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Abstract: Transparent conducting aluminum doped tin oxide thin films were prepared by sol-gel dip coating method with differ-
ent  Al  concentrations  and characterized by  X-ray  diffraction (XRD),  atomic  force  microscopy (AFM),  UV–Vis  spectrophotometry
and  photoconductivity  study.  The  variation  observed  in  the  properties  of  the  measured  films  agrees  with  a  difference  in  the
film's thickness, which decreases when Al concentration augments. X-ray diffraction analysis reveals that all films are polycrystal-
line with tetragonal structure, (110) plane being the strongest diffraction peak. The crystallite size calculated by the Debye Scher-
rer’s formula decreases from 11.92 to 8.54 nm when Al concentration increases from 0 to 5 wt.%. AFM images showed grains uni-
formly  distributed  in  the  deposited  films.  An  average  transmittance  greater  than  80%  was  measured  for  the  films  and  an  en-
ergy  gap  value  of  about  3.9  eV  was  deduced  from  the  optical  analysis.  Finally,  the  photosensitivity  properties  like
current–voltage  characteristics, ION/IOFF ratio,  growth  and  decay  time  are  studied  and  reported.  Also,  we  have  calculated  the
trap depth energy using the decay portion of the rise and decay curve photocurrent.
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 1.  Introduction

UV  photodetectors  have  attracted  considerable  atten-
tion in recent years due to their application in environmental,
biological analysis, optical communication, flam detection, as-
tronomy  lithography  and  detection  of  missiles[1, 2].  Transpar-
ent  conductive  oxide  (TCO)  films  such  as  tin  oxide  (SnO2),
zinc oxide (ZnO) and titanium oxide (TiO2)  are frequently util-
ized  for  the  UV  photodetectors  application[3–6].  In  particular,
most  attention  concerned  tin  oxide  (SnO2)  semiconductor
due to its special properties, which made it a required materi-
al for optical and optoelectronic applications[7, 8] such as wide
band gap (3.6–4 eV)[9, 10],  large exciton binding energy (about
131  eV)[11],  high  optical  transmittance[12],  chemical  stability
and n-type character due to native defects such as oxygen va-
cancies  and  tin  interstitials,  which  can  exist  in  two  possible
valence states: Sn2+ and Sn4+[13]. A notable defect in SnO2 and
most  metal  oxides  are  oxygen  vacancies[14].  These  defects
may behave like traps for free electrons or holes, such as a re-
combination  or  generation  center,  which  strongly  influence
the  photoconductivity  and  photoresponse  process[15].
However,  persistent  photoconductivity  and  big  recovery
times  are  problematic  characteristics  due  to  deep  traps[16].
Information  about  these  traps  levels  can  be  obtained  from
the  decay  curve  of  photoconductivity  after  cutoff  of  excita-

tion[17, 18].
Previous  studies[19–22] demonstrated  that  the  control  of

the  concentration  of  oxygen  vacancy  by  doping  with  differ-
ent  elements  such as  magnesium[19],  nickel[20],  tin[21] and alu-
minum[22–24] is  among  the  ways  to  improve  the  performance
of  UV  photodetectors  in  metal  oxides[25, 26].  The  doping  pro-
cess such Al, change the type of SnO2 from n to p by substitu-
tion of Sn4+ by Al3+ ion and causing a disorder and some scat-
tering  centers,  resulting  in  an  increase  in  hole  concentration
with increasing the Al content[27, 28]. Also, the method and con-
ditions  of  synthesis  have  a  basic  role  in  UV  photodetectors
properties  such  as  solution  concentration[25],  thin  film  thick-
ness[26],  annealing  temperature  and  time,  the  photoresponse
being  profoundly  augmented  with  increasing  annealing
time[29].

