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Measurement of optical coherence structures of
random optical fields using generalized Arago
spot experiment
Xin Liu1,2, Qian Chen1,2, Jun Zeng1,2*, Yangjian Cai1,2* and
Chunhao Liang1,2*

The optical coherence structures of random optical fields can determine beam propagation behavior, light–matter interac-
tions, etc. Their performance makes a light beam robust against turbulence, scattering, and distortion. Recently, we pro-
posed optical coherence encryption and robust far-field optical imaging techniques. All related applications place a high
demand on precision in the experimental measurements of complex optical coherence structures, including their real and
imaginary  parts.  Past  studies  on  these  measurements  have  mainly  adopted  theoretical  mathematical  approximations,
limited to  Gaussian statistic  involving speckle  statistic  (time-consuming),  or  used complicated and delicate  optical  sys-
tems in the laboratory.  In this study,  we provide:  a robust,  convenient,  and fast  protocol  to measure the optical  coher-
ence structures of random optical fields via generalized Arago (or Poisson) spot experiments with rigorous mathematical
solutions. Our proposal only requires to capture the intensity thrice, and is applicable to any optical coherence structures,
regardless of their type or optical statistics. The theoretical and experimental results demonstrated that the real and ima-
ginary parts of the structures could be simultaneously recovered with high precision. We believe that such a protocol can
be widely employed in phase measurement, optical imaging, and image transfer.
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 Introduction
The optical  coherence  structure,  as  one  intrinsic  prop-
erty of a light beam, plays a pivotal role in not only optic-
al interference but also a wide range of applications. The
optical  coherence  theory  provides  a  viable  platform  for
studying partially coherent beams (PCBs)1,2. Such beams
are characterized by a cross-spectral density (CSD) func-
tion in the spatial-frequency domain or a mutual coher-

ence  function  (MCF)  in  the  spatial-time  domain.  PCBs,
with  the  prescribed  optical  coherence  structures,  have
various applications in optical coherence tomography3−5,
optical  communication6,  phase  imaging7−9,  incoherent
source  reconstruction10,  and  super-resolution  optical
imaging11,12; notably, they can be imaged through scatter
media13.  We  recently  proposed  optical  coherence
imaging,  wherein  optical  coherence  structure,  as  the 
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information carrier, could realize robust far-field optical
imaging14−17. It  can  be  immune  to  atmospheric  turbu-
lence and opaque obstacles. On the other hand, there are
multifarious theoretical  and  experimental  methods  pro-
posed to  generate  predetermined  PCBs,  with  two  tech-
niques  being  the  most  popular.  The  first  operates  based
on  the  van  Cittert–Zernike  theorem18,19,  employing  a
fully  incoherent  beam  with  the  desired  intensity  profile
via propagation. The other exploits the mode-superposi-
tion principle20−24, involving the coherent-mode, pseudo-
mode  (PM),  and  random-mode  (RM)  representations.
Measuring the complex optical coherence structure is of
great  interest  from  both  fundamental  and  application
perspectives.

The optical coherence structure has traditionally been
measured  using  Young’s  interference  experiment,
wherein its magnitude and phase can be predicted based
on the visibility and position of the fringes, respectively.
However, this experiment only considers two light beam
points.  Full  characterization  of  the  optical  coherence
structure requires that each point be scanned independ-
ently  across  the  beam  plane,  which  requires  significant
time  and  effort.  Improvements  to  this  experiment  have
been proposed, such as non-parallel  slits25,  non-redund-
ant  arrays  of  pinholes26,  and  programmable  slits/aper-
tures based  on  spatial  light  modulators  or  digital  mi-
cromirror devices27. Furthermore, signal interferometers28,
wavefront-folding  interferometers29, and  other  interfer-
ence  methods30 have  been developed to  measure  optical
coherence structures. These interferometric methods in-
volve  a  complicated  and  misalignment-  and  vibration-
sensitive setup  and  are  difficult  or  infeasible  to  imple-
ment  in  some  spectral  regions.  These  problems  can  be
solved using diffraction methods such as the phase-space
approach31,  diffraction  from  an  opaque  obstacle  or  a
transparent  mask with a  phase discontinuity32,33,  or  self-
referencing  holography8,34,35.  However,  the  zero-order
approximation  of  the  Taylor  series  of  illuminated  PCBs
is  involved in these methods31−33.  The authors34,35 used a
Dirac phase  point  as  the  perturbation  point.  Addition-
ally,  other  methods  such  as  the  Hanbury  Brown  and
Twiss (HBT) effect and generalized HBT effect have been
proposed36,37; they are only valid for beams with Gaussi-
an  statistics.  Despite  all  the  efforts,  measuring  both  the
real and imaginary  parts  of  the  optical  coherence  struc-
ture  still  remains  an  open  and  great  challenge.  Thus,  in
this letter, we have provided rigorous mathematical solu-
tions and  employed  the  classical  optical  diffraction  ex-

