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A review of liquid crystal spatial light
modulators: devices and applications
Yiqian Yang1, Andrew Forbes2* and Liangcai Cao1*

Spatial light modulators, as dynamic flat-panel optical devices, have witnessed rapid development over the past two dec-
ades, concomitant with the advancements in micro- and opto-electronic integration technology. In particular, liquid-crys-
tal  spatial  light  modulator (LC-SLM) technologies have been regarded as versatile tools for  generating arbitrary optical
fields and tailoring all  degrees of freedom beyond just phase and amplitude. These devices have gained significant in-
terest in the nascent field of structured light in space and time, facilitated by their ease of use and real-time light manipu-
lation,  fueling  both  fundamental  research  and  practical  applications.  Here  we  provide  an  overview  of  the  key  working
principles of LC-SLMs and review the significant progress made to date in their deployment for various applications, cov-
ering topics as diverse as beam shaping and steering, holography, optical trapping and tweezers, measurement, wave-
front coding, optical vortex, and quantum optics. Finally, we conclude with an outlook on the potential opportunities and
technical challenges in this rapidly developing field.
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 Introduction
The  generic  Gaussian  beams  produced  by  common
lasers  have  limited  appeal  in  fully  meeting  the  growing
needs of modern optical systems that seek to exploit full
control over all degrees of freedom of light, now referred
to  as  structured  light1−3.  Light  shaping  has  a  long
history4,5,  dating  back  thousands  of  years  with  reflective
elements6,  then  refractive  freeform  elements7,  and  later
in  the  1990s  based  on  computer  generated  holograms
(CGHs)8 and  diffractive  optical  elements  (DOEs)9−12,
harnessing  interference  for  light  control.  The  field's re-
cent explosion  can  be  attributed  to  the  on-demand  re-
writable  solutions  based  on  liquid  crystal  spatial  light
modulators (LC-SLMs),  moving  beyond  display  ele-
ments  to  sophisticated  light  structuring  and  control

devices13.  Although the underpinning technology can be
traced back to the 1970s14,15, several decades of extensive
material  research  and  development,  device  innovation,
as  well  as  heavy  investment  in  advanced  manufacturing
technology, have brought LC-SLMs to the fore as an im-
portant tool in the field of optics and photonics16−18. This
dynamic  flat-panel  optical  device  has  gained  increasing
interest  due  to  its  attractive  properties,  such  as  phase-
only modulation, photo-patternable characteristics, real-
time input  or  output  signals,  high  efficiency,  polariza-
tion  selectivity,  the  capability  of  performing  dynamic
switching,  and  its  ultra-thin  form  factor19,20.  These
unique  properties  not  only  replace  conventional  optical
devices with a digital equivalent, but also facilitate func-
tionality beyond the textbook by modulating light beams 
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in space21,22 and time23−25.
LC-SLMs  have  enabled  the  development  of  extensive

compact and  lightweight  optical  components  with  elec-
tronic  modulation  capacity,  and  as  a  result,  LC-SLMs
have  shown  great  potential  in  widespread  applications,
and  have  been  crucial  in  quantum  optics26,27,  micro-
scopy28,  imaging29,30,  optical  trapping  and  tweezers31,32,
materials  processing33 and  holography34.  For  instance,
LC-SLMs can  be  used  as  spatial  filters,  deflectors,  beam
splitters  or  optical  interconnects.  Besides,  they  can  lend
themselves to free-space communications and high-per-
formance  computing.  In  computational  imaging,  LC-
SLMs switch the ghost imaging target with different po-
larizations of light, lending themselves to applications in
optical communication, imaging technology and security.
In quantum communication, combined with the techno-
logies of  optical  vortex,  LC-SLMs  show  good  perform-
ance with high capacity and large bandwidth. Moreover,
LC-SLMs are  ideal  elements  for  encrypted  patterns  be-
cause  of  the  high  precisions  and  the  usage  of  multiple
controlled  parameters,  which  can  increase  the  security
level.  In  microscopy,  LC-SLMs  allow  live  and  real-time
microscopic  imaging  of  biological  samples.  In  material
processing, high resolutions, small pixel pitches and low
cost  of  LC-SLMs  meet  the  requirement  of  generating
structures  of  arbitrary  complexity.  In  light  field  control,
LC-SLMs can work as a powerful tool in optical tweezers
and  optical  trapping  for  studies  of  life  science,  and
particle physics. In holographic display, LC-SLMs are dy-
namically programmable  with  high  resolution  and  de-
cent performance in naked-eye 3D displays. In interfero-
metry,  LC-SLMs  are  ideal  elements  for  measuring  the
phase profile of samples at the sub-wavelength resolution.

What these many applications illustrate is the univer-
sal  nature  of  LC-SLMs  as  enabling  devices,  and  their
consequent stimulating  and  reforming  nature  of  re-
search across diverse application areas. In this review, we
provide  our  perspective  on  this  field  by  reviewing  the
working  principles  of  liquid  crystal,  diffraction  optics,
the recent  progress  of  LC-SLMs,  and their  role  in  mod-
ern photonic applications. For newcomers to the field, it
is inspiring to study the methods using LC-SLMs in dif-
ferent  fields,  as  they often shape the  trend and pave the
way for modern optical technology. For those looking to
improve established  frameworks  or  develop  new  meth-
ods  with  advanced  LC-SLMs,  it  should  be  fruitful  to
study works that are targeted at the enhancement of ex-
isting or proprietary frameworks.

 Liquid crystal devices

 Liquid crystal cells
A  liquid  crystal  is  a  phase  between  solid  and  liquid,
simply defined as a liquid with molecules arranged regu-
larly and  possessing  useful  attributes  based  on  the  elec-
tro-optic  birefringent  effect,  the  twisted  nematic  effect
and  the  hybrid  field  effect.  The  molecules  are  generally
slender rods, shaped like cigars, with the long axis direc-
tion of  each molecule  roughly  the  same.  Due to  the  an-
isotropy of  liquid  crystals,  the  dielectric  constant,  con-
ductivity  and  refractive  index  are  direction  dependent.
For  liquid  crystals  with  a  positive  dielectric  anisotropy,
the application of an electric field causes the long axis of
the  molecules  to  align  along  the  direction  of  the  field.
This alignment induces a change in the refractive index,
giving rise  to  the  electro-optic  birefringent  effect.  Con-
versely, in the case of liquid crystals with negative dielec-
tric anisotropy,  the  alignment  of  the  long  axis  of  mo-
lecules is  perpendicular  to the applied electric  field,  res-
ulting in  an  inverse  refractive  index  change.  The  work-
ing  principle  of  the  electro-optic  birefringent  effect  is
shown in Fig. 1(a) and 1(b).  No light  is  outputted when
the voltage is off, while polarized light is outputted when
the  voltage  is  on.  There  is  no  birefringence  effect  when
the polarization direction of the incident light is the same
as or perpendicular to the long axis of the molecule near
the incident plane. In the twisted nematic effect, the mo-
lecular orientations of the upper and lower crystal planes
of the liquid crystal are different. The liquid crystal mo-
lecules  can  be  divided  into  many  thin  layers,  each  with
molecules  of  a  similar  orientation,  changing  from  layer
to layer.  The  resulting  structure  can  make  the  polariza-
tion direction of linearly polarized light rotate. As shown
in Fig. 1(c),  for  a  liquid  crystal  with  a  twist  angle  of  90
degrees, the molecules rotate uniformly without an elec-
tric  field.  The  twisted  nematic  effect  appears  when  the
electric  field  is  introduced,  since  the  molecules  deviate
from the original direction and align towards the electric
field35,36,  as  shown in Fig. 1(d).  The hybrid  field  effect  is
the  combination  of  electro-optic  birefringent  effect  and
twisted nematic effect. In the field of optical information
processing, the control of phase, amplitude and polariza-
tion  of  optical  beams  by  LC-SLMs  are  mainly  realized
through the hybrid field effects37.

