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Abstract 

A communication channel should be built to transmit information from one place to 
another. Imaging is 2 or higher dimensional information communication. Conven-
tionally, an imaging channel comprises a lens with free space at its both sides, whose 
transfer function is usually known and hence the response of the imaging channel can 
be well defined. Replacing the lens with a thin scattering medium, the image can still 
be extracted from the detected optical field, suggesting that the scattering medium 
retains or reconstructs not only energy but also information transmission channels. 
Aided by deep learning, we find that unlike the lens system, there are different chan-
nels in a scattering medium: the same scattering medium can construct different 
channels to match the manners of source coding. Moreover, it is found that without a 
valid channel, the convolution law for a spatial shift-invariant system (the output is the 
convolution of the point spread function and the input object) is broken, and in this 
scenario, information cannot be transmitted onto the detection plane. Therefore, valid 
channels are essential to transmit information through even a spatial shift-invariant sys-
tem. These findings may intrigue new adventures in imaging through scattering media 
and reevaluation of the known spatial shift-invariance in various areas.

Keywords:  Channels, Scattering medium, Point spread function, Deep learning, 
Spatial shift-invariant system

Introduction
Communication is the basis of daily life and modern civilization. A channel is the path 
to transfer information from one terminal to another. How to transmit information 
through a channel optimally has been well studied in information theory [1, 2]. In the 
context, optimum means the obtained code could determine the information unambigu-
ously, isolating it from all others in the set, and consists of a minimal number of sym-
bols. It also provides methods to separate real information from noise and to determine 
the channel capacity required for optimal transmission conditioned on the transmission 
rate. Note that all information has to be transferred into temporal dimensional symbols 
first in information theory. Imaging is a kind of two or higher dimensional information 
communication. To enhance imaging capabilities, understanding of the imaging channel 
is essential. Conventionally, an imaging channel comprises a lens with free space or other 
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light guides at its both sides. As the transfer function of each part of the optical path 
is usually known, the response of a conventional imaging channel can be well defined. 
If the lens is replaced with a thin scattering medium, such as a diffuser, the image can 
still be extracted from the detected optical field [3–6]. This suggests that the scatter-
ing medium retains or reconstructs transmission channels not only for energy (optical 
intensity) but also for information (imaging). Some researchers have explored the trans-
mission channels in this process [7, 8], which, however, has been largely involved with 
energy only. Regarding the characteristics of information (imaging) transmission chan-
nels in a scattering medium, whether and how they are different from those in a conven-
tional imaging system, none study, to the best of our knowledge, has been reported to 
date.

Deep learning has been widely applied in many fields including imaging through scat-
tering media due to its data driven and physical-model free feature [9–15]. Usually, a 
trained neural network is only applicable to a particular scenario with limited generali-
zation capability. In addition to serving as a pure image reconstruction method, we have 
demonstrated that deep learning can also be used as a tool to explore unknown princi-
ples in physics. With sufficient data for training, it can extract all information encoded 
in random speckles [16]. Hence, it is reasonable to use deep learning as a criterion to 
check whether there is information encoded in a pattern. Consequentially, if an image 
is successfully predicted from a pattern recorded on the receiving plane of a system, it 
means that there is valid channel in the system to transmit information; otherwise, no 
valid channel exists in the system. In this study, by designing an experiment consisting of 
4 combinations of illumination sources and transmission media and utilizing deep learn-
ing as the criterion to justify whether there is information encoded in recorded patterns 
under the condition of sufficient training data for each case, we found that a scatter-
ing medium could construct different channels to transmit image information and its 
micro structures contributed a new type of channel. To further verify the discovery, it 
was hypothesized that image information could not be transmitted through a medium 
without such micro structure. We demonstrated the hypothesis with phase-grids. More-
over, it is a basic law that an output of a spatial shift-invariant system is the convolution 
of its point spread function (PSF) and the input target [17–19]. In other words, it is con-
sidered by default that information can be transmitted through a spatial shift-invariant 
system and is encoded in the detected pattern by convolution. However, we found that 
without valid channel under incoherent illumination, the convolution law was broken, 
the output of the spatial shift-invariant systems did not equal the convolution of the PSF 
and the target, and image information could not be transmitted through the systems.

