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Abstract. Large-scale computational imaging can provide remarkable space-bandwidth product that is
beyond the limit of optical systems. In coherent imaging (CI), the joint reconstruction of amplitude and
phase further expands the information throughput and sheds light on label-free observation of biological
samples at micro- or even nano-levels. The existing large-scale CI techniques usually require scanning/
modulation multiple times to guarantee measurement diversity and long exposure time to achieve a high
signal-to-noise ratio. Such cumbersome procedures restrict clinical applications for rapid and low-
phototoxicity cell imaging. In this work, a complex-domain-enhancing neural network for large-scale CI
termed CI-CDNet is proposed for various large-scale CI modalities with satisfactory reconstruction quality
and efficiency. CI-CDNet is able to exploit the latent coupling information between amplitude and phase
(such as their same features), realizing multidimensional representations of the complex wavefront.
The cross-field characterization framework empowers strong generalization and robustness for various
coherent modalities, allowing high-quality and efficient imaging under extremely low exposure time and
few data volume. We apply CI-CDNet in various large-scale CI modalities including Kramers–Kronig-
relations holography, Fourier ptychographic microscopy, and lensless coded ptychography. A series of
simulations and experiments validate that CI-CDNet can reduce exposure time and data volume by
more than 1 order of magnitude. We further demonstrate that the high-quality reconstruction of CI-CDNet
benefits the subsequent high-level semantic analysis.
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1 Introduction
Large-scale coherent imaging (CI) has brought about a para-
digm shift in our understanding of optical imaging, from
morphological manifestation to quantitative measurement.1–9

The information throughput of the optical system is defined
by the space-bandwidth product (SBP), which represents the
number of optically resolvable spots within the field of view

(FOV).6,10 In CI, the joint reconstruction of amplitude and phase
further expands SBP to billions, realizing both wide FOV and
high-resolution imaging.9,11,12 The remarkable throughput and
resolving capacity provide cellular and molecular insights for
biomedical research.13–15 Large-scale CI techniques generally re-
quire certain types of diversity measurements in the spatial do-
main (e.g., lensless on-chip systems16–20) or the Fourier domain
(e.g., Fourier ptychography8,9). Tens or hundreds of intensity-
only measurements are often needed to reconstruct the sample’s
complex wavefront. Such high-volume data make large-scale*Address all correspondence to Liheng Bian, bian@bit.edu.cn
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imaging time-consuming and computationally expensive.
Although reducing measurement data volume and exposure
time are straightforward strategies, they would sacrifice imaging
resolution and signal to noise ratio (SNR).

The image denoising technique has emerged as an effective
method for improving imaging quality and confronting insuffi-
cient measurement and illumination. However, the conventional
model-driven denoising techniques21–25 suffer from high compu-
tational complexity, making them impractical for high-through-
put CI. Recent advanced deep-learning technology introduces
the data-driven strategy for image enhancement tasks, providing
rapid and flexible solutions for computational imaging.26,27 In
one instance,27 the convolutional neural network (CNN) is able
to learn a mapping from noisy images to noise-free images di-
rectly, reducing several orders of magnitude of reconstruction
time. Although CNN-based techniques have achieved great
success in real-domain image denoising, there are several chal-
lenges for large-scale CI. First, the existing CNN architecture,
training strategy, and degradation model of data sets are
designed for intensity-only images. They do not consider the
amplitude-phase correlations of complex-domain signals that
have been widely used in neurosciences and speech signal
processing fields.28–31 Second, conventional real-domain en-
hancement neural networks typically rely on distinct parameters
to adequately capture the characteristics of both amplitude
and phase, in order to achieve satisfactory denoising perfor-
mance. This trade-off between denoising performance and effi-
ciency poses a challenge for such networks.32,33 Third, image
denoising often smooths edges and sacrifices imaging resolu-
tion, which is contradictory to the goal of superresolution
coherent reconstruction. In summary, the existing large-scale
CI techniques require a trade-off between imaging quality and
efficiency, which restricts their clinic applications for rapid and
low-phototoxicity imaging.34