The  core  of  the  light-controlling  ability  of  LC-SLMs
lies in  the  liquid crystal  itself,  whose  properties  determ-
ine  the  optical  functionality.  There  are  multiple  liquid
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crystal cell  structures  and  driving  electrode  configura-
tions that  can  be  employed  for  LC-SLMs.  Examples  in-
clude  the  vertical  alignment  liquid  crystal  cell  (VA-LC
Cell), in-plane switching liquid crystal cell (IPS-LC Cell),
twisted nematic liquid crystal cell (TN-LC Cell), and su-
per  twisted  nematic  liquid  crystal  cell  (STN-LC  Cell).
Without electric  field,  VA-LC cells  and IPS-LC cells  are
uniform.  In  TN-LC  cells,  the  vector  of  liquid  crystal  is
twisted  at  approximately  90  degrees,  while  in  STN-LC
cells, the vector of liquid crystal is twisted at an angle lar-
ger than 90 degrees, such as 180 degrees, 240 degrees, or
270 degrees. Each cell comprises a 2D pixel array (M×N)
that  can  be  electrically  switched  on  or  off.  Each  pixel  is
composed  of  a  liquid  crystal  cell  sandwiched  between
transparent electrodes. In the early stage, the TN-LC cell

was driven by two groups of electrodes (M+N), utilizing
the multiplexing technique. The advantage of multiplex-
ing is that M×N pixels can be addressed using only M+N
electrical contacts,  which significantly reduces the num-
ber of electrodes when M and N are in the order of 103,
making it suitable for high-information-content applica-
tions. However, the simplicity of multiplexing leads to a
degradation  of  the  device  performance,  especially  in
terms of  contrast  and  limited  pixel  resolution.  The  per-
formance of TN-LC cells is later enhanced by a different
driving technique that utilizes thin film transistor (TFT)
arrays. In TFT arrays,  each pixel has associated transist-
ors,  which  significantly  improves  performance  but  also
increases  production costs.  These  LC configurations  are
mainly  for  amplitude  modulations.  For  phase-only
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Fig. 1 | Working principle of liquid crystals. In the electro-optic birefringent effect, (a) no light is outputted when the voltage is off, while (b) po-

larized light is outputted when the voltage is on. In the twisted nematic effect, (c) the molecular orientations of the upper and lower crystal planes

of the liquid crystal are different. Molecules rotate uniformly along the crystal direction without voltage. (d) Molecules deviate from the original dir-

ection and align towards the electric field when the voltage is on.
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modulation,  homogeneous  LC  cells  are  commonly
used38,  while TN cell can also work if the voltage is kept
below  the  threshold39. In  the  following  section,  we  dis-
cuss  the  operating  principles  of  various  liquid  crystal
cells  and  their  transmission  characteristics  with  or
without voltage.

 Vertical alignment liquid crystal cell (VA-LC Cell)
In the VA-LC cell,  as  illustrated in Fig. 2(a),  each liquid
crystal cell consists of two glass substrates with a spacing
of  3–5  μm  of  liquid  crystal  material  in  between.  A  thin
alignment  layer  is  deposited  on  the  inner  surface  of  the
substrate  to  ensure  that  the  liquid  crystal  molecules  are
aligned vertically  at  the same time as the surface is  pro-
jected  to  facilitate  alignment.  A  transparent  electrode,
generally  made  of  indium  tin  oxide  (ITO),  is  deposited
on the  inner  surface  of  the  substrate  for  electrical  con-
nectivity. On the two outer surfaces of the substrate, po-
larizers are laminated to form an orthogonal polarizer. In
a basic  VA-LC  cell  with  only  one  domain,  the  absorp-
tion  axis  of  both  polarizers  can  be  aligned  at  a  degree
angle with  the  horizontal  direction.  Meanwhile,  the  li-
quid crystal is tilted in the Y-Z plane, and the structure is
symmetrical  in  terms  of  apparent  brightness.  For  a
multi-domain cell,  the  absorption axis  is  often arranged
in the  horizontal  direction  and  vertical  direction,  re-
spectively.  This  arrangement  of  polarizers  ensures  the
highest contrast  in  both  directions.  Under  the  applica-
tion of an electric field, the liquid crystal molecules tilt at
45 degrees relative to the axes of the polarizer. As a res-
ult,  the  liquid  crystal  cell  behaves  as  a  half-wave  plate
with high transmission to crossed polarizers.  The trans-
mittance  of  light  through  the  liquid  crystal  cell  can  be
modulated by controlling the voltage.

 In-plane switching liquid crystal cell (IPS-LC Cell)
The planar  conversion  mode  of  uniform  parallel  ar-
rangement nematic liquid crystal cells was introduced in
the  mid-1990s  as  a  means  of  improving  viewing  angles
without  the  use  of  a  thin  film  compensator. Figure 2(b)
depicts the IPS model of a nematic liquid crystal cell that
is  sandwiched between two crossed  polarizers,  with  one
of  the  polarizers  having  a  transmission  axis  parallel  to
the liquid crystal vector in the plane of incidence. When
the incident light beam passes through the liquid crystal
cell, only one mode of light waves, either ordinary or ex-
traordinary, is  excited,  allowing  the  light  waves  to  tra-
verse  the  cell  without  experiencing  any  phase  delay.

β β

When the electric  field  is  off,  the  crossed polarizer  con-
figuration results in zero transmission. Under the applic-
ation of an electric field to the liquid crystal cell in the X-
Y plane, the  liquid  crystal  molecules  align  in  the  direc-
tion of  the field,  the Y-axis, resulting in a  distortion de-
noted by  in the X-Y plane. The distortion angle  in an
IPS-LC cell  varies as a function of position Z due to the
boundary conditions of  the liquid crystal  molecules  and
the  direction  of  friction.  However,  unlike  a  TN-LC cell,
the distortion of  the IPS-LC cell  is  not  a  linear function
of  position  along  the Z-axis.  With  the  exception  of  a
small pretilt, the tilt angle relative to the Y axis can be re-
garded as  zero  provided  that  the  electric  field  is  main-
tained within the plane.

 Twisted nematic liquid crystal cell (TN-LC Cell)
The TN-LC cell is an important type of liquid crystal cell
that differs from VA-LC and IPS-LC cells. In TN-LC, the
cell is  composed  of  a  liquid  crystal  layer  that  is  sand-
wiched between a pair of polarizers, with a twist angle of
90 degrees in total. TN-LC cells are widely used in note-
book  computers,  calculators,  and  other  small  electronic
devices due  to  their  low  power  consumption,  fast  re-
sponse  time,  and  low  cost.  However,  they  have  certain
limitations  such  as  narrow  viewing  angles  and  limited
color  reproduction  compared  to  other  liquid  crystal
modes.  As  illustrated  in Fig. 2(c),  each  TN-LC  cell  is
composed  of  a  liquid  crystal  layer  placed  between  two
glass  plates  with  a  gap  of  5–10  μm.  An  ITO conductive
coating  is  deposited  on  the  inner  surface  of  the  glass
plates,  and a  thin layer  of  polyimide with a  thickness  of
several  hundred  angstroms  is  applied  to  the  electrode
surface.  The  polyimide  film is  wiped  unidirectionally  to
ensure its direction is parallel to the wiping direction on
the surface. In 90-degree TN, the wiping direction of the
lower  substrate  is  perpendicular  to  the  wiping  direction
of  the  upper  surface.  Consequently,  the  liquid  crystal
vectors  of  the  area  between  the  glass  plates  undergo  a
continuous and uniform distortion of 90 degrees without
voltage. A sheet polarizer is  laminated on the outer sur-
face of the glass plate, and its transmission axis is set par-
allel  to  the  wiping  direction  of  the  adjacent  polyimide
film.  When  a  small  voltage  is  applied  to  the  electrode,
e.g.,  3–5 V,  a  strong  electric  field  is  generated  in  the  li-
quid crystal. The dielectric anisotropy of the liquid crys-
tal  causes  it  to  align  with  the  direction  of  the  applied
electric field,  resulting  in  a  vertical  arrangement  of  li-
quid crystal molecules. The vector of the liquid crystal is
perpendicular  to  the  panel,  which  is  the  C-plate  of  the
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liquid  crystal.  When  light  propagates  along  the  vertical
direction  of  the  C-plate,  the  polarization  plane  remains
unchanged. When the C-plate is placed between a pair of
orthogonal  polarizers,  it  leads  to  zero  transmittance.
Thus, the transmittance of light through the liquid crys-
tal cell can be controlled by adjusting the voltage.