Methods
Figure 1 shows the experimental setup used in this study. In Fig. 1a, a green laser (MGL-
III-532-200 mW, Changchun New Industries Optoelectronics Tech) was expanded to 
illuminate a reflective digital micromirror device (DMD, V-7001 VIS, ViALUX) that has 
a pixel pitch of 13.7 μm. Handwritten digits from the MNIST database [20–24] were 
used as the objects, which were reshaped into 64 × 64 arrays and loaded on the central 
64 × 64 pixels of the DMD in subsequence. The reflected light traveled through an aper-
ture of a diameter of 10 mm and reached a digital camera (DCU224M, Thorlabs) with 
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a pixel pith of 4.65 μm. Instead of a lens, the aperture was used to construct the chan-
nel for imaging, and diffraction patterns of input objects were recorded on the camera. 
Here, the aperture and the free spaces of its both sides built up the channel. Next, we 
inserted a homemade 220-grit ground glass diffuser into the optical path just next to the 
aperture, i.e., adding a random phase distribution caused by thickness and/or refractive 
index variations to the plane of the aperture, and the resultant speckle patterns were 

Fig. 1  Schematics of experimental setup. a Experimental setup to validate different channels in a scattering 
medium. The switch of channels is realized by inserting a rotating diffuser and a stationary diffuser into the 
optical path. b Experimental setup to demonstrate no valid channels in phase-grids, although they constitute 
shift-invariant systems and can convey light energy to the camera. The lower row shows the structures of the 
two phase-grids loaded on the SLM. d is the cell period, and a is the width of the phase square with a value 
of π in each cell. The color bar on the right denotes the phase value. The insert on the left is the zoom-in of 
the dash red square. Abbreviations: DMD - digital micromirror device; SLM - spatial light modulator
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also recorded by the camera. The averaged speckle size is 13.3 μm, i.e., 2.8 times of the 
pixel size of the camera, to balance the sampling rate and the number of independent 
speckles of a recorded speckle pattern. Now, the diffuser and the free spaces at its both 
sides constituted the channel, and its effective diameter of the diffuser was limited by the 
aperture. The object distance from the DMD to the diffuser z1 = 16 cm, and the image 
distance from the diffuser to the camera z2 = 25 cm. Since the free spaces were identical 
in these two cases, for simplification whenever we mention channel below, it only refers 
to the aperture or the diffuser. To avoid geometry projections on the aperture and cam-
era planes, the object loaded on the DMD cannot be too large.

Next, we inserted a rotating diffuser into the laser beam to create a pseudo thermal 
source, and repeated the aforementioned data acquisition step for the aperture and the 
diffuser, respectively. For the obtained 4 groups (laser light + aperture, laser light + dif-
fuser, thermal light + aperture, and thermal light + diffuser) of data, each has 20,000 
pairs of DMD objects and camera intensity patterns. Among them, 18,000 patterns were 
used to train and the rest 2000 to test a UNet neural network [16, 25–27]. From Ref. [16], 
it is known that with sufficient data to train the network, it can completely extract all 
image information encoded in the detected speckle patterns. Furtherly, it is suggested 
that whether image can be reconstructed is an indication of the existence of valid infor-
mation transmission channel or not.

