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Single-shot mid-infrared incoherent holography
using Lucy-Richardson-Rosen algorithm
Vijayakumar Anand1,2*, Molong Han1, Jovan Maksimovic1,
Soon Hock Ng1, Tomas Katkus1, Annaleise Klein3, Keith Bambery3,
Mark J. Tobin3, Jitraporn Vongsvivut3* and Saulius Juodkazis 1,4*

In  recent  years,  there  has  been a  significant  transformation  in  the  field  of  incoherent  imaging  with  new possibilities  of
compressing three-dimensional  (3D) information into a two-dimensional  intensity distribution without two-beam interfer-
ence (TBI). Most of the incoherent 3D imagers without TBI are based on scattering by a random phase mask exhibiting
sharp  autocorrelation  and  low cross-correlation  along  the  depth.  Consequently,  during  reconstruction,  high  lateral  and
axial resolutions are obtained. Imaging based on scattering requires an astronomical photon budget and is therefore pre-
cluded in many power-sensitive applications. In this study, a proof-of-concept 3D imaging method without TBI using de-
terministic fields has been demonstrated. A new reconstruction method called the Lucy-Richardson-Rosen algorithm has
been developed for this imaging concept. We believe that the proposed approach will cause a paradigm-shift in the cur-
rent state-of-the-art incoherent imaging, fluorescence microscopy, mid-infrared fingerprinting, astronomical imaging, and
fast object recognition applications.
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Introduction
In the past,  holography,  and three-dimensional  imaging
(3D) techniques  were  mostly  powered by  coherent  light
sources since  spatially  incoherent  illumination  deman-
ded cumbersome optical architectures such as rotational
shearing  interferometers,  triangle  interferometers  and
conoscopic holography1. The need for such optical archi-
tectures  is  derived from the requirement  that  two-beam

interference (TBI) was needed to compress 3D informa-
tion  in  a  two-dimensional  (2D)  hologram.  The  birth  of
active  optical  devices  such  as  spatial  light  modulators
and computer processing methods, eased the constraints
of  optical  architectures  of  incoherent  holography  with
TBI. One milestone in this research direction was the de-
velopment of  Fresnel  incoherent correlation holography
(FINCH),  which  is  one  of  the  widely  used  incoherent
holography architectures today2−4. In 1968, deconvolution 
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based 2D coded aperture imaging (CAI) using randomly
arranged pinholes was demonstrated by Dicke and Ables
to  overcome  the  low-intensity  problem  when  using  a
single  pinhole  for  X-ray  and  gamma-ray  imaging5,6.
However, the  study  was  not  explored  beyond  2D  ima-
ging. In 2008, a 3D imaging technique based on CAI was
demonstrated  with  wavelength  as  the  third  dimension7.
Later, the CAI method was extended to 3D imaging and
four-dimensional  (4D)  imaging  with  depth  as  the  third
dimension8−10,  and  depth  and  wavelength  as  the  third
and  fourth  dimensions,  respectively11,12.  Therefore,  CAI
offers  multidimensional  imaging  capabilities  without
TBI and  with  a  minimum  number  of  optical  compon-
ents,  which  makes  them  more  attractive  than  FINCH-
based techniques.

This  research  project  began  when  we  attempted  the
CAI method employing the benchtop Fourier transform
infrared microspectroscopy (FTIRm) system at the Aus-
tralian Synchrotron operating with a conventional Glob-
arTM IR  source.  This  instrument,  which  comprises  a
Bruker  Hyperion 3000 IR  microscope  and  V70  FTIR
spectrometer, is used in support of many applications at
the  Infrared  Microspectroscopy  (IRM)  beamline,
whereby  the  identification  and  analysis  of  functional
groups within a sample enable a better understanding of
diverse materials  from diseased tissue to composite  ma-
terials  and  foods  to  paintings13−15.  We  applied  the  CAI
method  to  the  benchtop  FTIR  instrument  at  the  IRM
beamline by manufacturing scattering lenses on calcium
fluoride  (CaF2)  substrates.  A  matching  15×  (NA  =  0.4)
Cassegrain objective lens (COL) and a 64×64 focal plane
array  (FPA) imaging detector  (pixel  size  =  40  μm) were
used.  During  this  study,  we  noticed  that  COL exhibited
interesting focal  characteristics  with  sharp  autocorrela-
tion functions  and low cross-correlation with  respect  to
other  planes  (see  Supplementary  information  Section  1,
Section 2).