 Super twisted nematic liquid crystal cell (STN-LC
Cell)
When  a  voltage  is  applied  to  the  liquid  crystal  cell,  the
orientation of  liquid  crystal  molecules  changes  in  re-
sponse to the electric field. The orientations of these mo-
lecules  in  the  liquid  crystal  cell  are  determined  by  the
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Fig. 2 | Models of liquid crystal cells. (a) Model of VA-LC cell. Under the application of an electric field, the liquid crystal molecules tilt at 45 de-

grees relative to the axes of the polarizer. (b) Model of IPS-LC cell. Under the application of an electric field to the liquid crystal cell in the X-Y

plane, the liquid crystal molecules align in the direction of the field. (c) Model of TN-LC cell with a twist angle of 90 degrees in total. The liquid

crystal  vectors  of  the area between the glass plates undergo a continuous and uniform distortion of  90 degrees without  voltage.  (d)  Model  of

STN-LC cell with a twist angle of 180 degrees in total. V represents the voltage, Vth represents the threshold voltage of the liquid crystal cell.
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balance  between  elastic  energy  and  electrostatic  energy.
The  change  in  orientation  results  in  a  change  in  the
transmittance of the liquid crystal cell. Typically, the dis-
play  panel  is  composed  of  a  2D  array  of  liquid  crystal
pixels,  which is M × N, with each pixel  being a small  li-
quid crystal cell that can be electrically turned on or off.
To  achieve  this,  it  is  necessary  to  electrically  position
each individual liquid crystal cell, which can be achieved
using  multi-channel  circuit  technology  requiring  only
M + N electrodes. However, due to crosstalk, the voltage
difference  between on and off  in  each  liquid  crystal  cell
cannot be too large,  limiting the contrast  of  the display.
To  address  this  issue,  the  STN-LC  cell  is  developed.  By
applying an appropriate voltage, the liquid crystal vector
in the  STN-LC  cell  is  effectively  distorted  or  redistrib-
uted,  resulting  in  high  contrast. Figure 2(d) depicts  the
molecular  orientations  of  the  STN-LC  cell  with  a  twist
angle  of  180  degrees  in  total.  The  high  contrast  is
achieved by distorting or redistributing the liquid crystal
vectors in the liquid crystal cell under an appropriate ex-
ternal voltage.

 Advances in LC-SLMs
When the aforementioned cells are arranged together on
a one-dimensional or two-dimensional plane,  they form
an LC-SLM  device.  By  designing  the  shape,  size,  posi-
tion and orientation of the unit structures, LC-SLMs can
modulate  the  optical  parameters,  e.g.,  amplitude,  phase
and polarization  of  the  incident  light  wave  in  an  arbit-
rary  manner.  This  unique  ability  of  modulation  with
multi-degree  of  freedom  allows  for  the  replacement  of
traditional  optical  elements  with  bulky  structures  and
single  functionality,  making  the  LC-SLMs  lightweight,
ultrathin,  and  multifunctional  devices40,41.  In  addition,
LC-SLMs are  compatible  with  semiconductor  manufac-
turing techniques, enabling mass production and manu-
facturing.  LC-SLMs  have  obvious  advantages  in  the
lightweight and integration of photoelectric systems, and
they show great potential in the fields of high-end equip-
ment,  aerospace  and  electronics.  With  the  continuous
advancements in  material  research  and  significant  in-
vestments  in  advanced  manufacturing  technologies,  the
performances  of  LC-SLMs  have  significantly  improved,
as shown in Fig. 3. These improvements have led to a de-
crease in  the  pixel  pitch  to  the  micron  level  and  an  in-
crease in the number of pixels to tens of millions. Com-
pound  Photonics  and  Himax  have  demonstrated  SLMs
with  a  pixel  pitch  of  about  3  μm and  4.25  μm42.  Today,

high-performance LC-SLM  devices  are  available  com-
mercially,  and Table 1 provides  a  summary of  the  state-
of-the-art  LC-SLMs  that  are  currently  available  in  the
market.

Large-aperture  liquid  crystal  devices  have  emerged as
a significant  area  of  research  and  technological  innova-
tion within the field of optics43,44.  These devices leverage
the unique properties of liquid crystals,  such as the tun-
able refractive index and responsiveness to external elec-
tric fields,  to  create  versatile  and  dynamically  control-
lable optical components. The potential of large aperture
liquid  crystal  devices  lies  in  the  ability  to  manipulate
light across a broad spectral range. This makes them par-
ticularly  valuable  for  various  applications,  ranging  from
beam shaping to adaptive optics. Their dynamic tunabil-
ity allows for real-time adjustments in response to chan-
ging  environmental  conditions  or  specific  operational
requirements.

 Shaping light by diffraction
While research devices are capable of controlling light by
geometric phase45,46, they are not yet commercially avail-
able,  and  thus,  most  commercial  LC-SLMs  available
today modulate only the dynamic (or propagation) phase
of the  light.  This  phase-only  functionality  can  be  ex-
ploited for control  of  many degrees of freedom, extend-
ing to  amplitude  modulation  and  polarization  modula-
tion.  As  the  liquid  crystals  in  each  cell  are  rotated,  the
local refractive index n(x,y) changes, resulting in a phase
change across  the device given by ΦSLM(x,y)  = kn(x,y)d,
where k is the wavenumber of the light and d is the thick-
ness  of  LC  cell.  The  question  is  how  to  use  this  phase
change as  a  means  to  control  and  shape  light.  The  an-
swer lies in the notion of diffraction. Diffraction is a fun-
damental  optical  phenomenon  that  accounts  for  many
phenomena that cannot be explained by geometrical op-
tics, such as the bending and spreading of the light. Early
optical  elements  were  designed  based  on  refraction  and
reflection, where diffraction was considered a hindrance.
However,  the  advent  of  fast  computers  and  modern
lithography meant  that  optical  elements  could  be  de-
signed and fabricated to exploit diffraction and interfer-
ence. Such diffractive optical elements (DOEs), either as
smooth  kinoforms  or  binary  equivalents,  have  given
birth  to  a  myriad  of  new optical  functionalities,  such  as
pattern generators, beam shapers, and gratings, all utiliz-
ing  a  surface  relief  profile  with  a  depth  on  the  order  of
the wavelength of the light. As a consequence, DOEs are
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typically much thinner and lighter than conventional re-
fractive elements,  making  them  an  attractive  replace-
ment in a number of applications. In the context of this
review, we can treat the LC-SLM as a pixelated DOE that
is  rewritable,  so  that  all  the  theory  related  to  DOEs  can
be translated to LC-SLMs. For instance, the fundamental
equation  governing  diffraction  off  a  periodic  structure
indicates  that  light  will  emerge  at  diffraction  angles θ
satisfying 

mλ = psin(θ) , (1)

where m is the diffraction order, λ is the wavelength and
p is the grating pitch. This tells us where the light will be
diffracted,  which  can  be  useful  for  various  applications.
For instance,  in  a  holographic  display  system,  the  view-
ing  angle  is  double  the  maximum  diffraction  angle.  In
order to display a 3D image with a wide angle of view, an
LC-SLM’s  pixel  pitch  has  to  be  sufficiently  smaller  than
the  wavelength.  However,  even  with  the  finest  8K  LC-
SLM  with  a  pixel  pitch  of  3.5  μm,  the  viewing  angle  is

limited  to  about  10  degrees.  The  diffraction  equation
only provides information on the direction of diffracted
light, but how much light will be going in a particular dir-
ection. The answer to this,  the diffraction efficiency, de-
pends  largely  on  the  type  of  periodic  structure  (binary,
blazed, sinusoidal,  etc.)  whereas  the  function of  the  ele-
ment  depends  largely  on  the  spacing  of  the  pitch  in
space, e.g., p(x,y). For instance, the diffraction efficiency
for a 2N level binary function is given by 

η =

[
sin (πm/2N)

πm/2N

]2

, (2)

where η is the power into the m order, and the non-zero
orders are given by m = qN +1 where q is any integer.

What  remains  is  to  determine what the  light  looks
like. Diffraction can be divided into two categories, ana-
lytic diffraction  and  numeric  diffraction.  Analytic  dif-
fraction  is  designed  based  on  ray  tracing,  as  the  phase
profile  can  be  defined  analytically  on  an  infinitely  thin
interface.  Examples  of  typical  analytic  elements  include

 

~ ~

0
0

5

10

15

20

Pi
xe

l p
itc

h 
(μ

m
)

25

30

35

40

Holoeye

LC 2012

1024×768

36 μm
(2012)

Meadowlark

1024×1024

1024×1024

17 μm
(2022)

Meadowlark

ODPDM 512

512×512

15 μm
(2016)

Hamamatsu
X15213

1272×1024

12.5 μm
(2023)

Meadowlark

E-SERIES

1920×1200

8 μm
(2021)

Holoeye

LUNA

1920×1080

4.5 μm
(2020)

Holoeye

GAEA-2

4160×2464

3.74 μm
(2019)

0.25 0.50 0.75 1.00 1.25 1.50

Number of pixels (million)
1.75 2.00 2.25 10.25 10.50

Fig. 3 | The performances of LC-SLMs have significantly improved with continuous advancements in material research and significant
investments in advanced manufacturing technologies. These led to a decrease in the pixel pitch to the micrometer level and an increase in

the number of pixels to tens of millions.
 