Elaboration conditions have a big influence on the proper-
ties  and  qualities  of  layers.  SnO2 thin  films  can  be  obtained
by  numerous  methods  of  deposition[30–33],  among  them,  sol-
gel  dip  coating  technique  presents  several  advantages  such
as  simplicity,  excellent  homogeneity,  the  possibility  of  ease
doping,  low  cost,  large  area  substrate  coatingand  low  reac-
tion temperature.  Moreover,  Al-doped SnO2 thin films can be
obtained easily  using this  technique,  which makes them very
attractive in many applications such as gas sensors[34] and sol-
ar  cells[35].  The  thin  films  photoconductivity  properties  based
on pure and doped SnO2 have been studied by a number of re-
search  such  as  Sb-doped  SnO2

[36],  As-doped  SnO2
[37],  Al-

doped SnO2
[38], and the effect of twin boundaries on photocur-

rent  decay  of  the  pure  SnO2
[39].  However,  the  studies  about

  
Correspondence to: B Salima, sali_benkara@yahoo.fr
Received 10 SEPTEMBER 2022; Revised 5 NOVEMBER 2022.

©2023 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2023) 44, 032801

doi: 10.1088/1674-4926/44/3/032801

 

 
 

https://doi.org/10.1088/1674-4926/44/3/032801
https://doi.org/10.1088/1674-4926/44/3/032801
mailto:sali_benkara@yahoo.fr


the  UV  photoconductivity  and  photosensitivity  in  Al-doped
SnO2 thin  films  prepared  by  sol-gel  dip  coating  are  not
enough.

In  this  work,  we  prepared  Al-doped  SnO2,  using  sol-gel
process. The influence of aluminum concentration on the per-
formance of UV photodetectors based on SnO2 thin films had
been studied.

 2.  Experimental details

 2.1.  Samples preparation and characterization

Using a sol-gel dip coating method, undoped and alumin-
um  doped  SnO2 thin  films  were  successfully  deposited  on
glass substrates. Tin (II) chloride (SnCl2·2H2O) was dissolved in
30  mL  of  ethanol  absolute  (C2H6O),  then  a  few  drops  of  HCl
were added to the solution for accelerating the hydrolysis reac-
tion between the precursor and the solvent. Aluminum trichlor-
idehexahydrate (AlCl3·6H2O), was added to the solution for Al
doping (3 wt.%, and 5 wt.%). After vigorously stirring at 70 °C
for 120 min, we obtained a homogenous solution. On the oth-
er hand, the glass substrate was cleaned with acetone, ethan-

ol  and deionized water  for  10  min  in  the  ultrasonic  bath  and
then  dried  at  room  temperature.  The  substrates  were  im-
mersed  in  the  solution  for  1  min  with  a  withdrawal  speed  of
60 mm/min, and next dried at 200 °C for 10 min. After repeat-
ing  this  procedure  10  times,  the  films  were  annealed  at
550  °C  for  2  h. Fig.  1 shows  the  process  of  synthesizing  pure
and Al-doped SnO2 thin films using the sol-gel process.

X-ray  diffraction  (XRD,  Burker  AXS-8D)  with  CuKα  (λ =
1.541 Å) radiation was used to study the structural properties.
The surface  morphology of  the  SnO2 films  was  performed by
atomic force microscopy (A100-AFM). UV-visible spectrophoto-
meter  (JascoV-360)  was  used  to  study  the  optical  properties
in  the  range  (200–1100  nm)  to  determine  the  band  gap  of
samples.

 2.2.  Photodetectors measurements

Pure  and  Al-doped  SnO2 based  UV  photodetection  me-
asurements  were  performed  using  Ag  electrodes  in  a  planar
interdigital  configuration  as  shown  in Fig.  2.  The  Keithley
(2401)  source  meter  was  used  to  measure  the
current–voltage (I–V) characteristics in dark and under UV illu-

 

Precursor
(SnCl2·2H2O) Dopant

(AlCl3·6H2O)

Glass
substrate

Homogenous
solution

Dip coating
(60 mm/min)

Repeat (10 times)

Drying (200 °C/10 min)

Annealing (550 °C/2 h)Thin films of Al-doped SnO2 with (0 wt.%, 3 wt.%, 5 wt.%)

Stlrring (70 °C/2 h)

After 24 hours

HCl

Solvent
(C2H6O)

Fig. 1. (Color online) The schematic drawing of pure and Al-doped SnO2 thin films produced with a sol-gel dip coating method.
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Fig. 2. (Color online) Experimental setup of UV photo-detection.
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mination  to  determine  the  UV  photoresponse.  Illumination
was  performed  by  a  UV  lamp  (VL-4LC,  vilberlourmat)  avail-
able in two wavelengths: 254 and 365 nm, and an intensity of
350 μW/cm2.