periment–the  generalized  Arago  spot  experiment38,
wherein  the  transmittance  function  of  the  obstacle  is
complex, to fully recover the optical coherence structure
of PCBs.

 Theoretical derivation

V (r,ω)
Let us consider a scalar, quasi-monochromatic, and stat-
istically stationary random optical field . The stat-
istical properties of this random optical field are charac-
terized by the CSD function in the spatial-frequency do-
main, defined as: 

W (r1, r2,ω) = ⟨V (r1,ω)V∗ (r2,ω)⟩ , (1)
r1 ≡ (x1, y1) r2 ≡ (x2, y2)where  and  are  arbitrary  spatial

position vectors in the source plane; the asterisk and an-
gular brackets  denote  the  complex  conjugate  and  en-
semble average of the random electric fields, respectively;
and ω is the frequency of the light beam, which is omit-
ted hereafter  for  brevity.  The above  equation can be  re-
written as18,19: 

W (r1, r2) = τ (r1) τ∗ (r2) μ (r1, r2) , (2)

τ (r) μ (r1, r2)

τ (r) = 1

where  and  denote  the  amplitude  function
and  the  optical  coherence  structure,  respectively.  Our
aim is  to  measure  this  complex  structure;  we  have  con-
sidered  hereafter for brevity.

In our  protocol,  we  adopted  the  classical  optical  dif-
fraction  experiment —  the  Arago  spot  experiment,
wherein  the  beam  is  obstructed  by  an  obstacle  in  the
source  plane  and  captured  in  the  Fraunhofer  zone.  We
used  the  Huygens-Fresnel  principle  to  study  the  beam
intensity in the observation plane: 

I (u) =
x

μ (r1, r2)O (r1)O∗ (r2)

· h (r1, u) h∗ (r2, u) d2r1d2r2 , (3)

O (r) h (r, u)

μ (r1, r2)

O1 (r) = 1− q (r− r0) O2 (r) = exp (iπ)−
q (r− r0) O3 (r) = exp (iπ/2)− q (r− r0)
q (r)

r0

where u denotes  the  position  vector  in  the  observation
plane;  and  and  denote  the  transmittance
function of the obstacle and response function of the op-
tical system, respectively. To precisely recover the optic-
al  coherence  structure ,  we  needed  to  consider
obstacles  with  three  different  transmittance  functions,
namely , 

,  and ,  where
 describes  the  obstacle  and  is  equal  to  1  inside  the

obstacle  and  zero  otherwise,  and  indicates  the  center
position of the obstacle.

Oi (r) , i = 1, 2, 3
Ii (u)

By  substituting  in Eq.  (3), we  ob-
tained  the  intensity .  We  subtracted  the  intensity
with i=1 from that with i=2 and i=3 to obtain: 
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ΔI21 (u) = I2 (u)− I1 (u) = 4Re [Λ (u)] , (4)
and 

ΔI31 (u) = I3 (u)− I1 (u) = 2Re [Λ (u)]− 2Im [Λ (u)] ,
(5)

respectively, with 

Λ (u) =
x

μ (r1, r2) q (r1 − r0) h (r1, u) h∗ (r2, u) d2r1d2r2 .
(6)

From Eqs. (4–6), we derived: 

Λ (u) = ΔI21/4+ i (ΔI21/4− ΔI31/2) . (7)

h (r, u) = exp (−i2πu · r)