Let us ask this fundamental question – why is scatter-
ing based coded apertures preferred for 3D imaging? The
reason is that the average speckle size formed by scatter-
ing  is  approximately  the  diffraction  limited  spot  size16.
Consequently,  the autocorrelation function is  sharp and
about twice that  of  the size of  the focal  spot that  can be
obtained  with  a  lens  of  the  same  NA1.  Secondly,  the
speckle patterns change with depth resulting in the cap-
ability  to  discriminate  different  planes  along  depth  by
cross-correlation.  Therefore,  for  3D  imaging,  a  sharp
autocorrelation  and  low  cross-correlation  along  depth

(SALCAD) is needed. The fields generated using scatter-
ers  can  be  classified  as  random  SALCAD  fields  and  the
one from  COL  as  a  deterministic  SALCAD  field.  De-
terministic  SALCAD  fields  require  a  lower  photon
budget  than  the  random  counterparts  and  the  point
spread functions  (PSFs)  can  be  calculated,  unlike  ran-
dom  SALCAD  fields  where  PSFs  are  recorded9.  So,  this
imaging concept  can  be  considered  as  correlation  holo-
graphy when the SALCAD condition is satisfied and the
object is illuminated by a spatially incoherent source. Re-
cently, a modified approach was employed where sparse
randomly arranged focal spots were generated instead of
scattering  to  improve  the  signal  to  noise  ratio17.
However,  this  method  is  suitable  only  for  imaging  a
single  plane,  and  to  image  multiple  planes,  many  such
phase masks are needed to be spatially multiplexed. Fres-
nel  zone  aperture  based  2D  imaging  systems  have  been
reported in the past18−20. 

Results and discussion
The  FTIRm  consists  of  collinear  dual  beams  generated
from  two  sources:  (i)  a  standard  white  light  source  for
bright-field visible light observation of the sample plane
and (ii) a broadband GlobarTM IR source that allows the
acquisition of mid-IR (MIR) spectral images in the range
~  899  cm–1–3845 cm–1 as  shown in Fig. 1(a).  The  FTIR
single-beam  spectrum  obtained  from  the  GlobarTM

source is shown in Fig. 1(b) in which a total of 765 spec-
tral  channels  equally  separated  by  an  average  value  of
3.85 cm–1 were used. The MIR beam from the FTIR spec-
trometer  is  focused  on  the  sample  plane  and  the
scattered  signal  is  recorded  by  the  FPA  detector.  With
15 × COL, the pixel pitch is ~2.7 μm in the sample plane
and the field of view is around ~172 × 172 μm2.

O
OH = O⊗ PSF+ σ σ ⊗

PSF
O

O = O (z1, λa) + O (z2, λa) + OT λa
OT

The IR light  produced by the GlobarTM source is  spa-
tially incoherent  and  so  the  light  emitted  from  one  ob-
ject point does not interfere with the light emitted from
another point,  instead their intensities add up. As a res-
ult, this FTIRm system is a shift-invariant imager, linear
in  intensity,  i.e., PSF and the  intensity  distribution  ob-
tained  for  an  object  can  be  expressed  as

, where  is the noise and ‘ ’ is a 2D
convolutional  operator  (see  Supplementary  information
Section 1, Section 2).  Therefore, if  the  is known for
all axial shifts Δz, then the 3D image of  can be recon-
structed by solving the above equation. For instance, ob-
ject , which absorbs at 
at z1 and z2 while  refers to non-absorbing layers. The
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O z1
OR (λa) = OH ∗ PSF (z1) = O (z1, λa)⊗ PSF (z1) ∗

PSF (z1) + O (z2, λa)⊗ PSF (z2) ∗ PSF (z1) + N ∗

O (z1, λa)
PSF (z1) ∗ PSF (z1)