 3.  Result and discussion

 3.1.  X-ray diffraction studies

X-ray  diffraction  patterns  for  undoped  and  Al-doped
SnO2 thin films are shown in Fig. 3. These films exhibit a poly-
crystalline  nature  in  a  tetragonal  rutile  structure  (JCPDS  41-
1445).  No  peaks  related  to  Al  or  Al2O3 were  detected  in  the
XRD  pattern  this  may  be  caused  to  the  low  Al  content  and
the  Al3+ ions  have  been  replaced  by  Sn4+ site  without  chan-
ging  tetragonal  structure[40].  In  previous  studies,  the  SnO2

thin  films  doped  with  Al  and  prepared  by  sol-gel  don’t  de-
tect  secondary  phases  related to  Al  doping[41].  It  can be seen
that  the  (110)  plane  is  the  strongest  diffraction  peak.  Other
less-intense  peaks  are  observed  at  (101),  (200)  and  (210)
planes.  In  addition,  the  intensity  of  the  diffraction  peaks  de-
creases  with  increasing  Al  concentration,  the  augmentation
of  which  reduces  the  film  thickness.  These  results  indicate  to
uniform  distribution  of  Al  ions  across  the  SnO2 lattice[42] and
agree with some reports[41, 43].

The  crystallite  size  (D)  can  be  calculated  from  the  Scher-
rer's equation[7]: 

D = Kλ
βcosθ

, (1)

where K is  a  constant  (shape  factor,  about  0.9), λ is  the  X-ray
wavelength, β is  the  full  width  at  half  maximum  of  the  XRD
peak, θ is the Bragg diffraction angle.

The  (110)  peak  was  utilized  to  estimate  the  crystallite
size.  It  can be noticed from Table 1 that  the crystallite  size of
the films decreases from 11.92 to 8.54 nm when Al concentra-
tion  increases  from  0  to  5  wt.%  concentration.  This  proves
that  the  incorporation  of  Al3+ into  SnO2 structure  obstructs

crystallization and prevents crystal growth[44].
a = b and cTo calculate the lattice parameters , the follow-

ing equations have been used[45]: 


d
hkl

= h + k

a
+

l

c
, (2)

 

a = b =
√
d(hkl) = √

d(), (3)
 

c = √


d() −

a

. (4)

a

From Table  1,  the  lattice  parameters  and  unit  cell  volume  of
deposited SnO2 thin films correspond with the perfect  values

 = b = 4.738 Å, c = 3.186 Å and V = 71.5 Å. Furthermore, the
lattice parameter increases from 4.70 to 4.742 Å when Al con-
centration  increases  from  0  to  3  wt.%  and  then  decreases  to
4.738  Å  when  Al  concentration  is  equal  to  5  wt.%.  This
change  in  a  random  manner  in  lattice  parameters a and b
may be due to a disturbance in the grains of the film after dop-
ing with Aluminum[46]. (ε)Moreover,  the  strain  of  the  films  was  estimated  using
the following relation[40]: 

ε =
βcosθ


. (5)

The change of strain in the SnO2 thin films observed in Table 1
can  be  explained  by  the  variation  in  dopant  concentration.
The  strain  increases  with  increasing  Al  concentration  be-
cause the incorporation, into the SnO2 lattice of Al, which has
an  ionic  radius  (0.53  Å)  smaller  than  Sn  (0.69  Å),  leads  to  de-
fects  and  lattice  distortions,  resulting  in  a  different  type  of
stress. The mean crystallite size is estimated to be ~ 11.92 nm
for  the  undoped sample  and it  shows a  decreasing tendency
as  the  Al  content  is  increased.  This  behavior  can  be  attrib-
uted  to  the  change  in  lattice  parameters[47] and  the  increase
of  strain  in  the  thin  films  that  affect  the  normal  growth  of
SnO2,  these  results  generally  agree  with  the  changes  ob-
served  in  the  lattice  parameters.  Related  results  have  been
noted  in  the  literature  for  Ni-doped  SnO2

[48] and  Ti-doped
SnO2

[47].  The  solubility  of  dopants  is  basically  dependent  on
valence state and ionic radius value.