Recent advancements in complex-domain neural
networks28,30,35 have achieved significant success in complex sig-
nal processing. For example, Trabelsi et al.30 applied it to speech
signal processing, resulting in improved accuracy. Zhang et al.35

combined complex-domain neural networks with deep unfolded
techniques to achieve high-quality lensless imaging. In this
work, we introduce the complex-domain neural network to
enhance large-scale CI, termed as CI-CDNet. We demonstrate
its wide applications for various large-scale CI modalities with
remarkable quality and efficiency. CI-CDNet effectively utilizes
latent coupling information, which involves the feature aliasing
between amplitude and phase images, to overcome the
reconstruction ambiguity associated with phase information.
By doing so, it enables multidimensional representations of the
complex wavefront, thereby facilitating the effective suppres-
sion of complex multisource measurement noise in computa-
tional imaging while preserving fine details and achieving
high imaging resolution. In addition, CI-CDNet processes the
complex wavefront in a one-step and end-to-end manner, main-
taining remarkable performance and efficiency. Specifically,
we derived the two-dimensional complex-domain convolution
unit, the corresponding activate function, and built the compre-
hensive multisource noise model for CI, which includes speckle
noise, Poisson noise, Gaussian noise, and superresolution
reconstruction noise. We then trained CI-CDNet using the
derivate multisource noise model and demonstrated it in
various large-scale CI modalities, including noniterative
Kramers–Kronig-relations (KKR) holography,3,36–38 Fourier

ptychographic microscopy (FPM),8,9 and lensless coded
ptychography (LCP).19,39–41 The results indicate that CI-CDNet
obtains state-of-the-art performance in accuracy, computational
efficiency, and imaging resolution. It is able to reduce
exposure time and data volume by more than 1 order of mag-
nitude. Finally, we further demonstrated that the high-quality
reconstruction of the proposed technique benefits the sub-
sequent high-level semantic analysis, such as cell segmentation
and virtual staining.

2 Methods

2.1 Complex-Domain Neural Network

The architecture of the proposed CI-CDNet is presented in
Fig. 1(a). The input contains a complex wavefront and a noise
map. The noise map makes the denoising degree flexible in the
iterative reconstruction, which is able to balance the smoothness
and fidelity (Note 1 in the Supplemental Material). The back-
bone of CI-CDNet is a complex-domain U-Net that contains
multiple residual blocks to increase the modeling capacity.
Specifically, it contains four downsampling and upsampling
scales with 64, 128, 256, and 512 channels, respectively. Each
scale has an identity skip connection between 2 × 2 complex-
domain strided convolution (CD-SConv) downsampling and
2 × 2 complex-domain transposed convolution (CD-TConv)
upsampling operations. In addition, we employed successive
complex-domain residual blocks, which consist of CD-Conv,
CD-Relu, and CD-Conv in the downscaling and upscaling of
each scale. The proposed CI-CDNet utilized the complex oper-
ation and block as the basic units. The detailed formalism of
each block is shown below.

2.1.1 Complex-domain convolution

Figure 1(b) shows the complex convolution operator. Assume
that the complex feature map and convolution kernel are repre-
sented as F ¼ FR þ iFI and K ¼ KR þ iKI , respectively,
where FR and KR are the real parts, FI and KI are the imaginary
parts, and i is the imaginary unit. Then, the complex-domain
convolution can be indicated as

F � K ¼ ðFR þ iFIÞ � ðKR þ iKIÞ
¼ ðFR � KR − FI � KIÞ þ iðFR � KI þ FI � KRÞ; (1)

where * denotes the convolution operation. The complex-
domain convolution can also be presented in a matrix format
as follows:

�
ReðF � KÞ
ImðF � KÞ

�
¼

�
FR −FI

FI FR

�
�
�
KR

KI

�
: (2)