Table 1 | Performances of commercially available spatial light modulators.
 

Company model Resolution Pixel pitch Fill factor Wavelength range (nm)

Holoeye GAEA-2 4160×2464 3.74 μm 90% 420–1100

Holoeye LUNA 1920×1080 4.5 μm 91% 420–1100

Hamamatsu X15213-01 1272×1024 12.5 μm 96.8% 400–700

Meadowlark 1024×1024 1024×1024 17 μm 97.2% 500–1200

Meadowlark E-SERIES 1920×1200 8 μm 95.6% 500–1200

Meadowlark ODPDM512 512×512 15 μm 83.4% 400–1650

Holoeye LC2012 1024×768 36 μm 58% 400–800

Meadowlark HSP12K 1×12288 1.6 μm×19.66 mm 100% 400–1650
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lenses,  gratings,  and  interferograms,  which  may  be  a
single element  or  in  combination  with  refraction  or  re-
flection  elements  to  create  a  hybrid  optical  system.  On
the other  hand,  numeric  diffraction  is  calculated  iterat-
ively as a black box. The incoming wavefront and the de-
sired  output  wavefront  are  specified,  with  the  incoming
wavefront being  a  particular  amplitude  or  phase  func-
tion, and the output field being an amplitude-only func-
tion located either in the far field or near field.  Iterative
algorithms are then used to reduce the specific cost of the
diffraction efficiency  in  a  given  order,  such  as  recon-
struction  uniformity,  signal-noise-rate,  or  root-mean-
square error between a desired reconstruction and an ac-
tual reconstruction.  Examples  of  typical  numeric  ele-
ments  include  diffusers,  beam  splitters,  beam  shapers,
CGHs,  Fourier  filters,  spot  array  generators,  and  so  on.
As shown in Fig. 4(a) and 4(b), LC-SLM can replace typ-
ical analytic and numeric elements to realize the modula-
tion of  the  light  field  in  amplitude,  phase  and  polariza-
tion. Holograms on LC-SLMs can be designed or calcu-
lated  analytically,  whereas  numeric  diffraction  requires
numeric optimization through iterative algorithms since
there is no analytical solution to the diffraction problem.
Depending  on  the  input  wavefront  and  the  signals
provided by  the  computer,  LC-SLMs  can  produce  vari-
ous types of beams and images,  either as single or com-
pound images. In this section, we are interested in struc-
tured  light,  and  so  we  briefly  cover  the  common  beam
types  that  are  typically  created  by  LC-SLMs.  Apparatus
of  LC-SLM  and  SLM  holograms  that  produce  different
types of beams are illustrated in Fig. 4(c) and 4(d), illus-
trating the diverse capabilities of this technology.

 Bessel beams
Bessel beams  have  a  transverse  intensity  profile  accord-
ing  to  the  family  of  Bessel  functions47.  A  zeroth-order
Bessel  beam  has  a  transverse  intensity  profile  with  a
bright  central  core  surrounded  by  bright  concentric
rings. Unlike Gaussian beams, a Bessel beam has a trans-
verse intensity profile that does not spread as it  propag-
ates  over  a  finite  distance.  Bessel  beam  can  reconstruct
around  obstructions  placed  in  the  beam  path,  which
makes  Bessel  beam  useful  for  stacking  multiple  objects
along  the  beam’s  central  core.  Bessel  beams  are  exact
solutions  to  the  free-space  Helmholtz  wave  equation  in
cylindrical symmetry and are mathematically given by 

E (ρ,φ, z) = E0Jl (ktρ) exp (kzz) exp (ilφ) , (3)

where ρ and φ denote  the  polar  coordinates, z denotes

the axial coordinate, Jl is the Bessel function of order l, kt

is the transverse component of the wave vector k, and kz

is the longitudinal component of the wave vector k.
The  two  common  methods  to  generate  Bessel  beams

are based  on  a  conical  lens  (axicon)  for  near-field  cre-
ation, and a ring aperture (annular slit) for far-field cre-
ation.  Even  though  both  can  be  encoded  as  a  hologram
on  the  SLM,  the  former  is  more  efficient.  The  transfer
function of an axicon is described by 

t (ρ,φ) = exp (iktρ) . (4)

The transverse component of the wave vector kt can be
expressed in terms of the angle α of the axicon as 

kt = α (n− 1) k , (5)
where n is  the  refractive  index  of  the  axicon.  Bessel-
Gauss beams generated in the laboratory are Bessel beam
enveloped  with  a  Gaussian  beam  of  radius w0 and  thus
have a finite propagation distance described by 

zmax = w0
k
kt

. (6)

By adding the term exp(ilφ) to Eq. (3), we can get the
transfer  function  of  a  high-order  Bessel  beam,  which  is
given by 

t (ρ,φ) = exp [ikα (n− 1) ρ] exp (ilφ) . (7)

Thus, the mathematical expression to generate a phase
hologram for the SLM with the above transfer functions
takes the form of 

ΦSLM (x, y) = mod
[
kα(n− 1)

√
x2 + y2

+ l arctan (y/x) + 2π(Gxx+ Gyy), 2π] . (8)

 Finite-energy Airy beams
Another  solution to  the  paraxial  wave  equation is  given
in  terms  of  the  Airy  functions,  which  are  called  Airy
beams48. The mathematical expression for these beams is
given by 

A (sx, sy, ξ) =Ai

[
sx −

(
ξ
2

)2
]
Ai

[
sy −

(
ξ
2

)2
]

· exp
[
iξ
2

(
sx + sy −

ξ
3

3)]
, (9)

sx = x/x0 sy = y/y0

ξ = z/kx02

where Ai is  the  Airy  function,  and 
represent dimensionless transverse coordinates, x0 and y0

are the transverse scale parameters,  is a nor-
malized  propagation  distance.  By  imposing  certain
restrictions to Eq. (9), a very good approximation to the
ideal  Airy  beam  can  be  realized  in  the  optical  regime,
described by 
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A (sx, sy, ξ = 0) = Ai (sx)Ai (sy) exp [b (sx + sy)] , (10)

where b is  a  positive  parameter,  typically  smaller  than
one that limits the energy of the Airy beam. The final ex-
pression for this “finite-energy Airy beam” is described by
 

A (sx, sy, ξ) = Ai

[
sx −

(
ξ
2

)2

+ ibξ

]
Ai

[
sy −

(
ξ
2

)2

+ ibξ

]

·exp
[
b (sx + sy)− bξ2 + ibξ2 − ξ3

6
+

iξ (sx + sy)
2

]
. (11)

For the finite energy, Airy beam maintains its non-dif-

fractive properties over a finite distance only.

The  experimental  generation  of  these  beams  can  be

achieved  by  encoding  a  hologram  corresponding  to  the

inverse Fourier transform of A0.  The phase encoding on

the SLM is described by
 

ΦSLM (x, y) = mod

[
x3 + y3

3
, 2π

]
. (12)
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 Hermite-Gauss beams
Hermite-Gauss  modes  are  a  set  of  solutions  to  the
paraxial  wave  equation  in  Cartesian  coordinates49.  The
mathematical representation is given in terms of a Gaus-
sian function and the Hermite polynomial Hn(x) as 

HGnm (x, y, z) =
1

w (z)

√
21−n−m

πn!m!
Hn

[ √
x

w(z)

]
Hm

[ √y
w(z)

]
· exp [i (n+m+ 1) ξ (z)] exp

[
−
(

ρ
w(z)

)2
]

· exp
(
− ikρ2

2R (z)

)
exp (−ikz) , (13)

where n and m are the positive integers. Other paramet-
ers are described by 

ρ =
√
x2 + y2 , (14)

 

w (z) = w0

√
1+

(
z
zR

)2

, (15)
 

R (z) = z
[
1+

(zR
z

)2
]
, (16)

 

w0 = z
√

λzR
π

, (17)
 

ξ (z) = arctan
(

z
zR

)
. (18)

Equation (13) represents a paraboloidal wave with the
radius  of  curvature R(z),  beam  waist w0,  and  beam  size
w(z). zR is a constant known as the Rayleigh range, which
is used to measure the distance over which the beam re-
mains  well  collimated. ξ(z)  is  an  additional  phase  shift
that  the  wavefront  acquires  upon  propagation  through
the beam waist, which is known as the Gouy phase.