The observation plane was in the Fraunhofer zone, so
the response function of the optical system had a Fouri-
er  structure; ,  when  coordinate
scaling  was  neglected.  We  substituted  this  into Eq.  (6)
and performed a Fourier transform on both sides; Eq. (7)
was then reduced to: 

Λ̃ (r) =
w
μ (r′, r+ r′) q (r′ − r0) d2r′ , (8)

q (r′)
where the tilde denotes the Fourier transform; Eq. (8) is
the main result in our protocol. Using the function 
and capturing the far-zone intensity thrice by refreshing
the obstacles, we can recover the optical coherence struc-
ture of any genuine PCB.

μ (r′, r+ r′) = μ (r)

To simplify Eq. (8), we classified all the genuine PCBs
into  two  types:  Schell-model  and  non-Schell-model
types. Regarding the former, the optical coherence struc-
ture  only  depended  on  the  difference  between  the  two
position  vectors,  namely .  Further
simplifying this  equation,  the  optical  coherence  struc-
ture could be reconstructed as follows: 

μ (r) = Λ̃ (r)
/
S0 , (9)

S0

q (r− r0) = δ (r− r0)

where  denotes  the  obstacle  area.  For  the  non-Schell
model type, the optical coherence structure depended on
the position  of  the  reference  point.  Therefore,  to  accur-
ately measure  the  optical  coherence  structure,  we  adop-
ted  a  Dirac  pinhole  as  the  obstacle,  that  is,

. By further simplifying Eq. (8), the
optical coherence structure could be reconstructed as: 

μ (r0, r+ r0) = Λ̃ (r) . (10)

Λ (u)

Λ (u)

We concluded from Eqs. (9) and (10) that for all genu-
ine PCBs,  the  far-zone  intensity  only  needed  to  be  cap-
tured  thrice  and  after  simple  addition  and  subtraction
calculations, the function  [see Eqs. (4), (5), and (7)]
could be achieved. To recover the complex optical coher-
ence structure,  only  the  Fourier  transform needed to  be
applied to the function , showing the simplicity and

high  efficiency  of  our  proposed  method.  Further,  for
Schell-model PCBs,  the  protocol  operated  quite  inde-
pendently  of  the  obstacle,  regardless  of  its  shape,  size,
and location. For the non-Schell-model PCBs, the Dirac
pinhole was required as the obstacle, and the location of
this  obstacle  determined  the  reference  point  position  of
the  optical  coherence  structure.  It  is  worth  mentioning
that  the  Schell-model  PCBs  were  much  more  common
than the  non-Schell-model  ones,  especially  in  experi-
ments  conducted  in  laboratories.  As  mentioned  in  the
Introduction, there  are  two  very  popular  ways  to  pro-
duce  PCBs.  The  first  one,  based  on  the  van  Cittert-
Zernike theorem, can only be used for generating Schell-
model PCBs whereas the second one,  which is  based on
the mode-superposition  principle,  can  be  used  for  cus-
tomizing Schell-model PCBs as well.

To generate  the PCBs with the specific  optical  coher-
ence  structures  in  the  experiment  and  simulation,  we
employed the mode- superposition principle to realize it
in this  study.  First,  we briefly introduced the RM meth-
od39. According to  the  coherence  theory,  the  optical  co-
herence structure can be rewritten as18: 

μ (r1, r2) =
x

P (κ)K (r1, κ)K∗ (r2, κ) d2κ , (11)

P (κ)
K (r, κ)

where  is  the power spectrum density function that
satisfies  the  non-negativity  condition,  and  is  an
arbitrary  kernel.  Under  the  RM  method39,  the  above
equation can be rearranged as: 

μ (r1, r2) = ⟨T (r1)T∗ (r2)⟩ , (12)

with 

T (r) =
x √

P (κ)K (r, κ)Cn (κ) d2κ , (13)

Cn (κ)

T (r)

where  characterizes  the  electric  field  of  the  white
noise and  obeys  Gaussian  statistics.  Hence,  the  RM  de-
scribed by  also obeys Gaussian statistics.  More de-
tails could be found in ref.39.