2.1.2 Complex-domain activation function

The activation function plays a great role in increasing the
nonlinear modeling ability of a neural network. We employed
the rectifier linear unit (ReLU) as the activation function and
implemented it in the real and imaginary parts independently.
Thus, the complex-domain activation function (CReLU) can
be expressed as

CReLUðFÞ ¼ ReLUðFRÞ þ iReLUðFIÞ; (3)
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where the ReLU is

ReLUðFÞ ¼
�
F if F ≥ 0

0 otherwise:
(4)

2.1.3 Complex-domain weight initialization

The complex value with a mean of zero is employed to imple-
ment weight initialization,

W ¼ jWjeiθ ¼ WR þ iWI; (5)

where jWj and θ are the amplitude and phase, respectively.
In our implementation, jWj follows Rayleigh distribution and
θ follows uniform distribution in the range of ð−π; πÞ. The
variance of the complex-domain weight is

VarðWÞ ¼ E½WW�� − ðE½W�Þ2 ¼ E½jWj2� − ðE½W�Þ2: (6)

Because W is symmetrically distributed around 0, thus

VarðWÞ ¼ E½jWj2�: (7)

It is hard to compute E½jWj2� directly.30 We can introduce a
auxiliary variable VarðjWjÞ, which can be obtained through

VarðjWjÞ ¼ E½jWjjWj�� − ðE½jWj�Þ2 ¼ E½jWj2� − ðE½jWj�Þ2:
(8)

Putting Eqs. (7) and (8) together, VarðjWjÞ can be indicated
as VarðjWjÞ ¼ VarðWÞ − ðE½jWj�Þ2. Thus, the variance of W is
expressed as

VarðWÞ ¼ VarðjWjÞ þ ðE½jWj�Þ2: (9)

Fig. 1 Architecture of the proposed CI-CDNet. (a) Complex-domain neural network architecture.
(b) Complex-domain convolution operation. (c) Multisource noise model for CI.
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2.2 Multisource Noise Model for Large-Scale CI

In general, the measurement noise is modeled as additive
Gaussian noise. Although it has been validated that a CNN
trained with synthesis Gaussian noise data has the capacity
for removing mixed noise by setting a large noise variance,27

the image details would be sacrificed. To break this limitation,
we built a multisource CI noise model to match the real-world
noise, as shown in Fig. 1(c). Specifically, we considered the
following four noise types.

2.2.1 Gaussian noise

Additive white Gaussian noise models the generalized detec-
tor’s noise, such as nonuniform illumination noise and thermal
noise. We added Gaussian noise in the training data with ran-
dom noise variance (from 0 to 0.3).

2.2.2 Poisson noise

Poisson noise models the photons’ statistical characteristic,
which is related to light intensity. It occurs severely in low-light
and short-exposure conditions. In order to simulate different

Poisson noise levels, we generated a random multiplicative
coefficient 10α (α ∈ ½2,3�) to the complex-domain images.
After adding Poisson noise, the images divide back by 10α.

2.2.3 Speckle noise

Speckle noise usually appears in CI modalities. It is a multipli-
cative noise that can be modeled by Gaussian distribution. We
simulated multiplicative speckle noise with the same variance
range as the Gaussian noise.

2.2.4 Superresolution noise

Large-scale CI usually employed superresolution reconstruction
techniques, for instance, ptychography imaging synthetizes spa-
tial or Fourier domain to extend the SBP. Although the super-
resolution reconstruction does not introduce noise, it would
magnify noise and affect its distribution. To model the superre-
solution noise, we utilized the bicubic interpolation42 to resize
the noisy complex-domain wavefront with a superresolution
ratio of 2.