Hermite-Gauss beams can be generated by employing
complex amplitude modulation. The amplitude term and
the phase term are given by 

AHG (x, y, z) =
1

w (z)

√
21−n−m

πn!m!
Hn

[ √
x

w (z)

]
·Hm

[ √y
w (z)

]
exp

[
−
(

ρ
w (z)

)2
]

, (19)
 

ΦHG (x, y, z) =exp [i (n+m+ 1) ξ (z)]

· exp
(
− ikρ2

2R

)
exp (−ikz) . (20)

Thus, the encoded hologram takes the form of 

ΦSLM = fHG · sin (ΦHG + Gxx+ Gyy) , (21)

where fHG is  the  amplitude  phase  function  and  can  be

found numerically from the relation 

J1 (fHG) = AHG . (22)

 Laguerre-Gauss beams
Laguerre-Gauss  modes  are  another  solution  to  the
paraxial Helmholtz equation in cylindrical coordinates50.
They are mathematically described by 

LGl
p (ρ,φ, z) =

w0

w (z)

√
2p!

π (|l|+ p)!

[√
2ρ

w (z)

]|l|

· Ll
p

[
2
(

ρ
w (z)

)2
]
exp [i (2p+ |l|+ 1) ξ (z)]

· exp

[
−
(

ρ
w (z)

)2
]
exp

(
− ikρ2

2R

)
exp (−ilφ) , (23)

Ll
p

HGnm

where  is  the  Laguerre  function  and  the  rest  of  the
parameters are the same as in the  modes.

Laguerre-Gauss beams generated by SLMs are approx-
imated using complex amplitude modulation. The amp-
litude term and the phase term are given by 

ALG =
w0

w (z)

√
2p!

π (|l|+ p)!

[√
2ρ

w (z)

]|l|

Ll
p

[
2
(

ρ
w (z)

)2
]

· exp

[
−
(

ρ
w (z)

)2
]

,

(24)
 

ΦLG =exp [i (2p+ |l|+ 1) ξ (z)]

· exp
(
− ikρ2

2R

)
exp (−ilφ) . (25)

Thus, the encoded hologram has the form of 

ΦSLM = fLG · sin (ΦLG + Gxx+ Gyy) , (26)

fLGwhere  is obtained by numerical evaluation 

J1 (fLG) = ALG . (27)

 Optical vortex beams

exp (−ilϕ)
lℏ

Vortex  beams  carry  orbital  angular  momentum  (OAM)
by virtue  of  a  helical  twist  to  the  wavefront,  character-
ized by a phase function of the form of , result-
ing in photons with  of OAM51.  We have already seen
that  Bessel  beams  and  Laguerre-Gauss  beams  have  this
form, but these are only two such examples. Ignoring the
amplitude function, the desired phase profile can be ex-
perimentally generated with an SLM by encoding an azi-
muthal  variation and blazed grating to separate the first
order from the others. The phase encoding on the SLM is
described by 
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ΦSLM = mod [lϕ+ 2π (Gxx+ Gyy) , 2π] . (28)

 Applications of LC-SLMs
The  unique  properties  of  LC-SLMs  make  them  well-
suited for  use as  dynamic optical  devices,  which can re-
place conventional optical devices with a digital equivalent
and  also  facilitate  new  functionality.  In  this  section,  we
review the significant progress that has been made in the
applications of LC-SLMs. The diverse range of these ap-
plications  is  captured  in Fig. 5,  including  beam  shaping
and steering,  holography, optical  trapping and tweezers,
measurement, wavefront coding, optical vortex, quantum
applications, and more. We focus on revealing the unique
dynamic flat-panel functionalities of the LC-SLMs.

 Beam shaping and steering
Shaping the light field by changing its phase or intensity
has enabled significant advances in optics. Refractive and

reflective  elements,  such  as  lenses,  prisms,  and  mirrors,
are  common  devices  for  beam  shaping  and  steering  by
deflecting  the  light  paths.  Elements  that  work  with  this
diffraction effect are called DOEs. The propagating phase
of light changes when it passes through the micro-struc-
ture  pattern  made  on  a  substrate  material.  DOEs  have
become the first choice in many applications due to their
flexible  plasticity,  absolute  angular  accuracy  at  designed
wavelengths, small size, and flatness. However, LC-SLMs
can  change  the  phase  pixel  by  pixel  for  the  laser  beam,
and thus can replace traditional beam shaping and steer-
ing  DOEs.  Previous  works  have  realized  continuous
phase and binary intensity modulation of beams with the
help of beam shaping techniques based on LC-SLMs52−57.
Dispersion-free beam shaping has been achieved through
the  intermediate  transversal  light  beam  magnification,
which balances the mismatch in the grating constants and
leads  to  total  residual  angular  dispersion  compensation.
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LC-SLMs  have  also  been  used  to  achieve  white  light
beam shaping58 and axial sub-Fourier focusing of optical
beams59.  In  this  approach,  the  generated  beams have  an
axial  focusing  that  is  narrower  than  the  Fourier  limit.
The generated beams are constructed from the superpos-
ition  of  Bessel  beams  with  different  longitudinal  wave
vectors,  which realizes  a  super  oscillatory  axial  intensity
distribution. In beam steering, LC-SLMs enable the gen-
eration  of  dynamic  gratings  to  steer  the  beam  toward  a
specific direction  or  for  beam  scanning.  Multifocal  ar-
rays have  attracted  considerable  attention  for  their  po-
tential  applications  in  parallel  optical  tweezers,  parallel
recording,  and  multifocal  multiphoton  microscopy.
Methods  of  generating  3D  dynamic  and  controllable
multifocal  spots  in  the  focal  volume  of  the  objects  have
been  proposed60.  Specifically,  T.  Zeng  et  al  proposed  a
specific  pseudo-period  encoding  technique  to  create  3D
vectorial multifocal arrays with the capability of manipu-
lating  the  position,  intensity  and  polarization  state  of
each  focal  spot,  as  shown  in Fig. 6(a)61.  The  experiment
demonstrates  that  the  vectorial  multifocal  arrays  have  a
tunable position and polarization state with high quality.

Beam shaping  and  steering  techniques  find  wide  ap-
plications in several domains, such as focusing light into
materials  or  turbid  media62−64, measuring  the  transmis-
sion matrix in disordered media65 or opaque materials66,
optimizing  and  characterizing  optical  properties67−72,
laser  printing73,74,  manufacturing  equipment75,  detecting
beams70,76,  material  processing77−81, etc.  Material  pro-
cessing  utilizes  beams  projected  onto  the  surface  of  the
material to induce thermal effects for processing, includ-
ing laser  welding,  cutting,  marking,  drilling,  and  mi-
cromachining.  Among  the  techniques  for  generating
structures  of  arbitrary  complexity  with  sub-micrometer
resolution  and  high  efficiency,  photopolymerization
stands out as a powerful method. It allows for the simul-
taneous  building  of  structures  with  diffractive  patterns
instead  of  multidimensional  scanning  of  a  single  focus.
Micro-supercapacitors, a promising miniaturized energy
storage  device,  suffer  from  inefficient  microfabrication
technologies  and low energy  density,  thus  limiting  their
range  of  applications.  Y.  Yuan  et  al  proposed  a  flexible
and designable micro-supercapacitor, fabricated through
a single  pulse  laser  photonic-reduction  stamping  tech-
nique, as shown in Fig. 6(b)82. This unique technique has
the  potential  to  overcome  the  limitations  of  low  energy
density and high-throughput fabrication of micro-super-
capacitors, thereby expanding their range of applications.