To  demonstrate  the  feasibility  of  our  protocol  for
PCBs with different optical statistics, we followed23,40 and
adopted the PM method. The optical coherence structure
is expressed below, which is the discrete form of Eq. (11): 

μ (r1, r2) =
M∑

m=1

N∑
n=1

P (κmn)K (r1, κmn)K∗ (r2, κmn) , (14)

κmn
κ

P (κ)

where  characterizes  the  sampling  point  across  the
area ;  and M and N are  the  numbers  of  the  sampling
points of the function  in the horizontal and vertical
directions,  respectively —to  achieve  high  precision, M
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P (κmn)
K (r, κmn)

and N should  be  large  enough;  is  the  mode
weight; and  is treated as the PM. This method
does not follow Gaussian statistics23.

K (r, κ)
K (r, κ)=

exp
[
i2πH (r)−i2πεa−b0

(
xbκa⊥+ybκa∥

)
+ i2πG (κ)

]
r ≡ (x, y) κ ≡ (κ⊥, κ∥) H (r) G (κ)

r κ ε0

In both methods, determines the beam type of
the  PCB.  The  general  form  is  given  by 

,  where
 and ,  respectively;  and 

are arbitrary real functions of  and , respectively;  is a
constant  in  meters,  and  the  parameters a and b are in-
teger constants. For the Schell-model type, a=1 and b=1.

In the simulation, we could first create a set of modes
in  the  source  plane  by  the  above  equations.  Then,  the
mode  obstructed  by  an  obstacle  is  captured  in  the
Fraunhofer  zone.  As  illustrated  by Eq.  (3),  the  electric
field of the mode in the observation plane is given by 

Ef (u) =
w
Ei (r)O (r) h (r, u) d2r , (15)

Ei (r) Ef (u)where the  and  denote the electric fields of the
modes in the source plane and the Fraunhofer plane, re-
spectively.  With  the  help  of  optical  wave  propagation
principle  and the commercial  software  Matlab41,  we can
achieve  the  modes  in  the  observation plane.  Established

by the mode-superposition principle described above, we
are  able  to  simulate  the  recovery  of  optical  coherent
structures.

 Experimental demonstration

T (r) K (r, κmn)

Figure 1 shows the  experimental  setup  for  the  genera-
tion (in Part 1) and measurement (in Part 2) of the com-
plex  optical  coherence  structures  of  random  optical
fields.  In  part  1,  a  linearly  polarized  beam  with  a
wavelength λ=632.8  nm  is  emitted  from  a  He-Ne  laser
and passes through a half-wave plate (HP). Then, it is ex-
panded by  a  beam  expander  (BE)  and  illuminates  a  re-
flective  phase-only  spatial  light  modulator  (SLM1).  We
rotated  the  HP  to  guarantee  that  the  incident  beam  on
the  SLM  had  horizontal  polarization  because  the  SLM1
only  responds  to  this  direction.  In  our  experiment,  we
used  the  RM or  PM superposition  principle  to  generate
PCBs with a customized optical coherence structure. To
realize  the  desired  mode  in  the  laboratory,  the  complex
amplitude  of  the  RM/PM  needed  to  be  encoded  [de-
scribed by  in Eq. (13) or  in Eq. (14)] into
the  phase-only  SLM.  We  followed  the  protocol
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Fig. 1 | Schematic of an experimental setup for generation (part 1) and measurement (part 2) of the complex optical coherence struc-
tures of random optical fields. (a) Example of the computer-generated holograms loaded on the screen of SLM1, which is used to customize

the complex spatial optical coherence structure of the random optical fields. (b) An instantaneous speckle intensity captured by the CCD1 cam-

era, wherein the irregular area denotes an obstacle. HP, half-wave plate; BE, beam expander; BS1 and 2, beam splitters; SLM1 and 2, phase-

only spastial light modulators; L1–3, thin lenses with same focal length f=25 cm; CCD1 and 2, charge-coupled devices. The irises are used to se-

lect the positive (or negative) 1st diffraction beam; The CCD1 and CCD2 cameras are used to capture the individual mode intensity patterns in the

source plane and the Fourier plane, respectively.
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described  by  Rosales-Guzmãn  and  Frobes42,43 to  design
the computer-generated holograms (CGHs): 