We utilized a random shuffle strategy to add the above-
mentioned multisource noise in the real and imaginary parts

(a)

(b)

(c)

Fig. 2 Experimental setup and resolution test of KKR holography under only 1 ms exposure time.
(a) Experimental setup. CL, collimating lens; RL, relay lens; P, polarizer; BS, beam splitter; TL,
tube lens; SLM, spatial light modulator. (b) Resolution test results of different enhancing methods
using Siemens star under 1 ms exposure time. The blue and red curves are the cross sections of
the images, which represent pixel-wise errors. The extremely short exposure time results in a low
SNR of KKR direct reconstruction. (c) Running time (ms) of different enhancing methods.
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of the complex wavefront. Specifically, the additive Gaussian
noise is first added due to its strong generalization for different
noise sources. After that, the speckle noise and Poisson noise
randomly appeared with the probability of 50%. Finally, we
resized the noisy wavefront to simulate the superresolution
reconstruction noise.

2.3 Training Details

We employed 10,000 synthetic data sets and added the multi-
source noise to train CI-CDNet (Note 1 in the Supplemental
Material). We used L1 loss and Adam optimizer to update
parameters with a batch size of 16. The epoch is 400 with
an initial learning rate of 1 × 10−5; then the learning rate is
shrunk by a factor of 0.5 every 150 epochs. The training was
implemented in Pytorch 1.8.1 and NVIDIA 2080ti GPU for
about 4 days.

3 Results
We applied the proposed CI-CDNet to enhance the recon-
structed wavefront and explored its potential for reducing expo-
sure time and data volume. The comparison methods included
BM3D,24 complex-domain BM3D (CD-BM3D),25 and conven-
tional real-domain neural network (Real-NN). Real-NN has the
same architecture and training process as the CI-CDNet. These
comparison methods are state-of-the-art representations of
model-driven and data-driven methods. We employed BM3D
and Real-NN to denoise the amplitude and phase of the
complex-domain wavefront independently. The CD-BM3D and
CI-CDNet were used to denoise the complex wavefront directly.

3.1 Kramers–Kronig-Relations Holography

Wavefront reconstruction via KKR is a recent high-SBP
and noniterative CI technique,3,36–38 which has been used in
both two-dimensional holographic imaging36,38 and three-
dimensional refractive index tomography.3,37 KKR combines
the real and imaginary parts of a complex function that is ana-
lytic in the upper half-plane and requires multiple measurements
of different illumination angles37 or aperture modulation38 to
satisfy the analyticity. We applied these denoising methods to
the KKR reconstructed wavefront, aiming to reduce exposure
time and accelerate measurement acquisition.

Our experimental setup is shown in Fig. 2(a). It contained a
532 nm laser diode (Thorlabs DJ532-40) as a light source, an
objective (10× Mitutoyo Plan Apo infinity-corrected objective,
0.28 NA), a reflective spatial light modulator (Holoeye LC-R
1080), and a camera (Allied Vision Prosilica GX 6600) with
5.5 μm pixel size. We employed the aperture modulation strat-
egy to satisfy the analyticity of KKR. Specifically, the Fourier
plane was relayed outside the objective onto the spatial light
modulator (SLM) plane, and the edge of the generated modu-
lation aperture strictly crosses the objective’s pupil center.
To obtain the complete Fourier spectrum within the pupil, we
implemented four modulations and acquired corresponding in-
tensity measurements under 1 to 1000 ms exposure time (Note 3
in the Supplemental Material). The reconstruction result of
KKR using 1000 ms measurements was used as the ground truth
(GT) to quantitatively compare the performance of different
techniques.

Figure 2(b) shows the resolution test results of Siemens star
under 1 ms exposure time. Due to the short exposure time, the

results of KKR recovery contained serious background noise
and detail loss. Although the conventional denoising algorithms
can suppress noise, the resolution was sacrificed (as presented in
the cross-sectional curve). In comparison, the proposed CI-
CDNet outperformed other methods in both noise suppression
and resolution maintenance. Figure 2(c) shows the running time
(ms) of different methods. The proposed CI-CDNet had the best
running efficiency. Quantitatively, CI-CDNet reduced running
time by 2 orders of magnitude compared with the conventional
model-based techniques (BM3D and CD-BM3D).