 Holography
Since Gabor invented holography, the field of holograph-
ic imaging and display has grown with the increasing use
of LC-SLMs. A hologram is an interference recording of
a 3D surface by calculating in reverse from the target im-
age. Upon  proper  recording,  reconstruction,  and  view-
ing  conditions,  unlike  traditional  2D  photography,  the
image appears to be 3D again.  LC-SLMs are non-mech-
anical programmable wavefront modulation devices that
introduce  diversity  into  the  image  data.  Three  different
techniques of  single  channel  digital  holography  are  dis-
cussed, including the joint object reference digital  inter-
ferometer (JORDI), Fresnel incoherent correlation holo-
graphy  (FINCH)  and  Fourier  incoherent  single  channel
holography (FISCH)83. Pixelated LC-SLMs can be imple-
mented to encode complex modulation by means of ap-
propriate CGHs, enabling the synthesis of fully complex
fields with  high  accuracy.  Methods  of  realizing  holo-
gram generation  with  maximum  reconstruction  effi-
ciency, optimum bandwidth and high signal-to-noise ra-
tio in CGH have been proposed84−89,  as shown in Fig. 7 .
Y. Zhao et al proposed a novel layer-based angular spec-
trum  method  of  CGH,  as  shown  in Fig. 7(a)88. Experi-
mental results  show that  the  proposed method can per-
form  high-quality  optical  reconstructions  of  3D  scenes
with dramatically  reduced  computational  load  and  pre-
cise  depth  performance.  X.  Sui  et  al  realized  complex
amplitude  modulation  through  spatiotemporal  double-
phase  hologram90.  The  method  makes  spatiotemporal
double-phase  holograms an appropriate  way to  digitally
modulate static and quasi-static complex fields using ex-
isting  LC-SLMs.  In  addition  to  the  pure  phase-based
holography,  LC-SLMs can realize amplitude or complex
amplitude-based  holography.  This  expanded  capability
allows  for  more  versatile  and  sophisticated  holographic
applications,  where  both  the  phase  and  amplitude  of
light can be precisely manipulated to create complex and
realistic holographic reconstructions.

Holographic displays have emerged as a powerful tool
for constructing high-resolution and realistic 3D images,
without the need for special  glasses.  Holography display
techniques  play  a  central  role  in  diverse  fields,  such  as
scientific visualization,  multimedia  display,  virtual  real-
ity,  education and interactive designs.  However,  there is
still  a  long  way  to  go  to  improve  it  further.  A  material
that takes all the advantages of holography does not exist.
The  performance  characteristics  of  different  materials
have  been  analyzed  to  determine  the  advantages  and
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limitations  of  different  approaches91.  Various  methods
have been proposed to accelerate the generation of color
holograms92−94,  reduce  speckle  noise95,96,  and  implement
time multiplexing97. Additionally, researchers are explor-
ing various  algorithms  and  techniques  to  improve  dis-
play  properties98−102.  Optical  see-through  holographic
near-eye displays have also been improved towards com-
pactness, lightweight,  low cost,  and free of  accommoda-
tion-convergence discrepancy100,103,104. Recent progress in
photo-electronic techniques and devices has enabled the
real-time  display  of  3D  images  in  free  space,  including
the extraction of all  depth cues such as motion parallax,
occlusion, and ocular accommodation. Researchers have
made  significant  strides  in  improving  image  quality
while  maintaining  image  size105, implementing  holo-
grams  with  high  contrast  and  per-pixel  focal  control106,
reconstructing high-definition 3D fields107, and handling
holographic images in real time108.

 Optical trapping and tweezers
Optical trapping and tweezers are tools that utilize highly
focused laser beams to exert a micro force on microscop-
ic  dielectric  objects,  enabling  physical  manipulation,
holding, and repulsion of the material. These techniques
have become  valuable  tools  in  a  wide  range  of  applica-
tions,  including  trapping  or  manipulating  cells  and  cell
components109−117,  measuring  the  interaction  forces  and
hydrodynamics118−122,  measuring  the  fluid  flow123,124,  and
assembly of micro-structures125,126. However, precise spa-
tial and temporal manipulation of multiple traps and in-
dependent manipulation  of  trapped  micro-particles  re-
mains a  challenging  task  in  many  applications.  To  ad-
dress this, holographic or diffractive optical elements are
widely implemented with LC-SLMs to form optical traps
in  multiple  shapes127−131,  arbitrary  arrays  of  traps  or
atoms132,133, and unique trapping structures134−137. Typical
applications of LC-SLMs in optical trapping and tweezers
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are shown in Fig. 8. In the field of quantum computation,
quantum simulation and quantum many-body physics, it
is  essential  to  build  a  scalable  neutral-atom  platform.
Optical  trapping  of  atoms  enables  the  construction  and
manipulation of  quantum systems.  To this  end,  H.  Kim
et  al  proposed  a  novel  LC-SLM  method  to  transport
single atoms in real time with holographic micro-traps132.
The method accomplished a 99% success rate for single-
atom  rearrangements  for  up  to  10  mm  translation.  The
technique  can  be  further  improved  through  increasing
the  number  of  atoms  and  initial  loading  efficiency.  The
application is  not  restricted to  the preparation of  an ar-
ray,  but  can  also  be  applied  to  many-body  physics  with
ordered atoms and coherent qubit transports.

The use of optical tweezers has revolutionized the field

of micro-manipulation by enabling the trapping, assem-
bling, and sorting of multiple particles in 3D111,135,138. The
inception  of  optical  tweezers  dates  back  to  1986139. In-
tensity-modulated patterns projected by an LC-SLM en-
able  the  manipulation  of  microparticles  dynamically.
Typical setups for optical tweezers involve on-axis Fouri-
er  holograms.  However,  an  advanced  optical  setup  has
been  proposed  that  uses  an  off-axis  Fresnel  hologram,
which increases the flexibility of diffractively steered op-
tical tweezers140. Rapid generation and analysis of optical
tweezers meet the demand for development141,142. The ad-
vantage of optical tweezers is that it is possible to design
any  potential  for  the  atom.  The  use  of  LC-SLMs  in  the
design of arbitrary potentials has made optical tweezers a
powerful  tool  in  life  science,  material  science,  and
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particle physics.

 Measurement
Dynamic  aberrations  are  a  common  problem  in  optical
systems, and LC-SLMs offer a potential solution as an al-
ternative to conventional deformable mirrors for aberra-
tion correction.  Various  high-accuracy  correction  sys-
tems and  principles  with  liquid  crystal  wavefront  cor-
rectors  have  been  proposed143−147.  Phase  calibration  has
been implemented in the field of stable real-time correc-
tion148−150 and imaging145 with LC-SLMs. Typical applica-
tions of LC-SLMs in measurement are shown in Fig. 9. R.
Li et al proposed a phase calibration technique by divid-

ing  the  LC-SLM  panel  into  two  zones,  the  grating  zone
and the measured zone,  enabling efficient  and visible  in
situ  calibration,  as  shown  in Fig. 9(a)151.  This  low-cost
and highly efficient method is applicable for routine and
frequent calibration.  A.  Jesacher  et  al  proposed  a  meth-
od  for  correcting  small  surface  deviations  of  the  LC-
SLMs with an optical vortex and a flexible non-interfero-
metric technique, which can be applied to optical tweez-
ers  for  optimizing  trapping  fields  and  imaging  systems
for  optimizing  the  point-spread-function152.  The  surface
distortion information is extracted from the shape of the
optical vortex. The use of LC-SLM as a phase calibration
device  provides  a  way  to  obtain  the  surface  quality  of
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optical devices in applications, which require good char-
acterization of amplitude, phase and polarization proper-
ties.  Phase  retrieval  based  on  wavefront  sensors  has
shown the capability of reconstructing the complex field
from optical devices with high spatial resolutions. Adaptive
optics  (AO)153 is  one  of  the  most  promising  techniques
for calibrating  wavefront  distortions  caused  by  atmo-
spheric turbulence or other factors. LC-SLMs are versat-
ile AO elements that can achieve high resolution and low
temporal turbulence  imaging  systems  for  improved  res-
olution  performances  and  displays154, wavefront  correc-
tion for both low- and high-order aberrations in human
eyes155, etc. Combined LC-SLMs with AO techniques en-
able the observation of cells in their native state156, recov-
ery of biological or non-biological samples with near-dif-
fraction-limited  performance157,  better  quality  optical
tweezers158 and  resolution  improvements159 in micro-
scopy. In the context of colorful holographic images, and
when  dealing  with  broadband  or  incoherent  light
sources,  the  phase  change  of  the  LC-SLM  at  different
wavelengths  becomes  a  critical  consideration.  A  careful
calibration  process  is  required  to  address  the  problem.
This  involves  characterizing  the  phase  response  of  the
LC-SLM  at  different  wavelengths  and  compensating  for
the wavelength-dependent  phase  changes.  The  calibra-
tion  process  might  involve  measuring  the  phase  change
introduced by the  LC-SLM for  various  wavelengths  and
then applying appropriate corrections to achieve the de-
sired  holographic  or  wavefront  manipulation.  It  is  also
possible to overcome the wavelength dependence by us-
ing  a  grating,  but  this  comes  at  the  expense  of  a  small
wavelength dependent loss factor58.