ΦSLM (r) = FEsin [Arg [E (r)] + 2πfxx] , (16)

E (r)
FE

J1 (FE) = Abs [E (r)]

Oi (r) , i = 1, 2, 3

where  denotes  a  pre-encoded  complex  function;
and  is  obtained  by  the  numerical  inversion  of

,  where  J1 is  the  first-order  Bessel
function of the first kind; we applied “Abs” and “Arg” to
the function to achieve its amplitude and phase, respect-
ively; and fx represents the grating frequency in the x-dir-
ection. The beam reflected by the SLM1 passed through a
4f optical imaging system consisting of the thin lenses L1
and L2. We used an iris in the Fourier plane to select the
positive (or negative) 1st diffraction beam, which was the
desired mode;  we  refreshed  the  CGHs  to  achieve  mul-
tiple  modes.  Based  on Eqs.  (12–14),  we  could  produce
PCBs  belonging  to  either  the  Schell-model  or  non-
Schell-model type and those with different optical statist-
ics.  The  beam  transmitted  through  the  second  beam
splitter  (BS2)  arrived  at  the  charge-coupled  device
(CCD1).  When a  mass  of  the  modes  were  captured,  the
desired PCBs could be recovered via the mode-superpos-
ition principle.  In  Part  2,  the  beam reflected  by  BS2  ar-
rived at SLM2. We followed the same protocol [Eq. (16)]
to  encode  an  irregular  obstacle,  as  described  by

,  into  SLM2.  The  modulated  beam  was
focused by the thin lens L3 and captured by CCD2. The

distance between SLM2 and L3 and that between L3 and
CCD2  were  the  focal  lengths  of  L3.  Hence,  the  CCD2
plane was treated as  a  Fourier  plane.  We used an iris  to
select the positive (or negative) 1st diffraction beams. We
captured three intensity profiles using CCD2 via refresh-
ing the CGHs (i.e., the obstacles) in SLM2 and employed
Eqs. (4–10) to recover the optical coherence structure. In
the following  section,  we  present  the  obtained  simula-
tion and experimental results that demonstrate the valid-
ity of our protocol.

P (κ) K (r, κ) = exp (−i2πr · κ)

μ (r)

We  first  considered  Schell-model  PCBs  subjected  to
Gaussian  statistics.  To  illustrate  the  robustness  of  this
protocol, we followed the RM method [see Eqs. (11–13)]
and selected  a  complex  PCB  without  any  analytical  ex-
pression, where we set the letter “A” as the power spectrum
density function  and . We
chose an irregular obstacle [see Fig. 1(b)]. Figure 2 shows
the real and imaginary parts of  and its square of the
modulus;  the  simulation  and  experimental  results  are
presented in the upper and lower rows, respectively. The
perfect agreement between both results demonstrate the
validity  of  our  protocol.  More  importantly,  the  robust
applicability of our method to complex beams and arbit-
rary  obstacles  well  demonstrates  the  robustness  of  our
method. Further,  to  quantify  the  precision  of  our  pro-
posed  protocol,  we  adopt  the  widely  used  structural
similarity  (SSIM)44 to  evaluate  the  similarity  between
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Fig. 2 | (a–c) Simulation and (d–f) experimental results for the [(a) and (d)] real part; [(b) and (e)] imaginary part; and the [(c) and (f)] square of

the modulus of the optical coherence structure function μ(Δr) of the complex partially coherent beam. The letter “A” is adopted as the power spec-

trum density function P(κ), and K(r, κ) = exp (−i2πr·κ). Such a partially coherent beam has been produced by the RM method in the experiment,

and an irregular obstacle has been chosen, as shown in Fig. 1 (b).
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experimental/simulation  results  and  theoretical  results
(not  shown here  to  save  space).  The  SSIM falls  into  the
interval [0, 1], and the larger the value, the better the ex-
perimental/simulation results. The SSIMs of the real and
imaginary  parts  of  simulation  and  experimental  results
are very  close  to  1,  as  shown  in  the  figures.  It  demon-
strates that our protocol has high precision.