Then, we employed a biological sample to quantitatively ex-
plore the performance of CI-CDNet for reducing exposure time.
Figure 3(a) shows the results of papillary thyroid carcinoma
slide under 1 ms exposure time. Figure 3(b) shows the quanti-
tative results under different exposure time. The evaluation in-
dexes included peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM). We can see that the result of CI-CDNet under
1 ms exposure time is close to the result of KKR under 50 ms
exposure time (more results can be seen in Note 5 in the
Supplemental Material). Thus, CI-CDNet can reduce more than
1 order of magnitude in exposure time.

3.2 Fourier Ptychographic Microscopy

FPM is a novel technique for wide-field and high-resolution
imaging.8,9 It extends microscopy’s bandwidth to a billion pixels

(b)

(a)

Fig. 3 Quantitative results of KKR holography using a biological
sample. (a) Enhancing results of different methods using a pap-
illary thyroid carcinoma slide. (b) Quantitative results of CI-CDNet
for reducing exposure time. The result of CI-CDNet under 1 ms
exposure time is close to the results of KKR recovery under
50 ms exposure time (more results can be seen in Note 5 in
the Supplemental Material).
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through multiple illumination angles that correspond to
different subregions in the Fourier domain. Different from
the direct wavefront enhancement in KKR holography, we
applied CI-CDNet as a regularizer during the iterative FPM
reconstruction20,33 (Note 2 in the Supplemental Material).

Figure 4(a) presents the experimental setup. It contained a
15 × 15 LED illumination array with 632 nm central wave-
length, an objective with 2× 0.1 NA, and a camera with
1.85 μm pixel size. We captured 225 low-resolution (LR) im-
ages from different illumination angles under 0.15, 0.25, and
4 ms exposure time, respectively. We used the alternating pro-
jection (AP)43 technique to reconstruct the measurements under
4 ms exposure time as GTs.

Figures 4(b) and 4(c) show the reconstruction results of the
USAF resolution test chart (amplitude sample) and unstained
blood smear under 0.15 ms exposure time. Figures 4(d) and
4(e) show the quantitative results (blood smear) of amplitude
and phase, respectively. We can see that the conventional
AP algorithm (baseline) failed due to serious noise and distor-
tion. The regularization methods with real-domain denoising
techniques (BM3D and Real-NN) are able to enhance the im-
aging resolution, which can resolve group 7, element 5 of the
USAF target, but the spatial distortion seriously affected the

reconstruction quality (especially the phase images of blood
smear). The CD-BM3D outperformed the real-domain denois-
ing techniques, with higher resolution to resolve group 7,
element 6 of the USAF target and better phase image quality
of the blood smear. However, the high computational complex-
ity and long running time make it unsuitable for rapid large-
scale imaging. In comparison, the proposed CI-CDNet obtained
the best performance. It can resolve group 8, element 2 of the
USAF target and recover clear cell structures for both amplitude
and phase images of blood smear. The PSNR and SSIM indexes
also validated the advantage of the proposed CI-CDNet.
Figure 4(f) presents the running time (s) of different methods.
We should note that the running time of these enhancing meth-
ods included the iteration time of data-fidelity terms based on
AP. Benefiting from the one-step and end-to-end strategies,
CI-CDNet is efficient in the iterative reconstruction, which only
consumed about a quarter of running time compared with the
conventional BM3D method.

3.3 Lensless Coded Ptychography

LCP with a random diffuser has emerged as a low-cost high-
SBP technique that can bypass the throughput limit of optical

(a) (b)

(d) (e) (f)

(c)

Fig. 4 Results of FPM under only 0.15 ms exposure time. (a) Experimental setup. (b) Resolution
test of different enhancing methods using the USAF resolution test chart under 0.15 ms exposure
time. (c) Enhancing results of the unstained blood smear under 0.15 ms exposure time. (d),
(e) Quantitative results (blood smear) of amplitude and phase, respectively. The proposed
CI-CDNet obtains more than 11 dB (amplitude) and 18 dB (phase) improvement on the PSNR
index compared with the conventional AP method. (f) Running time (s) of different enhancing
methods. AP is the baseline algorithm. Other enhancing methods are regularizers in FPM
reconstruction; thus their running time includes the iteration time of data-fidelity term (Note 2
in the Supplemental Material).