Measurement  with  LC-SLM refers  to  the  use  of  these
devices to manipulate optical wavefronts for various pur-
poses, which enables  precise  control  over  the  character-
istics of optical beams. This dynamic control enables re-
searchers and engineers to tailor optical systems for vari-
ous experimental,  research,  and practical  purposes,  ulti-
mately enhancing the capabilities of optical technologies
across  diverse  fields.  Interferometric  measurement  is  a
powerful  tool  that  can  measure  the  phase  profile  of
samples at  subwavelength  resolution.  In  the  field  of  op-
tical nondestructive testing, the extraction and classifica-
tion of faults is a major task in industrial quality control.
Interferometric  fringes  contain  valuable  information
about  faults  in  the  sample,  making  them  an  important
tool  for  defect  detection.  In  traditional  interferometry,
the  image-carrying  light  wave  is  coherently  superposed

on  the  reference  wave,  resulting  in  closed  interference
fringes that form contour lines. However, it can be chal-
lenging to  distinguish  between  elevations  and  depres-
sions  using  this  approach.  One  solution  to  this  issue  is
the use of a spiral phase optical element, which produces
spiraled  interference  fringes  instead  of  closed  contour
lines,  enabling  accurate  identification  of  elevations  and
depressions160. The theoretical  derivation of  spiral  inter-
ferometry  and  various  demodulation  methods  based  on
interferograms  have  been  extensively  studied161−163. Re-
searchers have also reported new quantitative phase ima-
ging approaches based on a self-reference holograph that
improves  the  accuracy  of  phase  maps  by  superposing
three  on-axis  interferograms  with  different  phase
filters164. Interferometric measurement has been success-
fully  applied  in  many  areas,  including  calculating  the
skew  angle  of  a  Poynting  vector165,  depth  measurement
of  polymer-coated  steel  samples166, wavefront  interfero-
metry167, detection of scattering materials168, and measur-
ing the optical index169−171. Overall, interferometric meas-
urement  is  an  essential  tool  for  nondestructive  testing
and provides  valuable  information  for  various  applica-
tions in the field of optics.

 Wavefront coding
Imaging typically  involves  the  integration  of  a  specific-
ally coded aperture with a coded phase mask in an optic-
al  system.  One  common  type  of  device  used  for  coded
aperture imaging is the LC-SLM172. A diffractive lens was
used  in  the  advanced  optical  system  of  coded  aperture
correlation  holography  (COACH),  which  was  proposed
by A. Vijayakumar et al to enable 4D imaging of objects
at  three spatial  dimensions with a spectral  dimension173.
In  the  same  year,  A.  Vijayakumar  et  al  proposed  a  new
digital holographic  imaging  technique,  called  interfer-
enceless  coded  aperture  correlation  holography  (I-
COACH), which does not rely on two-wave interference.
The  technique  simplifies  the  optical  systems,  increases
working efficiency,  and  eliminates  complicated  align-
ment procedures172. LC-SLM was employed by N. Dubey
et al to generate a coded phase mask to enhance imaging
resolution, as shown in Fig. 10(a)174. The principle of op-
eration  of  endoscopic  interferenceless  coded  aperture
correlation holography  (EI-COACH)  is  based  on  simu-
lating  the  endoscopic  setting.  The  annular  coded  phase
mask is produced on the computer and displayed on the
LC-SLM.  The  LC-SLM’s  internal  region,  surrounded by
the  annular  coded  phase  mask,  serves  to  deflect
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unwanted light  through display  a  diffractive  optical  ele-
ment. The diffraction optical element consists of a quad-
ratic  phase  function  and  a  linear  phase  function,  which
are used to focus unwanted light from the sensor. Thus,
only  the  light  that  passes  through  the  annular  coded
phase mask reaches the image sensor, and the rest dissip-
ates around.

Random  scattering  of  light  in  materials  like  paint,
milk, and biological tissues can cause the incident wave-

front  to  become  seriously  distorted,  leading  to  a  loss  of
spatial  coherence.  This  results  in  the  formation  of  a
volume speckle  field  that  lacks  correlations  over  dis-
tances  larger  than  the  wavelength  of  light.  The  serious
scrambling of the field makes it impossible to control the
propagation of light using established wavefront calibra-
tion methods and prevents direct retrieval of the inform-
ation encoded in the light.  However, with active control
methods, random scattering can be beneficial rather than
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harmful  for  applications  such  as  focusing175,176,  imag-
ing177−179,  speckle  analysis180,181,  phase  conjugation182−185,
etc. Although challenging, effective focusing of light into
or  through scattering media  is  highly  desirable  in  many
fields.  Optical  scattering  due  to  the  non-uniformity  of
the refractive index in the scattering media makes it diffi-
cult to efficiently deliver optical intensity. Z. Cheng et al

proposed  a  novel  ultrasound-assisted  technique  called
ultrasound-induced  field  perturbation  optical  focusing
(UFP),  which  uses  the  brighter  zeroth-order  photons
diffracted by the ultrasonic guidestar as information car-
riers to guide optical  focusing,  as  shown in Fig. 10(b)186.
The new technique allows for the focusing of light to the
location  where  the  field  perturbation  occurs  in  the
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scattering medium. The technique broadens the scope of
optical control  in  scattering  media  and  challenges  con-
ventional  notions  about  the  usefulness  of  ultrasound
guidestar.  Biological specimens mostly consist of optical
inhomogeneities, which  seriously  degrade  imaging  per-
formances. The  demand  for  live  and  real-time  micro-
scopic imaging  of  biological  samples  is  high.  3D  recon-
struction  must  be  fast  enough to  capture  the  dynamical
properties  of  living  cells  or  biological  objects.  True
physiological  imaging  of  subcellular  dynamics  requires
no  undue  stress  on  the  sample  and  characterizing  the
cells within their parent organisms. Therefore, wide-field
in situ  and native  state  metrology187,188, and other  biolo-
gical imaging methods have been proposed189−195.

 Optical vortex

exp (−ilϕ)
lℏ

l ϕ
l

l

l

Optical vortex beams, with their unique properties, have
found applications in diverse areas of research. An optic-
al  vortex  beam  with  an  phase structure  car-
ries  an  orbital  angular  momentum  of  per  photon,
where  is  the topological  charge and  is  the azimuthal
angle. When  takes on integer values, a vortex or helices
is formed in the wavefront with a single screw-phase dis-
location on the beam axis.  When  takes on non-integer
values, a complex-phase structure is formed in the wave-
front, which  contains  many  vortices  at  differing  loca-
tions  in  the  cross-section of  the  beam.  When  takes  on
half-integer  values,  a  line  of  alternating  charge  vortices
near  the  radial  dislocation  is  formed196.  Optical  vortices
generically  arise  when laser  beams are combined.  A few
laser  beams  with  optical  vortices  can  be  combined  to
form optical  vortex  knots,  links  or  loops197,198.  LC-SLMs
can  efficiently  synthesize  the  helical  modes  of  the  beam
and  generate  novel  optical  vortices199−202.  Fundamental
studies on  optical  vortex  beams  include  intrinsic  meas-
urement  and  analysis203−214, mode  generation  and  trans-
formation215−219,  laser  beam  engineering220−222,
metrology169,  polarization  nano-tomography223,  image
reconstruction224,225,  and  more.  The  OAM  cannot  be
completely  eliminated  when  two  optical  vortex  beams
with different topology charges are superimposed coher-
ently.  The  remaining  OAM  in  the  superimposed  beam,
which is located in different concentric circles, may have
the opposite orientation due to the difference in charge.
When  the  different  charges  of  the  two  beams  are  large,
the remaining  OAM can  be  detected  through  the  rotat-
ing micro-particles226,227.

Optical vortex  has  been  widely  used  in  optical  com-

munication due  to  its  capability  of  providing  more  de-
grees  of  freedom  and  expanding  the  bandwidth228−233.
Typical  applications  of  LC-SLMs  in  optical  vortex  are
shown in Fig. 11. M. Malik et al proposed an OAM mod-
al for  a  free-space  11-dimensional  communication  sys-
tem232.  By combining LC-SLM with binary phase  filters,
the  transmission  bandwidth  of  multimode  fibers  can  be
largely increased.  G.  Jing  et  al  proposed  a  fractional  or-
bital  angular  momentum  (FOAM)  mode  recognition
method  with  a  feedforward  neural  network  (FNN)234.
The experiment result showed that the method can break
the limitation  of  precision  measurement  in  the  turbu-
lence  environment  of  practical  FOAM  applications.  To
further increase the data transmission rate, in addition to
OAM, A. Trichili et al demonstrated the use of both radi-
al  and  azimuthal  degrees  of  freedom  for  multiplexing
and demultiplexing, as shown in Fig. 11(b)235.  The novel
holographic technique allowed over 100 modes to be en-
coded  and  decoded  in  one  hologram,  in  a  wide
wavelength  range  through  a  wavelength-independent
manner.  Optical  vortex  beams  offer  immense  potential
for developing  innovative  optical  communication  tech-
niques and are an active area of research.

