that 
the effect of the pixel sizes can be compensated by upsampling/downsampling the input 
images to match the pixel sizes to that of the training data, thereby improving the quality 
of the inference images. Since the pixel size of our training data is 50 nm, we upsampe 
the pixel size of 75 nm of the input confocal images in the first row, while downsample 
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other pixel sizes of the input images in the third row to the seventh row. In addition, 
compared the network output images in the second column to the network output 
images in the third column, we notice that the model trained by L1 loss is more robust 
against the variations of pixel sizes than the model trained by L2 loss, although the latter 

Fig. 5  (a) Diffraction-limited confocal microscopy images with different pixel sizes are used as input 
to the network. (b) The Super-resolved network inference images using L1 loss before upsampling/
downsampling the input images to match the pixel size of the training data. (c) The Super-resolved network 
inference images using L2 loss before upsampling/downsampling the input images to match the pixel 
size of the training data. (d) The super-resolved network inference images using L2 loss after upsampling/
downsampling the input images to match the pixel sizes of the training data. (e) The STED images of the 
same field of view. Scale bars in (e) are 8 μm, 6 μm, 4 μm, 3 μm, 3 μm, 3 μm and 2 μm, respectively from the 
first row to the seventh row
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can obtain better inference images when the pixel size of the input images and the train-
ing data is the same (50 nm in our experiments). The result is related to the fact that L2 
loss is more sensitive to outliers and gets stuck more easily in a local minimum [32, 33].

This also facilitates the application of the TCAN model to a large field of view of the 
confocal images. Figure 6 displays the results of applying our method to super-resolve 
confocal images of 45.88 μm × 45.88 μm (1024 × 1024 pixels) and 56.17 μm × 56.17 μm 
(2048 × 2048 pixels), respectively, revealing finer features of the microtubules. The above 
results demonstrate that the proposed framework is able to achieve favorable perfor-
mance for various fields of view of input images.

When the input image is captured with a new experimental setup, our TCAN net-
work model does not need to be trained again. We apply the network model trained 
with wide-field and SIM image pairs to directly super-resolve the images of microtubules 
captured with the Nikon A1R MP+ microscope. The confocal microscopy images are 
transformed into resolution-enhanced images, as shown in Fig. 7, exhibiting more sharp 
details of the microtubules. To provide further demonstration of the network’s generali-
zation, two large confocal image patches of 184.32 μm × 184.32 μm (3072 × 3072 pixels) 
and 71.68  μm × 71.68  μm (1024 × 1024 pixels), also acquired by the Nikon A1R MP+ 
microscope, are used as input, and Additional file 1 Fig. S3 in Supporting Information 
illustrates the advantage of the GAN-based super-resolution approach with upsampling/
downsampling. It is possible to extend applications of our TCAN model to super-resolve 
low-resolution images captured with different imaging systems.

The generalization of our TCAN model includes improving resolution of images 
acquired with new imaging systems and improving image resolution on new types of 
samples that are not present in the training phase. As manifested in Fig. 7 and Addi-
tional file  1 Fig. S3, resolution enhancement of confocal images captured with the 
Nikon the A1R MP+ microscope are achieved by our network model trained with 

Fig. 6  Super-resolution imaging of large FOV of confocal images acquired on a Leica TCS SP8 STED confocal 
microscope using TCAN. (a, e) Diffraction-limited confocal microscopy images of the microtubules are used 
as input to the network. (b, f) The super-resolved network inference images before downsampling the input 
images to match the pixel size of the training data. (c, g) The super-resolved network inference images after 
downsampling the input images to match the pixel sizes of the training data. (d, h) The STED images of the 
same field of view. Scale bar in (d) is 8 μm, and scale bar in (h) is 10 μm
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wide-field and SIM image pairs. Another example of generation of our approach is 
supported by Fig. 8, where our TCAN model trained with only images of the micro-
tubules is applied to super-resolve actins. Even though this new type of sample is 
unseen in the training dataset, our network is capable of inferring correctly their fine 
structures.

Fig. 7  Super-resolution imaging of confocal images captured with the Nikon A1R MP+ microscope using 
TCAN. (a, d, g, j) Diffraction-limited confocal microscopy images of the microtubules are used as input 
to the network. (b, e) The Super-resolved network inference images before downsampling the input 
images to match the pixel size of the training data. (c, f) The super-resolved network inference images after 
downsampling the input images to match the pixel sizes of the training data. (h, k) The Super-resolved 
network inference images without the need for downsampling the input images to match the pixel size of 
the training data. (i, l) Intensity profiles along the white dashed lines and blue solid lines in different images. 
Scale bar in (c), (f), (h) and (k) are 6 μm, 3 μm, 6 μm and 10 μm, respectively
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Resolution enhancement in confocal images of live‑cell microtubules

To test whether TCAN is competent in live-cell imaging, we study the dynamic changes 
of microtubules by time-lapse imaging. The dynamic instability of the microtubules is 
important because of their involvement in delivering information, and it is a fast process 
demanding high spatiotemporal resolution imaging [34].