O (z2, λa) PSF (z1) ∗
PSF (z2) O (z2, λa)

reconstruction of  the chemical  image of  at  plane  is
given as 

,  where  ‘ ’
is  a  2D  correlational  operator  and N is the  reconstruc-
tion noise. The reconstructed image is  sampled
by the autocorrelation function , which
is  a  Delta-like  function  with  a  minimum  width
~1.22λ/NA added  to  sampled  by 

, which is a blurred version of .
PSF

PSF(x, y, ν)

The s  were  recorded  using  a  15  μm  pinhole  for
Δz = 0  to  250 μm in steps  of  25  μm.  The lateral  resolu-
tion of the system is therefore ~ 15 μm. The spectral data
cubes  for Δz = 0,  125 μm and 250 μm along
14 averaged (~100 channels) spectral channels are shown

PSF(x, y,  Δ z)

in Fig. 1(c–e),  respectively,  whose  non-changing  images
along ν indicate  the  suppression  of  spectral  aberrations.
The data structure of the output generated by the OPUS
8.0 software  was  transformed  into  cube  data  for  pro-
cessing  in  MATLAB.  The  COL generates  sharp  annular
intensity distributions  with  four  peaks,  which  are  re-
sponsible  for  the  sharp  autocorrelation  functions  as
shown in Fig. 1(f–h). Only a slight increase in the width
of  the  autocorrelation  functions  was  noticed  for  larger
values  of  Δz.  The  depth  cube  data  was
generated from recorded PSFs for Δz = 0 to 250 μm and
averaged  over  all  the  765  spectral  channels  as  shown  in
Fig. 1(i).  The  spatial  and  spectral  cubes  were  combined,
cross-correlated  with  the  central  spatio-spectral  point
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Fig. 1 | Simplified schematic of the FTIR microspectroscopic system and the measured spatial and spectral characteristics. (a) Abbrevi-

ations: COL – Cassegrain objective lens, IR – Infrared, BS – beam splitter, M – mirror, L – lens, FTIR – Fourier transform infrared spectrometer,

FPA – focal plane array, MSP – Motorized sliding plate, MCT - mercury-cadmium-telluride, A – aperture, MIR – mid infrared, PSF – point spread

function. The MIR from the FTIR spectrometer is sent into the IR/VISIBLE microscope. The microscope is aligned collinearly for both MIR and ref-

erence visible light. There are two modes of operation: (reflection and transmission) and two modes of data recording (mapping using single ele-

ment MCT detector and imaging using multi-element FPA detector). (b) Spectral profile of the GlobarTM source with 14 spectral channels marked

in blue are selected for the study. (c–e) 4D plot of the PSFs recorded for an axial aberration Δz = 0, 125 μm and 250 μm, respectively. Spectral

cube data PSF(x, y, ν) was formed from the 14 spectral channels each averaged over 100 spectral channels –50 to +50 channels. The non-chan-

ging pattern along ν indicates spectral aberrations suppressed by the COL. (f–h). Autocorrelation cube data of (c–e), respectively. The thin cyl-

indrical structures obtained for Δz = 125 μm and 250 μm indicates the possibility of imaging in deconvolution mode with a similar resolving power

as Δz = 0 μm. (i) Depth cube data PSF(x, y, Δz) from 0 to 250 μm. Unlike a regular lens where the intensity distribution is filled, the COL gener-

ates hollow intensity distribution with four distinct lobes causing a sharp autocorrelation function. (j) The spectral and spatial cube data were com-

bined to form 8415 spatio-spectral images corresponding to the 14 spectral channels and aberrations 0 to 250 μm in steps of 25 μm and was

cross-correlated with the image corresponding to the central spatio-spectral point (2307 cm–1, 125 μm) and cross-correlation value at the origin

(x=0, y=0) is plotted. The FWHM along z was ~50 μm indicating that the intensity of a plane 50 μm apart has a loss of about 50% of intensity

which is ideal for 3D MIR imaging applications.
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(2307 cm–1, 125 μm) as shown in Fig. 1(j). It is seen that
the FWHM along the depth axis is sharp at ~50 μm with
mild fluctuations along the spectral axis. The above spa-
tio-spectral  characteristics  of  the  FTIRm  system  are
highly desirable for 3D chemical imaging.