 Quantum applications
Quantum optics  has  traditionally  been  executed  experi-
mentally using  qubit  quantum states  based  on  polariza-
tion,  for  which  the  optical  toolkit  is  very  mature.  The
birth of  spatial  modes of  light  as  a  basis  to realize  high-
dimensional  quantum  states  has  opened  up  many  new
quantum  processes  and  protocols236,237,  all  facilitated  by
LC-SLMs embedded  as  quantum  state  creators  and  de-
tectors, as shown in Fig. 12(a). The birth of this field can
be traced back to the seminal work in 2001 where DOEs
were used  as  OAM  projectors  to  show  OAM  conserva-
tion down to the single photon level, and OAM entangle-
ment  in  2D  subspaces238. The  DOEs,  which  were  hard-
coded  for  particular  projections,  were  later  replaced  by
LC-SLMs  for  rewritable  quantum  projectors,  one  for
each  photon  in  the  experiment.  This  was  a  crucial  step,
particularly when  considering  that  there  are  many  spa-
tial basis to select from, and an infinite number of modes
in  each.  This  implies  the  need  to  have  versatility  in  the
detection step, a condition made possible with SLMs. For
instance, the introduction of LC-SLMs into quantum op-
tics  enabled  dynamic  quantum  state  tomography,  first
for OAM qubits239 and later for any dimensional state on
any basis240.  This  was  quickly  followed by  seminal  work
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on  Bell  inequality  violations  using  digital  holograms241,
uncertainty principle tests242 and the realization of ultra-
high  entangled  state  characterization  using  just  a  few
measurements243,244. LC-SLMs  have  likewise  proven  es-
sential  in  tailoring  the  entanglement  spectrum  either  at
the  creation  step245−247 or  the  detection  step248,249.  This
realization  and  control  of  multidimensional  quantum
states  have  led  to  both  new  physics  and  advanced
quantum applications,  with LC-SLMs proving crucial  in
quantum  random  number  generation250,  quantum  key
distribution251,252,  quantum  communication253,254,
quantum  secret  sharing255 and for  quantum  entangle-
ment swapping256 and teleportation257,  reaching states of
up  to  100  ×  100  dimensions258. Figure 12 illustrates  the
typical  applications  of  LC-SLMs  in  the  field  of
quantum. The quantum  application  that  is  most  lever-

aged in the use of SLMs is quantum ghost imaging259−262,
where digital objects are encoded on one photon and di-
gitally detected on the other  photon.  Here the SLMs fa-
cilitate computational  approaches  to  be  used,  for  in-
stance, to allow single pixel imaging with random masks
on the SLMs.

 Summary and outlook
LC-SLMs have  had  a  profound  impact  on  various  re-
search areas and applications, ranging from optical inter-
connections at  the  component  level  to  quantum  entan-
glement.  This  review  paper  provides  a  comprehensive
analysis of recent developments in LC-SLMs by discuss-
ing  liquid  crystal  devices,  exploring  light  shaping
through diffraction,  and  highlighting  the  promising  ap-
plications of LC-SLMs. The review demonstrates the po-
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tential of LC-SLMs to achieve unique functionalities, but
also outlines the technical challenges that need to be ad-
dressed  to  advance  this  field  further.  One  significant
challenge  is  the  lack  of  compact  and  fast  enough  LC-
SLMs, especially in long-wave wavelengths. Additionally,
designing  LC-SLM  systems  involve  trade-offs  among
various  factors,  such  as  resolution,  modulation  range,
and damage  threshold.  Reducing  pixel  size  and increas-
ing the number of pixels in an image can improve image
clarity  and quality,  but  may also  compromise  fill  factor,
surface flatness,  diffraction  efficiency,  and  light  utiliza-
tion.  Presently,  the  maximum  matrix  resolution  is

4160×2464 and a linear array of 1×12288. Several meth-
ods have  been  proposed  to  achieve  large-angle  holo-
graphic displays, but there is a trade-off between modu-
lation range and refresh rate. Furthermore, the high con-
centration of laser energy can cause deformation or com-
plete  damage  to  the  inside  or  surface  of  the  medium.
This damage is related to the processing of optical com-
ponents,  such  as  the  coating  methods  and  the  purity  of
the film  material.  Short  response  time  is  crucial  in  ap-
plications  that  require  real-time  modulation  of  optical
wavefronts.  This  is  particularly  important  in  dynamic
applications.  Long response time can limit  the ability  of
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LC-SLMs to  keep  up  with  rapidly  changing  optical  sig-
nals, leading  to  degraded  performance  and  reduced  ef-
fectiveness. Overcoming  this  challenge  requires  the  de-
velopment  of  LC-SLMs  technologies  that  can  swiftly
modulate phase and amplitude while maintaining accur-
acy.  High  resolution  refers  to  the  number  of  pixels  per
unit area on the LC-SLM. For precise modulation of op-
tical  wavefronts,  a  high  resolution  is  crucial.  However,
increasing the pixel density presents challenges related to
manufacturing, controlling  individual  pixels,  and  man-
aging heat  dissipation.  Higher  resolution  demands  bet-
ter control over individual pixels, which can lead to diffi-
culties in maintaining uniformity and minimizing cross-
talk  between  adjacent  pixels.  Advanced  manufacturing
techniques, pixel  addressing  schemes,  and  materials  en-
gineering are being explored to pursue higher resolution
without  compromising performance.  Fringe  field  effects
occur due to interactions between pixels on an LC-SLM,
resulting  in  unintended  phase  or  amplitude  changes  in
neighboring pixels.  These effects  can lead to image arti-
facts, reduced modulation fidelity,  and inaccurate wave-
front manipulation. Mitigating these effects requires pre-
cise  pixel  addressing  and  calibration  techniques,  as  well
as  the  development  of  pixel  structures  that  minimize
cross-talk.  As  these  challenges  are  overcome,  LC-SLMs
are  becoming  more  versatile  tools  for  dynamic  optical
control,  holography,  imaging,  and  many  other  fields
where precise wavefront manipulation is essential.

We conclude by providing our opinions on the oppor-
tunities and technical  challenges  in  the  rapidly  develop-
ing field of metamaterials and metasurfaces. Metamateri-
als  have  been a  research hotspot  and offer  the  ability  to
modulate  various properties  of  light  such as  bandwidth,
polarization, wavelength,  and  time  dependence.  By  in-
corporating  metamaterials  into  LC-SLMs,  a  substitute
optical  modality  is  possible.  Ongoing  research  in  this
realm  aims  to  improve  the  usefulness  of  long-wave
metamaterial imaging,  which  has  significant  implica-
tions for non-invasive cancer detection, infrared thermo-
graphy,  and  other  medical  imaging  scenarios.  Another
promising direction is the use of metasurfaces, which can
perform  wavefront  regulation  at  the  sub-wavelength
scale. Metasurfaces can be implemented in designing and
fabricating optical  elements  and  systems  with  capabilit-
ies  that  surpass  the performance of  conventional  DOEs.
By  integrating  metasurfaces  with  LC-SLMs,  one  can
make LC-SLMs more powerful in wavefront engineering,
modulation of polarized light, holography, and other ap-

plications.  S.  Mansha et  al  proposed a  novel  design that
allows  small  pixel  and  multi-spectral  operations  with  a
metasurface-based  LC-SLM263.  Their  design  is  based  on
LC-tunable Fabry-Perot  nanocavities,  which  are  de-
signed  to  support  multiple  resonances  in  the  visible
range, including  RGB  wavelengths,  providing  continu-
ous 2π phase modulation with high reflectance. It is fore-
seeable  that  with  the  improvements  in  manufacturing
techniques, computing power and further exploration of
dynamic modulation techniques, the performance of LC-
SLMs  could  be  further  improved.  The  incorporation  of
metamaterials and metasurfaces into LC-SLMs opens up
new exciting possibilities for research and applications in
various fields.  However,  there  are  still  technical  chal-
lenges that  need to be addressed,  such as improving the
usefulness of long-wave metamaterial techniques, optim-
izing  the  design  and  fabrication  of  metasurface-based
LC-SLMs. Nonetheless,  we  are  optimistic  about  the  fu-
ture of LC-SLMs and the potential impact they can have
on the field of optics and beyond.
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