Chang et al.: Complex-domain-enhancing neural network for large-scale coherent imaging

Advanced Photonics Nexus 046006-6 Jul∕Aug 2023 • Vol. 2(4)

https://doi.org/10.1117/1.APN.2.4.046006.s01
https://doi.org/10.1117/1.APN.2.4.046006.s01


systems.19,39–41 In LCP, a diffuser is placed between the sample
and detector to modulate the wavefront and encode the high-fre-
quency information (Note 3 in the Supplemental Material). In
general, LCP requires nearly thousands of LR measurements to
iteratively recover the high-resolution sample and unknown dif-
fuser’s profile simultaneously, which makes the data acquisition
time-consuming and cumbersome. Thus, we aim at reducing
data volume requirements and acquisition time.

Figure 5(a) shows the experiment setup. We applied the glass
etching chemicals to a coverslip and coated carbon nanopar-
ticles to produce a random diffuser. It realized micrometer-level
phase scattering and subwavelength intensity absorbing. The
light source was a fiber-coupled diode with 532 nm wavelength.
We used an unstained blood smear as a sample and continuously
moved it to 900 x − y positions. The shift step size is 1 to 3 μm
to balance the motion blur and similarity. A detector (Sony
IMX226, 1.85 μm pixel size) was used to capture the corre-
sponding intensity diffraction images at a fixed frame rate
(30 FPS), and the data collection consumed ∼30 s. We com-
pared the ePIE algorithm,44 Real-NN and CI-CDNet regulariza-
tion algorithm (Note 2 in the Supplemental Material) to
superresolution reconstruct (4×) the sample and the diffuser’s
profile using only 50 captured images. The BM3D and CD-
BM3D methods failed due to their excessive computational
complexity and unacceptable long running times. The results
of ePIE using 900 images were regarded as the GT. The recov-
ered complex-domain diffuser’s profile and sample shift posi-
tions are shown in Fig. S4 of Note 3 in the Supplemental
Material.

Figures 5(b) and 5(c) show the results of amplitude and phase
using CI-CDNet. The reconstructed complex-domain images

have 6144 pixels × 6144 pixels and a 7.5 mm FOV. Figure 5(d)
shows the close-ups of three regions of interest (ROIs). The
pseudo-color part is the phase and the gray part is the amplitude.
The proposed CI-CDNet can suppress background noise effi-
ciently, providing high-fidelity results for label-free cell obser-
vation. Moreover, CI-CDNet can reconstruct the discoid mature
erythrocyte, as indicated by the red arrow in the ROI-I3. The
quantitative results of Table 1 and visual results in Note 5 in
the Supplemental Material show that the result of CI-CDNet
using 50 images is close to the results of ePIE using 500 images.
Thus, CI-CDNet can reduce data volume by 1 order of mag-
nitude.

The satisfactory performance of CI-CDNet benefits the
subsequent high-level semantic analysis. We demonstrated
the high-accuracy white blood cell segmentation45,46 and virtual

(f)(d) (e)

(b) (c)(a)

Fig. 5 Results of LCP. (a) Schematic diagram of LCP system. (b), (c) Reconstructed amplitude
and phase of the unstained blood smear using CI-CDNet with only 50 captured images. (d) Close-
ups of three ROIs. The pseudo-color part is the phase and the gray part shows the amplitude.
The GT is the result of ePIE using 900 images. (e) Results of white blood cell segmentation.
(f) Results of virtual staining.

Table 1 Quantitative results of LCP using different data volumes.
The result of CI-CDNet using 50 captured images is close to the
results of ePIE using 500 images (more results can be seen in
Note 5 in the Supplemental Material).