In this work, we employ the TCAN model trained with static microtubules images to 
transform low-resolution confocal images of live-cell microtubules into high-resolution 
ones. The raw images in both the confocal mode and STED mode are acquired for 10 
frames at 45 s intervals (Fig. 9a). Figure 9a shows the resolution enhancement and supe-
rior image quality when comparing with STED images, and the resolution of our net-
work output images is almost constant within at least 7 minutes (See Visualization 1). 

Fig. 8  Super-resolution imaging of live-cell microtubules using TCAN. (a) The super-resolved output image 
of live-cell microtubules. Bottom right: a fraction of the corresponding STED image (Leica TCS SP8 STED 
confocal microscope) used as comparison. Scale bar, 3 μm. (b), (d) Time-lapse STED images at four time 
points are shown at a magnified scale. (c, e) Time-lapse network output images at four time points are shown 
at a magnified scale. Scale bar, 1 μm. (f) A diffraction-limited confocal microscopy images (Nikon A1R MP+ 
microscope) used as input to the network. (g) The super-resolved output image of live-cell microtubules. 
Scale bar, 3 μm. (h, j) Time-lapse confocal images at five time points are shown at a magnified scale. (i, k) 
Time-lapse network output images at five time points are shown at a magnified scale. Scale bar, 0.5 μm
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Then, the dynamic instability of microtubules is visualized, for example, as marked by 
arrows in Figs. 9b-e. The dynamic changes can be divided into two kinds, one is chang-
ing in the shape of microtubules (Figs.  9b-c), and the other is changing in the length 
of microtubules (Figs. 9d-e). For the first kind, we capture that microtubule varies dis-
tinctly, becoming curved from originally straight. This is consistent with the current 
model for microtubule assembly and dynamics, which postulates that microtubules 
grow by attachment of curved guanosine triphosphate (GTP)-tubulins to the ends of 
curved photofilaments [35]. For the second kind, the plus end of the microtubule grows 
due to assembly, and the quick transitions between microtubule growth and temporal 
pause even can be observed at a high temporal resolution in our experiments. The high 
spatial resolution of our TCAN model ensures the precision of microtubules dynamic 
characterization and detection of densely packed microtubules undetectable with other 
methods.

Similar improvement can be obtained when applying our method to super-resolve 
confocal images of live-cell microtubules acquired with the Nikon A1R MP+ microscope 

Fig. 9  Super-resolution imaging of live-cell microtubules captured with the Nikon A1R MP+ microscope. (a) 
Time-lapse confocal images at three time points used as input to the network. (b) Time-lapse network output 
images at three time points. Scale bar, 4 μm. (c) Time-lapse confocal images at six time points are shown at 
a magnified scale. (d) Time-lapse network output images at six time points are shown at a magnified scale. 
Scale bar, 1 μm
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(See Visualization 2). We capture raw images for 31 frames at 20s intervals. This result 
discerns the dynamic changes at microtubule intersections, and we notice that the inter-
section, indicated by the blue arrows (Figs. 9h-i), gradually becomes separated because 
of the microtubule shrinkage. For the microtubule seen at the magenta arrow in Figs. 9j-
k, it shrinks and the other microtubule grows over time until they are intersected.

The changes of the separation distance of the intersecting microtubules and micro-
tubules shrinkage can also be viewed in Fig.  10, Visualization 3 and Visualization 4. 
We capture raw images for 61 frames at 20s intervals. As demonstrated in Ref. [36], 
lysosome transport has a strong correlation with the distance between the intersecting 
microtubules, and thus it is crucial to visualize the motion of the complex microtubule 
networks with a high-resolution. Moreover, the unchanged microtubules in the white 

Fig. 10  Super-resolution imaging of dual-color actin-microtubules using TCAN. (a, c, e) Dual-color confocal 
microscopy images of the microtubules (magenta) and the filaments (cyan) are used as input to the network. 
(b, d, f) The super-resolved output images of the same field of view. Scale bars in (b), (d) and (f) are 10 μm, 
10 μm and 15 μm, respectively
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boxes in Fig. 10 signify that our region of interest is in the focus plane during the obser-
vation period, excluding the possibility that the dynamic changes of the microtubules are 
from defocusing. It should also be noted that the imaging time of live-cell microtubules 
in Visualization 3 and Visualization 4 is about 20 minutes. Since confocal microscope 
does not suffer from photobleaching and phototoxicity as severely as the STED micro-
scope, our method is fit for long-term super-resolving confocal images of live-cell.