The calculation of the texture coefficient Tc(hkl) allows us
to deduce the preferred orientation of growth via the follow-
ing formula[46]: 

Tc (hkl) = I(hkl)/I(hkl)

n (∑ I(hkl)/I(hkl)) , (6)

I(hkl) (hkl) I(hkl)(hkl)where  is  the  measured  intensity  of  the  peak,  is
the standard intensity of  peak corresponding to the JCP-
DS data and n is the diffraction peaks observed.

Table 1.   XRD parameters, crystallite size, strain and RMS of undoped and Al-doped SnO2 thin films.

Sample 2θ (°) Β (°) D (nm) Strain (10−3) a = b (Å) c (Å) RMS (nm) Ra (nm) Da (nm)

SnO2 26.79 0.71 11.92 3.27 4.700 3.203 5.06 4.25 73.0
3 wt.% Al-SnO2 26.56 0.74 11.40 3.42 4.742 3.195 2.32 1.76 45.5
5 wt.% Al-SnO2 26.58 0.99 08.54 4.60 4.738 3.161 2.01 1.67 29.3
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Fig.  3.  (Color  online)  XRD  patterns  of  undoped  and  Al-doped  SnO2

thin films.
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(hkl)

Table  2 shows  the  texture  coefficient  values  for  (110),
(101), (200) and (210) peaks. The (110) diffraction peak presen-
ted  a  high  texture  coefficient  value  for  all  deposited  films,
which  means  the  (110)  plan  is  the  preferred  orientation,  this
confirmed the XRD patterns results.  The origin of  preferential
orientation  along  (110)  can  be  interpreted  by  the  periodic
bond  chain  (PBC)  theory[46].  Via  this  theory,  the  SnO2 crystals
faces can be divided into flat (F), stepped (S) and kinked (K) ac-
cording to 2,  1  and none number respectively of  PBC parallel
to the faces . Forms F and K are of great interest for cassit-
erite  of  SnO2.  Since  they  consist  of  (101)  and  (111)  crystal
planes,  respectively[49].  For  the  crystal  grains  formed  by  (101)
F  faces  are  two  possible  preferred  orientations,  namely  (110)
and  (001).  Since  the  (001)  orientation  was  not  observed  by
XRD,  the  (110)  preferential  orientation  was  formed  by  the
(101) F faces[50].  These results are similar to some previous re-
ports[51].

 3.2.  Surface morphological study

For  analyzing  the  surface  morphology  of  SnO2 thin  films
doped  with  different  Al  doping  concentrations,  the  atomic
force  microscope  was  used.  The  area  of  3  ×  3 μm2 was
scanned.  From  3D  AFM  images,  which  are  obtained  by  high
scan mode and illustrated in Fig. 4. It can be clearly seen that
the surface morphology of pure film is very different from Al-
doped SnO2 thin films.

The values of the root mean square roughness (RMS), the
average  roughness  (Ra)  and  the  grain  size  (Da)  for  all  films
were  evaluated  using  Gwyddion  2.60  program  and  reported
in Table  1.  It  can  be  noted  that  the  surface  roughness  is
strongly  dependent  on  the  Al  concentration.  The  values  of
RMS and Ra decreases from 5.06 to 2.01 nm and from 4.25 to
1.67  nm  when  Al  concentration  increases  from  0  to  5  wt.%.
The low values of RMS and Ra for prepared films are similar to
the  result  which  has  been  obtained  from  the  In-doped  SnO2

thin  films  deposited  with  sol-gel  spin  coating  technique[52]

and from Zr-doped SnO2 thin films synthesized by spray pyro-
lysis[53].  As for grain size, it also decreases with the increase in
Al+3 ions  concentration and it  is  in  good agreement  with  the
XRD  results.  As  well,  the  size  of  the  grains  estimated  from
AFM is bigger than that determined through XRD. This is due
to  the  fact  that  AFM  reveals  particle  agglomerations,  where-
as XRD provides an average grain size[53].