In the other grid experiment as shown in Fig. 1b, in order to eliminate the rain effect 
in the recorded patterns (as shown in Fig. 2 for the group of thermal light + aperture) 
caused by the rotating diffuser, a LED light (M530L4-C1, Thorlabs) coupled with a spec-
tral filter (wavelength = 532 nm, line width = 10 nm, FL532-10, Thorlabs) was used as the 
illumination source. Different phase-grids were displayed on a spatial light modulator 
(SLM, LETO-2, Holoeye) that has 1920 × 1080 pixels (each pixel is 6.4 μm in length). The 
structures of the grids are illustrated in the lower row of Fig. 1b. Two phase-grid patterns 
were used to replace the diffuser in Fig.  1a. Parameters of the first grid pattern (Grid 
I) included a = 12.8 μm, b = 51.2 μm, and d = 64 μm, while the other pattern (Grid II) 
had a = 256 μm, b = 1024 μm, and d = 1280 μm. Due to the limited size of the SLM, the 
diameter of the grid patterns occupied 1000 pixels, corresponding to 6.8 mm, which was 
slightly smaller than the size of the aperture in Fig. 1a. The reflected light from the DMD 
first impinged on the SLM, then reached the camera, with which the PSFs of the system 
and the intensity patterns corresponding to different objects displayed on the DMD were 
recorded. A point consisted by 2 × 2 pixels was loaded on the DMD to obtain the corre-
sponding PSF. The recorded intensity patterns were also used to train the UNet network 
[16], but no image information could be successfully extracted or reconstructed, which 
will be discussed in detail in the next section. For comparison, we also loaded a random 
phase map sharing the same statistical features with the diffuser onto the SLM, and then 
repeated the grid experiment. It should be noted that the recorded intensity patterns 
were first cropped into1024 × 1024 arrays, and then further down-sampled to 512 × 512 
arrays for network training and testing to enhance the speed of deep learning.

The same UNet as used in Ref. [16] was adopted for image extraction in this study. The 
inputs of the network were preprocessed 512 × 512 recorded patterns, which was not nec-
essarily speckle patterns. The outputs of the trained network were the reconstructed images 
with an array size of 512 × 512. The UNet network uses Python compiler based on Keras/



Page 5 of 13Zhang et al. PhotoniX            (2023) 4:10 	

Tensorflow 2.0 Library, and the GPU edition is a NVIDIA RTX 3060 laptop. The total num-
ber of training epochs is 50, and the learning rate at the beginning is set as 2 × 10− 4. After 5 
epochs, if the loss function value does not decrease, the learning rate will be adjusted to one 
tenth of the previous one until the learning rate is reduced to 2 × 10− 6. If the loss function 
value does not decrease after 15 epochs, the training will be terminated.

For a spatial shift-invariant optical processing system, under incoherent illumination the 
output intensity pattern [28]

It is a convolution of the input signal intensity |E(x′, y′)|2 with respect to the intensity 
impulse response |h(x − x′, y − y′)|2. Then, for an optical imaging system with spatial 
shift-invariance, the output [29–31]

(1)I x, y = h x − x′, y− y′
2
E x′, y′

2
dx′dy′.

Fig. 2  Experimental results of different channels to transmit information under coherent and incoherent 
illumination. Two digits “5” and “8” are used as the ground truths. For each case, the recorded patterns and the 
corresponding reconstructed images are shown side by side. (Upper panels) Under coherent illumination, 
the recorded patterns after the aperture are the diffraction patterns of the input objects. The trained network 
can reconstruct the corresponding images. After inserting the diffuser, the camera records high contrast 
speckle patterns, and the aperture channel is encoded by the randomly distributed refractive index on the 
diffuser. Information can still be delivered to the detection plane and extracted by deep learning. (Lower 
panels) Under incoherent illumination, through the aperture, no image can be extracted from the pattern. 
But with the presence of the diffuser, images can again be well predicted from the speckle patterns, although 
the speckles are of lower contrast than those formed under coherent illumination. The rain effect on the 
recorded patterns, i.e., the pattern has an appearance of rain falling on a window, in the aperture case is due 
to the rotating of the diffuser to generate the pseudo thermal source
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where ∗ denotes the convolution operation, O(x, y) is an intensity object and 
PSF(x, y) = |h(x, y)|2 is the PSF of the imaging system. Under incoherent illumination, the 
intensity pattern on the camera plane equals the convolution of the object and the PSF. 
That is to say, the shift-invariant system can provide valid channel, and information of 
the object is delivered through the channel and encoded in the detected pattern. How-
ever, the experiment of shift-invariant grid system tells a different story. Without valid 
channel to transmit information, the recorded pattern is not the calculated convolution 
of the object and the PSF, and no valid information is encoded in the recorded pattern.

