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Facing  the  poor  environmental  stability  of  traditional
methylammonium  or  formamidinium-based  lead  halide  per-
ovskites,  scientists  turn  their  attention  to  inorganic  lead  hal-
ide  perovskites  (ILHPs)  with  narrow  bandgaps,  excellent
thermal  stability  and  reduced  ion  migration  compared  to
their organic/inorganic counterparts[1−4].  Up to now, the PCEs
for  ILHP  solar  cells  exceed  21%[5].  Especially,  the  preferred
black ILHP (e.g.  CsPbI3)  with the smallest  bandgap of  ~1.7 eV
and  single-halide  composition  for  avoiding  phase  separation
is  crucial  for  high-performance  single-junction  solar  cells  and
can  be  applied  in  tandem  devices  as  the  top  cells[6, 7].
However, small Cs+ (167 pm) in CsPbI3 with a tolerance factor
close to 0.8 is unsuitable for the 3D PbI3

– framework[8]. The mis-
matched size of  cations will  induce lattice strain and the per-
ovskite spontaneously transforms to undesired non-photoact-
ive yellow phase (δ-phase, like NH4CdCl3) (Fig. 1(a))[9, 10]. There-
fore,  improving  lattice  symmetry  and  reducing  lattice  strain
are  the strategies  for  inhibiting the phase transition of  ILHPs.
Reducing  the  lattice  strain  by  increasing  the  specific  surface
area  of  all-inorganic  perovskite  crystals  to  make  nanocrystals
can improve the phase stability. This usually requires the intro-
duction of long-chain alkyl amines (e.g. oleic ammonia) in the
precursor  solution,  which  is  widely  used  in  quantum-dot  sol-
ar  cells.  Luther et  al.  demonstrated  that  phase-stable  colloid-
al CsPbI3 quantum dots gave a PCE of 13.43% due to large con-
tribution of surface energy[11, 12]. The disadvantage is the negat-
ive  effect  of  many  grain  boundaries  between  nanocrystals
and  organic  ligands  to  carrier  transport,  which  seems  to  be
more  suitable  for  electroluminescent  devices  rather  than  sol-
ar cells. Therefore, much efforts have been devoted to improv-
ing the phase stability of black-phase ILHPs at room temperat-
ure to obtain high-performance PSCs[13]. At present, the effect-
ive  strategy is  cation engineering,  including the use of  addit-
ives DMAI and hydriodic acid (HI).

Previously,  adding HI  to the precursor  to produce HI·PbI2

or  the  so-called  hydrogen  lead  iodide  (HPbI3)  precursor  is  a
widely-used  approach  to  stabilize  black α-CsPbI3

[14].  Snaith

et  al.[15] first  added  HI  to  CsPbI3 precursor  solution  to  reduce
the  annealing  temperature  from  310  to  100  °C  and  obtained
uniform and stable black-phase ILHPs[16].  Then, Zhao et al.  re-
ported  stabilized  black  CsPbI3 by  a  low-temperature  depos-
ition  and  by  using  pre-synthesized  PbI2·xHI,  which  was  made
from DMF,  PbI2,  and HI.  Combined with  larger  ethylenediam-
monium  cation, α-CsPbI3 solar  cells  gave  a  PCE  of  11.8%[17].
DMA+ byproducts  (Fig.  1(b))  resulted from the chemical  reac-
tion  of  HI  and  DMF  in  the  precursor  solution.  Almost  all  effi-
cient  and  stable  ILHP  solar  cells  have  incorporated  HI,  HPbI3

or  DMA+ in  their  precursor  solutions[18−21].  Later,  Yuan et  al.
used  HPbX3 (X  =  I,  Br)  as  the  precursor  combined  with
phenylethylammonium  cation  to  make  low-dimensional α-
CsPbI3,  yielding  a  PCE  of  12.4%  with  enhanced  stability[22].
HPbI3 made  by  dissolving  HI  and  PbI2 in  DMF  could  increase
the  PCE  to  17%[23, 24].  However,  the  mechanism  for  HI  or
HPbI3 to  improve  the  device  performance  has  been  unclear.
It  was  argued  that  the  A-site  of  the  prepared  ILHPs  mixed
with organic cation DMA+,  thus yielding a stable black organ-
ic–inorganic perovskite phase. Whether DMA+ exists, the con-
tent  of  DMA+ in  the  lattice,  the  properties  for  DMA+/Cs+

mixed  perovskite  phase,  and  even  the  phase  evolution  pro-
cess during thermal treatment still need deep investigation.