 3.3.  Optical study

The  optical  transmission  spectra  of  undoped  and  Al-
doped  tin  oxide  thin  films  elaborated  by  sol-gel  dip  coating
technique on a glass substrate and annealed at 550 °C are plot-
ted in Fig.  5.  All  films display high transmittance greater than
80%  in  the  400–1100  nm  interval  of  wavelength.  According
to Ref.  [54],  the low transmittance for Sn-doped films may be
due  to  the  increased  optical  scattering  caused  by  the  rough
surface morphology.

From the observation of interference fringes, one can de-
duce that the film thickness decreases as Al concentration aug-
ments.  The  band  gap  energy  values  of  Al-doped  tin  oxide
thin films were calculated by using the Tauc equation[55]: 

αhυ = A (hυ − Eg)/, (7)

α A hυ
Eg

where  is  the  absorption  coefficient,  is  constant,  is
photon energy and  is the band gap energy. The results are

Table 2.   The values of Texture Coefficient of undopedand Al-doped
SnO2 thin films.

Sample
Tc(hkl) of SnO2 thin films

(110) (101) (200) (210)

SnO2 1.22 1.17 0.78 0.83
3 wt.% Al-SnO2 1.41 0.94 0.86 0.77
5 wt.% Al-SnO2 1.33 1.12 0.62 0.91
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Fig. 4. (Color online) 3D surface morphologies of SnO2 thin films with
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shown  in Fig.  6.  The  band  gap  value  increases  from  3.88  to
3.91  eV  when  Al  concentration  increases  from  0  to  5  wt.%.
Similar  results  have  been  reported  by  Ahmed[41] and   Baghri-
Mohagheghi[56].  The  increase  in  gap  energy  after  adding  Al
with  3  wt.%  and  5  wt.%  ratio  may  be  due  to  a  reduction  in
particle size and Burstein-Moos effect[57].

 3.4.  Photosensor study

 3.4.1.    Effect of voltage on photocurrent

∝

Variation of photo and dark current with a voltage of un-
doped  and  Al-doped  SnO2 thin  films  in  log-log  scale  as
shown in Fig.  7.  It  can be noticed that the curves are straight
lines having a different slope with regard to different voltage
according  to  the  power  law  relation I  V r,  where r is  the
slope of  different  straight  line segments[18, 29].  In  the absence

of  illumination  (Fig.  7(a)),  the  log-log  plot  of I–V characterist-
ics of pure and the sample doped with 3 wt.% aluminum can
be divided into two separate regions. For pure SnO2,  the dark
current varies super linearly (r = 1.24) at a voltage below 3.5 V.
Above 3.5  V,  it  can show space charge limited current  (SCLC)
behavior  (r =  3.04).  It  is  significant  that  at  the  high  voltage
the dark current for undoped SnO2 thin films engenders from
space charge of excess carriers injected from one of the elec-
trodes  and  the  traps  of  materials  also  contribute  to  this  be-
havior[58, 59].  The  SCLC  phenomena  is  reported  by  Aldemir et
al.  for  photodiode  based  on  Al-doped  SnO2 thin  films  pre-
pared  using  spray  pyrolysis[38].  However,  sub-linearly  vari-
ation (r = 0.64)  at  the voltage below 3.5 V varies to super lin-
early  variation  (r =  1.77)  at  the  voltage  above  3.5  V  is  recor-
ded  with  the  sample  doped  with  3  wt.%  of  aluminum,  the
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flow  of  trap  limited  and  space  charge  limited  current  inside
the material  is  responsible for  this  type of  variation[58, 17].  The
dark current for the sample doped with 5 wt.% Al  varies sub-
linearly  (r =  0.83  <  1),  the  sublinear  variation  with  applied
voltage in this sample could be because of the emergence of
blocking  contacts  that  do  not  entirely  refill  the  charge  carri-
ers after they are captured by electrodes[58, 60].

The dependence of photocurrent with applied voltage in
Fig.  7(b)  shows  super-linear  behavior  for  all  samples,  the  su-
per-linear behavior of the dark current and photocurrent may
be  due  to  additional  charge  carriers  being  injected  from  one
of the electrodes[61].