P (κ)

K (r, κ) K (r, κ) = exp (−i2πr · κ)

Next, we  shall  describe  how  this  protocol  is  also  ap-
plicable to Schell-model PCBs with non-Gaussian statist-
ics. As suggested by the PM method in Eq. (14), we em-
ployed a  complex  amplitude-modulation  encoding  al-
gorithm [see Eq. (16)] to produce each PM and then syn-
thesize  the  PCB.  In  such a  PCB,  we  adopted  an  off-axis
ellipse  band  as  the  power  spectrum  density  function,

, where it is equal to 1 inside the band and 0 other-
wise. The major-to minor-axis ratio was set to 3∶2. The
width of the ellipse band was 0.16 mm, and the displace-
ment was 0.8 mm along the horizontal axis. Furthermore,

 could  be  obtained  as: .
In order to show the differences and similarities between
the same PCB but with different optical statistics, we dis-
play the experimental  results  from the above PCBs with
Gaussian (produced by the RM method) and non-Gaus-
sian (produced  by  the  PM  method)  statistics  in  the  up-
per  and  lower  rows  of Fig. 3,  respectively.  We  expected

that  their  individual  mode  patterns  would  be  different.
The  patterns  of  the  RM  and  PM  are  shown  in Fig. 3(a)
and 3(e), respectively. Under the RM method, the gener-
ated RM  obeyed  Gaussian  statistics,  and  hence,  the  in-
tensity probability density function (PDF) obeyed a neg-
ative  exponent.  The  experimental  results  for  both  space
and time are shown in Fig. 3(b). The experimentally ob-
tained  intensity  PDFs  of  the  PM  are  shown  in Fig. 3(f);
they  do  not  yield  Gaussian  statistics  in  either  space  or
time.  We  employed  our  protocol  to  recover  the  optical
coherence of  the  structure;  the  real  and imaginary parts
of the optical coherence structures are shown in Fig. 3(c),
3(d), 3(g),  and 3(h).  Although they had different optical
statistics,  the results were identical for both beams. This
demonstrated that  the  proposed  method  would  be  ap-
plicable to PCBs with different optical statistics.

K (r, κ)

For  a  non-Schell-model  PCB,  that  is,  a  PCB  with  a
non-uniformly  correlated  function45, the  optical  coher-
ence  structure  is  highly  sensitive  to  the  reference  point
position.  We  applied Eq.  (10) and  tried  to  recover  the
optical  coherence  structure  of  the  non-Schell-model
PCB. Such a beam subjected to non-Gaussian statistics, is
chosen as  one  example.  Here,  the  adopted  power  spec-
trum  density  function  is  the  same  as  that  in Fig. 3,  and
the kernel function  is given by: 
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show the individual RM and PM patterns, respectively; (b)  and (f)  show the experimentally measured intensity PDF curves in space and time.

The beam intensity captured by the CCD camera is saved as a grayscale image. The magnitude of grayscale value represents the intensity value

of  the  beam.  The  spatial  intensity  PDF  is  obtained  by  calculating  the  gray  value  of  all  pixels  of  a  single  mode  pattern  image  (consisting  of

1288×964 pixels). The temporal intensity PDF is obtained by calculating the gray value of all mode patterns (refreshed by time) at the fixed spa-

tial position; (c, d, g, h) show the experimentally measured real and imaginary parts of the complex optical coherence structures.
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K (r, κ) = exp [−i2π(x2κ⊥ + y2κ∥)/4a0] , (17)

a0 a0 = 1 mwhere  is  constant  and  assumed  to  be .  We
followed PM  method  to  produce  such  a  beam.  The  ex-
perimental  results  for  the  non-Schell  model  PCB  are
shown  in Fig. 4.  We  adopted  different  reference  point
positions  to  show  the  features  of  the  optical  coherence
structure with  the  non-Schell-model  type.  The  simula-
tion and experimental results for the real and imaginary
parts of the optical coherence structures are displayed in
the upper and lower rows, respectively, in Fig. 4. We ad-
opted  the  reference  point  positions r0=(0  mm,  0  mm)
and r0 =(1  mm,  0  mm)  in Fig. 4(a–d) and 4(e–h), re-
spectively.  The  distributions  of  both  parts  of  the  optical
coherence structures  are  indeed  sensitive  to  the  refer-
ence point position r0, showing non-uniform correlation
features. Overall,  the  simulation  and  experimental  res-
ults agreed extremely well.