PSF OH

R =

∣∣∣∣F−1

{∣∣∣P̃SF∣∣∣αexp [iarg(P̃SF)] ∣∣∣ÕH∣∣∣β
exp

[
−iarg

(
ÕH

)]}∣∣∣

Rn+1 = Rn

{
OH

Rn ⊗ PSF
PSF′

}
PSF′

PSF

The next  important  aspect  of  imaging  is  the  recon-
struction  technique.  It  is  well-established  from previous
studies  that  the  PSF  is  not  the  optimal  reconstruction
function  by  cross-correlation21, and  a  non-linear  recon-
struction  (NLR)  method  was  introduced  by  Rosen  in
which the magnitudes of the spatial frequency spectrum
of  the  and  are  tuned  in  powers  of α and β

respectively in 

 until minimum  entropy  was  ob-

tained (see Supplementary information Section 3)22. An-
other approach is the Lucy-Richardson algorithm (LRA),
which consists of a forward convolution between the ini-
tial guess solution and the PSF, which is compared with
the recorded OH and the ratio is backward cross-correl-
ated with the PSF and the result is multiplied to the ini-
tial  guess.  This  process  is  iterated  until  the  maximum
likelihood  object  function  is  reconstructed23,24.  The
(n+1)th reconstructed  image  is  given  as

,  where  is the  180  de-

grees rotated version and the complex conjugate of .
In  this  study,  it  was  noticed  that  neither  NLR  nor  LRA
were optimal; however, when the linearity was broken of
the backward  cross-correlation  of  LRA  by  the  NLR  ap-
proach, a  rapid  convergence  and  significantly  better  es-
timation  was  obtained.  The  schematic  of  the  Lucy-
Richardson-Rosen  algorithm  (LRRA)  is  shown  in Fig.
2(a) (see Supplementary information Section 3).

The  spatio-spectral  aberrations  of  the  system  have
been studied25. A cross shaped object (150 μm × 150 μm)
and  four  random  pinholes  (50  μm  in  diameter)  ablated
on chromium-gold  layer  coated  calcium  fluoride  sub-
strate  were  used  as  test  objects.  The  visible  light  image
and  IR  image  when  Δz =  0  are  shown  in Fig. 2(b) and
2(c) respectively.  The  IR  image  when  Δz =  100  μm  is
shown in Fig. 2(d). The PSF recorded for Δz = 100 μm is
shown in Fig. 2(e).  The reconstruction results  with LRA
(150 iterations) (Supplementary Video 1), NLR (α = 0, β
= 0.6) and LRRA (20 iterations, α = 0.2, β = 1) (Supple-
mentary Video 2)  are shown in Fig. 2(f–h),  respectively.
The recorded IR images for Δz = 0, 150 μm and 200 μm
are shown in Fig. 2(i), 2(j) and 2(l), respectively, and the

reconstructions  using  LRRA  for  Δz =  150  μm  and  200
μm  are  shown  in Fig. 2(k) and 2(m),  respectively.  The
RMSE and  entropy  for  LRA,  NLR  and  LRRA  are  com-
pared for  the  cross  object  and  LRRA was  found  to  per-
form  significantly  better  than  both  LRA  and  NLR  as
shown in Fig. 2(n).

The experiment was then repeated on a bundle of silk
fibers.  The  absorption  spectrum of  silk  is  shown in Fig.
3(a) and  the  chemical  image  (Δz =  0)  is  shown  in Fig.
3(b). The reconstruction results of Fig. 3(b) using LRRA
with PSFs recorded at Δz = 25 μm, 50 μm and 75 μm are
shown in Fig. 3(c–e), respectively. The image directly re-
corded  at  Δz =  50  μm is  shown in Fig. 3(f).  Comparing
Fig. 3(d) and 3(f),  a  good  overlap  can  be  observed.  A
single  strand  of  silk  fiber  was  imaged  as  shown  in Fig.
3(g) whose  varying  blur  indicates  varying  depth.  It  was
reconstructed  using  a  PSF  recorded  at  Δz =  50  μm  as
shown in Fig. 3(h) and the corresponding direct image is
shown in Fig. 3(i). A polymer test pattern, prepared on a
CaF2 substrate,  using  a  chrome-on-glass  United  States
Air Force (USAF) 1954 target as a lithography mask was
examined next,  whose  absorption  spectrum is  shown in
Fig. 3(j). The  direct  imaging  and  reconstruction  of  ob-
ject  ‘3’ from the USAF target  using LRRA are shown in
Fig. 3(k) and 3(l), respectively.  In some cases,  it  was ne-
cessary to adjust the magnification of the PSFs before re-
construction  to  achieve  optimal  reconstruction  and  for
some  cases,  synthetic  PSFs  generated  from  recorded
PSFs  were  used  for  reconstruction  (see  supplementary
information Section 4). 