In order to justify whether the recorded pattern and the calculated convolution pat-
tern are equal, their structural similarity (SSIM) was calculated [32].

where μx and μy are the averages, σ 2
x  and σ 2

y  are the variances of x and y, respectively, σxy 
is the covariance of x and y. c1 = (k1L)2 and c2 = (k2L)2 are the constants used to maintain 
stability and avoid division by zero [33], and L = 2Bit − 1 is the dynamic range of the pixel 
value. Generally, for 8 Bit data, the L value is 255. By searching for information, generally 
it is most suitable to compare pictures when k1 is set as 0.01 and k2 as 0.03 [34].

Simulation based on wave optics was also conducted to verify the hypothesis, con-
sidering that the simulation was noise free. The configuration and parameters were the 
same as those for experiment. In simulation, we created 500 frames of independent 
speckle illuminations on the object. For each speckle illumination, the propagation of 
complex field was calculated with the angular spectrum method, and the correspond-
ing intensity distribution on the camera plane was recorded. The final intensity pattern 
was an average of all 500 frames of intensity distributions. It should bear in mind that 
the intensity pattern obtained from simulation is a response of a physical process, while 
the convolution of an object and a PSF is simply a mathematical operation. The math-
ematical operation is independent from the physical process. We can still implement the 
mathematical operation even when the physical process cannot happen.

Results
Under coherent illumination, the trained UNet can reconstruct the image well 
(Fig. 2), the aperture is a valid channel to transmit image information from the object 
plane to the camera plane. After inserting the diffuser, although the recorded patterns 
are seemly random speckles, images can still be predicted well by the network, which 
means that image information is still delivered onto the detection plane. That is to 
say, the channel functions properly. The main difference is that the refractive index 
distribution of the diffuser encodes the aperture channel, as also inferred from Ref. 
[16]. Under incoherent illumination, through the aperture channel, no image can be 
reconstructed by deep learning. Apparently, there is no image information in detected 
patterns, and the aperture channel fails in transmitting information. In this case the 
aperture is an invalid channel. However, after inserting the diffuser in, images can be 
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extracted from recorded intensity patterns, which means that a new type of channel 
appears due to the diffuser to enable successful information transmission.

More specifically, there are different channels to transmit information in the scat-
tering medium, which is different from conventional optical components, such as the 
aperture. Under coherent illumination, the whole space within the aperture composes 
the channel, and the random phase distribution introduced by the diffuser encodes 
the channel. Under incoherent illumination, the aperture channel is not valid any-
more, since no image is successfully predicted from deep learning. However, after 
inserting the diffuser, images can be reconstructed, suggesting that there is informa-
tion being received on the receiving plane. That is to say, a valid channel is constituted 
again. Is it the encoded aperture channel? The answer is No; if a channel is invalid, it 
is unlikely encoding will make it work. A reasonable guess is that there is a new chan-
nel or there are new channels. We believe that the new type of channel is formed by 
the micro structures of the diffuser.

Results of further experimental demonstration with phase-grids under incoherent 
illumination are shown in Fig. 3. As seen, when the point shifts, the PSF of the grid 
system shifts accordingly yet remains its shape in Fig. 3a. The correlation coefficient 
of two PSFs at positions y and y + ∆y is insensitive to the displacement ∆y. Apparently, 
the grid system is shift-invariant. In Fig. 3c, Row A shows the recorded PSFs when a 
point was displayed on the DMD in different systems (Grid I, Grid II, and diffuser). 
For a spatial shift-invariant system, the output on the camera plane for an object on 
the DMD should be the convolution of the intensity object and the shift-invariant PSF 
under incoherent illumination [28–31, 35, 36] according to the convolution law. But 
the recorded patterns in Row C (responses of real physical processes) are different 
from the calculated convolution patterns in Row B for the two grids, with significantly 
lower SSIM factors (see Table 1), comparing to the diffuser. In Row D, the image is 
successfully recovered by deep learning through the diffuser but not the phase-grids. 
The different results demonstrate the hypothesis that image information could not 
be transmitted through a medium without similar micro structures of the diffuser, 
which constitute the new type of channel under incoherent illumination. The results 
from deconvolution in Row E are consistent with Row D, which constitutes one more 
evidence. Rows F&G confirm that a convolution pattern contains image information 
by default, and deep learning can extract all information encoded in a pattern with 
sufficient data. From the comparison of Row D to Row F, we can say that without 
valid channel to transmit information onto the camera plane the recorded pattern 
contains no information of the target and does not equal the convolution pattern. In 
other words, the convolution law fails when there is no valid channel in the spatial 
shift-invariant system. We also know that images can be extracted by deep learning 
even when objects go beyond the memory effect ranges [37–40], i.e., the spatial shift-
invariance doesn’t hold any more [35, 41, 42]. Apparently, channel is more essential in 
transmitting information.