Algorithm Data Volume

Amplitude Phase

PSNR SSIM PSNR SSIM

ePIE 50 images 16.38 0.46 15.14 0.38

100 images 24.48 0.73 21.67 0.50

500 images 30.01 0.93 26.84 0.79

CI-CDNet 50 images 30.59 0.89 27.08 0.75

Note: Bold values indicate the best index in each respective column.
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staining47 (Note 4 in the Supplemental Material). Figures 5(e)
and 5(f) present the segmentation and staining results, respec-
tively. We can see that the results of ePIE contain discontinuous
segmentation profiles and incorrect staining. In contrast, the
proposed CI-CDNet improved the segmentation and staining
accuracy significantly.

4 Conclusion and Discussion
We proposed a novel large-scale CI technique with a complex-
domain-enhancing neural network, termed CI-CDNet. CI-
CDNet introduced complex-domain operations to the CNN,
which can exploit the latent correlations between amplitude
and phase. In this way, the proposed technique broke the inher-
ent astriction of the conventional real-domain neural network,
realizing cross-field and joint representation of complex wave-
front. Furthermore, a multisource noise model of large-scale CI
was built to train CI-CDNet. The high-accuracy noise model
benefits the network’s domain-adaptation ability from synthetic
data to real data, improving its performance in various degraded
scenes. The data-driven and end-to-end manners brought low
computational complexity of CI-CDNet for large-scale CI.
We compared CI-CDNet with model-driven methods (BM3D
and CD-BM3D) and data-driven methods (Real-NN and
dual-channel neural network; see Note 8 in the Supplemental
Material) in a series of large-scale CI modalities, including
KKR holography, FPM, and LCP. The results validated its
state-of-the-art performance for extremely few data volumes
and low exposure time. Specifically, in KKR, CI-CDNet can
reduce the exposure time by more than 1 order of magnitude.
In FPM, CI-CDNet improved by more than 11 and 18 dB of
amplitude and phase respectively on the PSNR index. In
LCP, it reduced the data volume by nearly 1 order of magnitude.
To conclude, the proposed technique breaks the trade-off among
computational complexity, generalization, and reconstruction
accuracy. It can be extended for more generalized frameworks
and applications in future work.

The noise map of CI-CDNet is an essential parameter for its
performance. In our implementation, it relied on heuristic esti-
mation and manual adjustment, which was difficult to estimate
accurately for real noise. The recent advanced blind denoising
technique48 and reinforcement learning technique49 are expected
to solve the problem and realize noise map estimation and all
parameters adjustment automatically during iterations.

The current CI-CDNet requires a prereconstructed intermedi-
ate step. The two-step processing is unsuitable for computation
resource-limited platforms that require real-time imaging. In
addition, the performance of CI-CDNet is inseparable from
the prereconstructed accuracy. End-to-end learning for different
modalities using the proposed technique is an effective way to
avoid intermediate step. But the generalization would be sacri-
ficed, and the neural network requires to be retrained for differ-
ent imaging modalities. An alternative solution is combining
physics-informed frameworks, such as deep image prior50 and
deep unfolding51 techniques. They incorporate the physics
model and the built-in smoothness prior of the neural network
to optimize the imaging tasks. Nevertheless, their large memory
requirement for graphics processing units is a bottleneck for
ultralarge-scale imaging.

We believe that the complex-domain neural network is po-
tentially even more broadly transformative for optimizing the
whole imaging workflow. Specifically, it can be introduced to
the joint optimization of imaging setup and reconstruction,52

for instance, the illumination angle, modulation pattern, imag-
ing distance, or even more generalized physical parameters.
In addition, the application scenarios can be also extended, such
as multiple dimensions voxel reconstruction and holographic
image segmentation and recognition. This may open new insight
into complex wavefront representation in various optoelectron-
ics fields.

Data Availability
The neural network and the pretrained model of CI-CDNet are
available at github.com/bianlab/CI-CDNet.
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