P (κ)
K (r, κ)

Finally, we shall show our protocol can be highly used
in  the  optical  coherence  structure  related  applications,
and can be conducive to rapid improvement of  applica-
tion efficiency. We took one example - optical coherence
encryption  protocol  proposed  by  Peng  et  al17.  In  that
work, they  used  a  generalized  HBT method for  this  ap-
plication,  which  must  take  a  lot  of  time  for  doing
speckles statistics to recover a single image. Here we dis-
played that  the  proposed  protocol  can  decrypt  the  dy-
namic  images  (or  a  video).  Regarding  the  encryption
technique, they followed Eq. (11); the  function was
plaintext,  the  function  was  the  encryption  key,

P (κ)
K (r, κ) = exp [i10π (x2 + y2)− i2π (xκ⊥ + yκ∥)]

and the optical coherence structure was ciphertext. Here,
we have reconducted the encryption experiment, setting
the  dynamic  letter  “OES ”  as  the  function  and

.  We
used our protocol to recover the optical coherence struc-
tures in  the  experiment;  the  obtained  three  instantan-
eous real and imaginary parts are shown in the first and
second rows in Fig. 5, respectively. The images can be re-
covered via an inverse fractional Fourier transform of the
optical  coherence structure17, and the corresponding in-
stantaneous reconstructed images are shown in the bot-
tom row of Fig. 5. The images rotated and shifted, prov-
ing  that  we  could  decrypt  the  dynamic  images  (or
videos) encrypted  using  the  optical  coherence  encryp-
tion technique. The processing time of mathematical cal-
culation  by  software  Matlab  can  be  ignored,  and  the
speed  of  image  recovery  depends  on  the  refresh  rate  of
the SLM and frame rate of the CCD. In our experiment,
the refresh rate of the SLM was 60 Hz, and the frame rate
of  the  CCD  was  60  fps.  Therefore,  we  can  decrypt  the
video at ideal 20 fps.  We expected to improve the speed
of image recovery by adopting a SLM and a CCD with a
higher  refresh  rate  and  frame  rate.  Regarding  current
commercial  optical  devices,  our  protocol  can  recover
videos at frame rates of up to 100 fps.

 Conclusion
In  this  study,  we  propose  a  robust,  convenient,  and fast
technique to measure the optical coherence structures of
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experiment,  such  a  partially  coherent  beam  has  been  produced  by  the  PM  method,  and  the  Dirac  obstacle  has  been  replaced  by  a  circular

obstacle with a radius of 0.15 mm.
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random optical fields using a classical optical diffraction
experiment—the generalized Arago spot experiment. We
have  provided  rigorous  mathematical  solutions  and
presented them in extremely simplified analytical expres-
sions  based  on different  beam types;  these  solutions  are
applicable to any genuine PCB subjected to different op-
tical statistics.  Regarding  the  Schell-model  PCBs  com-
mon  in  laboratories,  our  protocol  is  valid  for  any
obstacle, regardless  of  its  shape,  size,  and  location.  Re-
garding  the  non-Schell-model  type  (i.e.,  non-uniformly
correlated  PCBs),  the  Dirac  pinhole  was  adopted  as  the
obstacle, and the location of the obstacle determined the
reference point position of the degree of coherence func-
tion.  In  the  experiment,  it  was  necessary  to  capture  the
far-zone intensity only three times, and after simple cal-
culations, we  could  precisely  recover  the  real  and  ima-
ginary parts of the complex optical coherence structures.
The experimental results perfectly agreed with the simu-
lation ones.  They  well  indicate  our  protocol  has  simpli-
city,  high  efficiency,  and  precision.  We  believe  that  our
proposal will shed new light on phase measurement, op-
tical imaging, and other applications.
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