 3.4.2.    Rise and decay photocurrent
Fig.  8 shows  the  photoconductivity  rise  and  decay  time

spectra of  undoped and Al-doped SnO2 thin films.  The meas-
urements were obtained under 5 V bias voltages and UV light
lamp with wavelength 365 nm at room temperature. One ob-
servation we can remark, the dark current (IOFF) and photocur-
rent  (ION)  decrease  with  increased  Al  ions  concentration.  Fur-
thermore,  for  pure  and  5  wt.%  Al-SnO2 samples,  when  the
light is  turned on,  the current increased quickly in the begin-
ning,  then it  continues to slowly increase until  the UV light is
turned off  again.  As  for  3  wt.% Al-SnO2 sample,  when the UV
illumination is  turned on,  the current  begins to increase until
it reaches maximum value, then it decreases until the UV radi-
ation  turned  off.  The  anomalous  photocurrent  behavior  for  3
wt.% Al-SnO2 may be due to the recombination of photo gen-
eration  carriers[62].  Similar  retreat  photoconductivity  behavior
was reported for  SnO2 nanoparticles  that  have been synthes-
ized using the chemical  co-precipitation method[62] and for  4
wt.% In-doped ZnO sol-gel spin coated film[63]. Another hand,
when UV illumination was  turned off,  the  current  initially  de-
crease  very  fast,  later  it  continues  to  decrease  gradually;  the
persistence  effect  photoconductivity  phenomenon  was  re-
duced with the samples doped with aluminum.

O (g)
In  order  to  more  explain,  it  is  necessary  to  understand

the  mechanism  of  UV  photoconductivity  response  in  pure
and Al-doped SnO2 thin films. Fig. 9 schematizes the mechan-
ism  of  UV  photoconductivity  for  SnO2 thin  films.  In  the  dark
current,  the  molecules  of  oxygen  are  stuck  in  the  sur-

face  of  thin  films  with  an  adsorption  process  by  capturing
free  electrons;  this  produces  a  depletion region near  the  sur-
face[63],  which  leads  to  a  decrease  in  the  current  at  the  sur-
face  of  Al-SnO2 thin  films[64].  The  following  reaction  exempli-
fies this process. 

O (g) + e−
→ O−

 . (8)

O−


In  the  light  condition,  the  electron–hole  pairs  produced
by  absorption  of  photon  have  at  least  equal  energy  as  the
band gap of Al-SnO2 thin films. Moreover, the oxygen ions 
will  recombine  with  the  generated  holes  to  be  chemisorbed
from the surface. This reduces the depletion layer near the sur-
face  of  SnO2 thin  films  and  it  allows  to  the  photo  gener-
atedelectron  and  the  free  electron  that  generated  by
chemisorbed  step  migrate  to  conduction  band  and  contrib-
uted  in  photosensitivity  process  when  applying  the  bias
voltage[65]. 

hν → e− + h+
, (9)

 

O−
 + h+

→ O (g) . (10)

After  returning  to  the  dark  again,  the  photocurrent  de-
crease, due to recombination of the (e–h) pairs which was gen-
erated  by  absorption  process  and  the  repetition  adsorption
of oxygen[66].

The sensitivity (S) or ION/IOFF ratio is an important paramet-
er for describing the performance of photodetectors. The film
of  3  wt.%  Al-SnO2 shows  the  highest  value  of  sensitivity  and
it  was  estimated  at  273.85,  while  for  the  film  5  wt.%  Al-SnO2

decreased to 151.38.
Other  parameters  play  a  crucial  role  in  the  photodetect-

or as the rise and decay time. Fig. 10 shows that using the ex-
ponential  and  Bi-exponential  functions,  the  rise  and  decay
time are approximated by the fitting curve. 

Iph = I+Ae
−t/tr , (11)

 

Iph = Iph(∞)+Ae
−t/td+Ae

−t/td , (12)

I A A A tr
td td

where  is  the  dark  current, , ,  are  constants,  is  the
rise time and  and  are the decay time constants respect-
ively  for  a  fast  and  a  slow  decrease  of  photocurrent.  The  fast
decrease  was  attributed  to  recombination  of  photogener-
ated  electron–hole  pairs  process,  whereas  the  slow  decrease
was attributed to readsorption process[67].