The above results give prominence to the feasibility and advantage of improving image 
resolution based on deep learning. In other words, the proposed TCAN model is condu-
cive to resist photobleaching in the traditional STED technique by extending the maxi-
mum number of usable consecutive frames of time-lapse images [37].

Resolution enhancement in dual‑color confocal images of actin‑microtubules

As the components of cytoskeleton, actin-microtubule crosstalk is important for the 
core biological process [38]. Thus, we simultaneously image actin filaments (cyan) and 
microtubules (magenta) with the Nikon A1R MP+ microscope, and then improve the 
image resolution by our TCAN model trained with only the microtubules data. Raw 
confocal images in Fig. 8a, c and e exhibit spurious small structures outside of the fil-
aments and large fluctuations in fluorescence along the actin filaments. In contrast, 
TCAN suppresses the artifacts and resolves successfully the densely packed structures 
of the microtubules and the fine branches of the actin filaments (Fig. 8b, d and f ). The 
relative positions of the microtubules and filaments can also be observed in the super-
resolved dual-color images. Typical means of crosstalk between the microtubules and 
actin can be found in our network output, for instance, actin-microtubule crosslinking 
(white box), actin barrier (green box), and mechanical cooperation (Figs. 8f ) [38], while 
they are not clear in the confocal images due to poor resolution.

Conclusion
In this paper, a deep-learning-based algorithm is developed for the generation of super-
resolution images directly from diffraction-limited confocal images without prior infor-
mation about the image formation and imaging conditions. Quantitative comparison 
of the framework with STED indicates competitive and often superior performance of 
TCAN. We demonstrate this by taking confocal raw data as input, and then we can pre-
serve more patterned information and finer structures when enhancing signals from 
the low-resolution samples, as reported in our Results. The resolution of raw confocal 
images can be improved from ~ 230 nm to ~ 110 nm of the final network output.

We devise the network architecture, which incorporates both spatial representations 
and frequency content difference across distinct features, enabling the network to learn 
more precise mapping from low-resolution images to super-resolution images. The 
strategy helps us improve the image SNR.

To reduce the effect of pixel sizes on the network output, we upsample/downsample 
the pixel sizes of the input images to match those of the training data. Accordingly, our 
algorithm offers the benefit of creating higher-resolution images under the conditions of 
various FOV. In fact, the image inference performance is more susceptible to pixel sizes 
and image quality of the training data.
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As discussed in Results, we apply an existing trained model on new types of samples 
and new imaging systems unseen in the training process. Our method can achieve 
effective image resolution enhancement of the other microscopy modalities and dif-
ferent samples, showing comparable or better performance in comparison with super-
resolution method of STED.

Furthermore, TCAN assists the investigation of dynamic instability of live-cell 
microtubules by capturing long-term time-lapse images. The model needs only the 
static images as the training data, potentially enabling new opportunity for live-cell 
imaging with reduced photobleaching and phototoxicity.

We achieve co-imaging of the microtubules and actin cytoskeleton at sufficient spa-
tial resolution by applying our method to resolve dual-color confocal images. This is 
desirable for exploring how actin and microtubules co-regulate each other and exert 
their functions in different cellular processes such as cell migration and division.

All these results allow the proposed algorithm to be a prime candidate for com-
putational microscopy and super-resolution imaging, especially with the increasing 
demand for highly accurate and fast live-cell imaging applications. TCAN also can be 
applied to improve other types of microscopic images, such as wide-field images and 
two-photon microscopic images. They have the following characteristics as confocal 
images, which makes them well suited for resolution enhancement with deep learn-
ing. From the optical standpoint, the PSF of their imaging system can be fitted by 
Gaussian function, and the feature representation of this type of imaging data can be 
extracted and processed by convolutional neural network which is part of generator 
in our method. From a deep learning standpoint, since we use supervised learning 
that requires a “target (ground truth)” in the training set, the network is able to know 
what the goal of its learning is in the training stage. As done in our experiments, we 
can select higher-resolution images as the ground truth for the confocal image, such 
as STED or SIM images, thus the network can learn from them and enhance the input 
image to match those high-resolution images.
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