Figure 4 shows the simulation results, in comparison to the experimental results in 
Fig. 3. Due to less noise, the patterns in both Rows B and C have better contrast to 
see their finer structures. For the diffuser, the two patterns look quite similar, while 
for the grids, such similarity disappears. It confirms that no valid channel existing in 
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phase-grids to transmit image information to the camera plane, and there is no infor-
mation in recorded patterns, which don’t equal the convolution of the object and the 
PSFs any more.

Fig. 3  Experimental results of grid and diffuser channels under incoherent illumination. a Recorded PSFs of 
grids 1&2 at different point positions, which confirm that the grid systems are shift-invariant. The correlation 
coefficient curves are flat over the scan range, which is already bigger than input objects. b Photograph 
of the input digit “5”. c Row A: the PSFs of different systems (Grid I, Grid II, and diffuser). From the zoom-ins 
we can see many fine structures. Row B: the calculated convolution of digit “5” and the corresponding 
PSFs. Row C: the corresponding recorded patterns by the camera. In the column for the diffuser, after 
contrast enhancement by the imadjust function in Matlab, fine structures, which cannot be seen in the 
original recorded pattern 1), become visible in 2). Rows D & E are extracted images from recorded patterns 
correspondingly by deep learning and deconvolution, respectively. DL is short for deep learning. Rows F & 
G are reconstructed images from the calculated convolution patterns by deep learning and deconvolution, 
respectively. The red dash square inserts show the zoom-in of original areas correspondingly. Compared to 
deconvolution operation, deep learning shows advantages in noise suppressing in reconstructed images
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In Table 1, the SSIM values of the two patterns for the diffuser are obviously bigger 
than the two grids. The reason for the extremely low SSIM = 0.0285 for grid II is that 
in simulation the convolution pattern has higher intensity around the center and a dark 
background while it is reversed for the intensity distribution in the recorded pattern. 
The diffuser provides valid channel to transmit information, so the recorded pattern can 
be considered as equal to the convolution of the input object and the PSF. The unique 
micro structures of the diffuser, rather than the structures of the grids, build the channel 
to transmit image information under incoherent illumination. The higher SSIM value 
in experiment is the result of the uniform backgrounds caused by ambient light in the 
recorded and calculated convolution patterns.

Discussions
One may argue that the wide spread of the PSF is the reason of the failure in image 
reconstruction for the aperture in Fig. 2, i.e., the resolution on the recorded plane is not 
sufficient to differentiate the structure of the image. If it is correct, we should be able 
to reconstruct images from the recorded patterns in both Figs. 3 and 4, since the fine 
structures of the PSFs of the grids provide the resolution to distinguish small details, as 
shown in the deconvolution results. In fact, we cannot extract any information about the 
object from the recorded pattern by both deep learning and deconvolution. Hence, the 
failure of imaging is due to lack of effective information in the recorded pattern but not 
the limited resolution.

Comparing with conventional methods such as wavefront shaping and scattering 
matrix measurement, deep learning provides a powerful tool to extract interested infor-
mation and explore unknown principles instead of being distracted by speckle patterns 
in complex environments. A few more emphases should be added for the validity of 
using deep learning as a criterion to justify whether there is information concealed or 
encrypted in an intensity pattern. Owing to the data driven feature, deep learning has 
been widely applied in many areas, especially for situations when the physical mecha-
nism of a system is unknown yet or too complicated to mathematically compute. In 
other words, the applicability of the deep learning method is not case sensitive, as long 
as sufficient dataset can be obtained to train and test the network, it is able to extract 
concealed or encrypted information. We also tested a generative adversarial network 
(GAN), which has different internal structures, for comparison. The same results and 
conclusion can be achieved, which confirms that deep learning is a valid criterion.