Table  3 shows  the  values  of  constant  times  for  our  films
and other references.  The 3 wt.% Al-SnO2 shows the best rise
and  decay  time  constants  values.  There  is  improvement  in
the  photoconductivity  parameters  as  rise  time,  decay  time
and ION/IOFF ratio  for  our  films  compare  to  previous  values
presented in the literature[39, 68, 69].

 3.4.3.    Trap depth study
Electron trap depth is  calculated using the decay portion

of  the  rise  and  decay  curve  when  the  current  of  decay  is  ex-
pressed by the bub model[3, 70]: 

I = Ie
(−Pt)

, (13)

Iwhere  is the current when the light is turned off, I is the pho-

 

100 200 300 400 500 600

8.8

4.4

13.2

Time (s)

P
h

o
to

c
u

rr
e

n
t 

(m
A

)

0.0

0.00

0.11

0.22

0.33

0.000

0.001

0.002

0.003

UV offUV on

SnO2

3 wt.% Al-SnO2

5 wt.% Al-SnO2

Fig. 8. (Color online) Photoconductivity rise and decay time spectra of
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Ptocurrent versus time and  is  the probability of escape of an
electron  from  the  trap  persecond.  The  probability  of  an  elec-
tron escaping from a  trap has  been described by  Randal  and
Wilkins as[71]: 

P = Se−E/KBT, (14)

T KB
S

where  is the absolute temperature,  is the Boltzmann con-
stant  and  is  the attempt to escape frequency (equal  to 109
at room temperature).

The  trap  depth  corresponding  to  different  exponentials
can be calculated by using the below equation[18]. 

E = KBT (lnS − ln
lnI/I
t ) . (15)

The  values  of  trap  depths  (E)  for  undoped  and  Al-doped
SnO2 are listed in Table 3.  The changes in the trap depth val-
ues  reveal  the  defect  and  disorder  that  occurs  in  thin  films
structure.  For  our  deposited  films,  trap  depth  energy  de-
creases with an increase in Al ratio from 0 to 5 wt.%, this indic-
ates that the stability and idealism of crystalline structure de-
crease  with  increased  Al  concentration[72],  and  leads  to  a  re-
duction  in  the  energy  required  to  eliminate  an  electron  from
trap  level[73].  It  is  confirmed  by  XRD  results,  as  the  strain  val-
ues  increase  with  increasing  Al  concentration.  The  values  of
traps  depth  calculated  for  our  deposited  films  is  between
0.579 and 0.640 eV which is  greater  than the  previous  repor-
ted  values  for  Europium  doped  SnO2 nanoparticles  prepared
by  the  co-precipitation  method  which  is  0.33  and  0.35  eV[74],
furthermore,  our  obtained  values  are  very  convergent  to  the
taps  depth  values  of  ZnO  thin  films  elaborated  by  sol-gel
spin-coating technique[61].

 4.  Conclusions

In the present work, we have studied the photoconductiv-
ity  and  defect  levels  in  undoped  and  Al-doped  SnO2 thin
films elaborated using low-cost sol-gel method. Films proper-
ties were investigated by X-ray diffraction (XRD), Atomic force
microscopy (AFM) and UV-visible spectrophotometry.  Presen-
ted  results  demonstrated  that  our  samples  show  a  polycry-
stalline tetragonal rutile structure and high homogenous sur-
face; moreover, prepared films show high transparency in a vis-
ible  wavelength  region  with  an  average  transmittance
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between  80%  and  90%.  For  photo-detection  studies,  3  wt.%
Al-doped  SnO2sample  shows  the  highest ION/IOFF ratio  and
the  best  rise  and  decay  time  parameters.  The  photoconduc-
tivity  mechanism  was  interpreted  by  adsorption  and  desorp-
tion  phenomena  and  the  defect  energy  levels  were  calcu-
lated using the decay portion curve of photoconductivity spec-
tra.

Through this  study,  we reached the possibility of  fabrica-
tion  of  a  UV  photodetector  with  high  sensitivity,  fast  re-
sponse  and  good  physical  properties  based  on  3  wt.%  Al-
doped  SnO2 thin  films  using  the  sol-gel  dip-coating  tech-
nique.
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