Conclusion
In conclusion, we demonstrated 3D imaging without TBI
using deterministic  fields.  Unlike  scattering  based  SAL-
CAD  fields,  where  the  PSFs  have  to  be  recorded  at  all
axial planes, with deterministic SALCAD fields it is pos-
sible to calculate the PSFs from the complex amplitude of
the optical modulator.  Consequently,  the reconstruction
in this case mimics that of conventional incoherent holo-
graphy. Furthermore,  we  have  invented  a  new  recon-
struction  method  by  introducing  non-linearity  into  the
LRA using  the  NLR  approach,  which  performs  signific-
antly  better  than  both  LRA  and  NLR.  The  method  and
reconstruction  have  been  demonstrated  in  the  FTIRm
chemical  imaging  system  by  introducing  necessary  data
structure  conversions  (see  Supplementary  information
Section 5). We believe that the approach can be easily ad-
apted  to  power  sensitive  areas  such  as  astronomical,
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image of all the 765 spectral channels of the cross object at (c) Δz = 0. (d) Δz = 100 μm, (e) The PSF recorded for Δz = 100 μm. Reconstruction

results of the cross object using (f) LRA (150 iterations), (g) NLR (α = 0, β = 0.6) and (h) LRRA (20 iterations, α = 0.2, β = 1). (i) Direct MIR ima-

ging result of four pinholes Δz = 0. (j) Intensity pattern recorded for four pinholes for Δz = 150 μm and (k). its reconstruction result. (l) Intensity

pattern recorded for four pinholes for Δz = 200 μm and (m). its reconstruction result. (n) Bar plots of RMSE and entropy for LRA, NLR and LRRA.

The performance of LRRA is found to be significantly higher than LRA and NLR with RMSE ratio of 13 and 5 times, respectively. The LRRA has a

rapid convergence with 7 times faster than LRA for the cross object. It must be noted that the above values are for only the cross object. The per-

formances vary with the complexity of the object with the minimum difference for simple objects and significant difference for complicated objects.

The scale bar is 50 μm.
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obtain Fig. 3(b). (b) Direct imaging of a bundle of silk threads in 3D space, showing focused and out-of-focus objects. Reconstruction result us-

ing LRRA (α = 0.5, β = 1, iterations = 18) using PSFs recorded at (c) Δz = 25 μm, (d) Δz = 50 μm and (e), Δz =75 μm. (f) Direct imaging of a
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system is ~15 μm.
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fluorescence and biomedical imaging. Above all, we also
believe  that  this  research  work  will  benefit  the  users  of
synchrotron based FTIRm technique to be able to invest-
igate  multiple  samples  during  the  limited  beamtime  in
the future  which  was  the  motivation  that  led  to  this  re-
search work.  The  proposed  method  opens  a  new  direc-
tion  where  deterministic  fields  and  structured  light  can
be  engineered  for  rapid  3D  imaging  with  a  low  photon
budget, high lateral, and axial resolutions.

The evolution of incoherent holography over the years
from  the  complicated  architectures  such  as  rotational
shearing  interferometer26,  conoscopic  holography27,  and
FINCH2,3, to  this  version  of  holography  with  determin-
istic SALCAD  fields  using  Lucy-Richardson-Rosen  al-
gorithm  is  interesting.  We  believe  that  the  proposed
method will  compete  with  the  existing  coherent  holo-
graphy  methods  such  as  MIR  digital  holography  and
holographic  interferometry  using  quantum  cascade
laser28,  single  shot  Raman  holography29,  and  label-free
second harmonic phase imagers30.
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