There are different ways for source coding. In imaging, coherent and incoherent illu-
minations provide two different means to encode object information. In coherent illu-
mination, the information is encoded on wavefront, while in incoherent illumination, it 
is encoded on intensity. In order to effectively transmit image information, the channel 

Table 1  SSIM between the recorded pattern and the calculated convolution pattern

Grid I Grid II Diffuser

Experiment 0.2024 0.2456 0.7534

Simulation 0.2092 0.0285 0.6804
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should match the coding way of the source. The micro structures of the diffuser con-
struct a new type of channel matched the incoherent encoding to efficiently transmit 
information. However, the model of the channel hasn’t yet been established. A possi-
ble model is a phase pinhole, since random phase distribution can be decomposed into 
numerous randomly distributed phase pinholes of different shapes and diameters [43], 
and each phase pinhole can image the object independently under incoherent illumina-
tion. On the other hand, channel bandwidth is critical to determine the quality of recon-
structed image. Scattering media, like apertures, lenses and other optical components, 
construct imaging channels, and different channels in the medium has different capaci-
ties. Understanding imaging from the information angle may bring breakthroughs to 
some long pursued but yet unsolved problems.

Fig. 4  Corresponding simulation results of grid and diffuser channels under incoherent illumination. No 
image can be reconstructed from recorded patterns by either deep learning or deconvolution for both 
grids. There is no valid channel in phase-grids to transmit information, although the system constructed by 
it is shift-invariant. Row A: the PSFs of different systems (Grid I, Grid II, and diffuser). Row B: the calculated 
convolution of digit “5” and the corresponding PSFs. Row C: the corresponding recorded patterns by 
the camera. Rows D: images extracted from Row C via deep learning. Row E: images from Row C via 
deconvolution. Rows F: images from Row B via deep learning. Row G: images from Row B via deconvolution. 
The red dash square inserts show the zoom-in of original areas correspondingly, too
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Currently, all prevailing techniques of imaging through scattering media are trying to 
find the connection of an input and the corresponding output of a scattering medium. In 
scattering matrix measurement and speckle autocorrelation imaging, mathematic rela-
tions are given. In optical phase conjugation, an empirical relation based on optical reci-
procity is the key. These relations are oversimplified with no internal process in physics. 
The scattering medium is a black box in all these techniques. We believe that cracking 
the black box and understanding what happens inside is the right route to eventually 
realize imaging through thick scattering media. The discovery of different channels is the 
first step to unveil the mask on information transmission in imaging through scattering 
media. It may intrigue new adventures on imaging through scattering media. Besides, 
the failure of convolution law for the shift-invariant grid systems also implies that there 
are deeper level mechanisms about the spatial shift-invariance unexplored.

Conclusions
In summary, deep learning is applied as a criterion to check whether there is informa-
tion encoded in a pattern, and as a tool to completely extract information, if any, from 
the pattern to reconstruct an image. Aided by deep learning, we find that imaging chan-
nels is sensitive to illumination modes, which determine manners of source coding in 
optical imaging, and there are different types of channels in a scattering medium. Under 
coherent illumination, the channel is the whole space within the aperture while the index 
distribution of the medium inside the aperture encodes the channel. Under incoherent 
illumination, the encoded aperture channel is ceased, but a new type of channel formed 
by the micro structures of the scattering medium is activated to transmit information. 
It is further confirmed that the micro structures constructing the channels have their 
own characteristics, which are not shared by the phase-grids. Without valid channels, 
information cannot transmit through a medium even if it constitutes a shift-invariant 
system. These results refresh our understandings of scattering, imaging and spatial shift-
invariance. It may also intrigue further investigation and applications of deep learning 
as a powerful tool to study unknown physical principles and/or mechanisms, modeling 
of transmission channels in scattering media, as well as deeper principles beneath the 
spatial shift-invariance.
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