Kanatzidis et  al.[25] compared the films made with HI  and
DMAI  additives  by  nuclear  magnetic  resonance  (NMR)  and
found  that  both  films  exhibited  the  characteristic  peaks  of
DMA+,  so  they  thought  that  DMA+ entered  the  A-site  of  per-
ovskite. Qi et al.[26] used highly-sensitive time-of-flight second-
ary  ion  mass  spectrometry  to  prove  DMA+ existence  in  per-
ovskite.  Further  studies  indicated  that  DMA+ was  generated
by  the  hydrolysis  of  DMF  accelerated  by  HI.  Liu et  al.[27] ana-
lyzed  the  products  of  HI-accelerated  DMF  hydrolysis  by  us-
ing in-situ  thermogravimetry  Fourier  transform infrared spec-
troscopy,  and  the  spectra  showed  two  peaks  corresponding
to  DMA+ volatilization  and  PbI2 decomposition.  Both  HI  and
HPbI3 additives  helped  to  produce  DMA+ in  perovskite,  lead-
ing to high PCE and stability. Seok et al.[18] also used DMAI ad-
ditives and obtained PCE over 20% by continuous dripping of
methylammonium chloride solution. Liu et al.[28] used HPbI3 ad-
ditive  combined  with  a  surface  treatment  to  increase  PCE  to
20.8%. Meng et al. directly introduced DMAPbI3 and achieved
a  PCE  over  20%[19].  By  using  DMAAc  solvent,  they  developed
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DMAPb(I,  Ac)3 intermediate  to  eliminate  Cs4PbI6 intermedi-
ate phase, yielding a PCE over 21% (Fig. 1(c))[21]. Pang et al.[29]

recently  modified  DMAI-additive  fabrication  route  by  using
CsI  in  excess  to  obtain  black  phase γ-CsPbI3 perovskite  at
~100 °C. Subsequent dipping of the film into isopropanol solu-
tion  realized  the  stoichiometric  balance  between  DMAPbI3

and Cs4PbI6 intermediates. Song et al. indicated that vacuum-
assisted thermal annealing is effective for controlling the mor-
phology  and  crystallinity  of  DMA+-based  CsPbI3 films  to  ob-
tain  PCE  exceeding  20.06%  along  with  enhanced  stability
(Figs. 1(d) and 1(e))[1]. DMA+ assists low-temperature crystalliza-
tion  of  black  phase  CsPbI3 through  forming  intermediates.

 

Fig.  1.  (Color  online)  (a)  Schematic  structures  for  CsPbI3 phases.  Reproduced  with  permission[15],  Copyright  2015,  Royal  Society  of  Chemistry.
(b) Structures for FA (top) and DMA (bottom) cations. Reproduced with permission[25],  Copyright 2018, Nature Publishing Group. (c) Schematic
for crystal structure evolution from precursor solution to γ-CsPbI3 and possible chemical interaction. Reproduced with permission[21], Copyright
2022, Wiley.  (d) Schematic for vacuum-assisted thermal annealing of CsPbI3 film. (e) The conversion of 1D DMAPbI3 film to 3D CsPbI3 through
cations exchange between Cs+ and DMA+. Reproduced with permission[1], Copyright 2022, Wiley.

2 Journal of Semiconductors    doi: 10.1088/1674-4926/44/3/030202

 

 
Z L Zhang et al.: Dimethylammonium cation stabilizes all-inorganic perovskite solar cells

 



The  enhanced  phase  stability  and  photovoltaic  performance
in HI or DMA+ modified ILHP solar cells is mainly attributed to
lattice  regulation,  e.g.,  change  of  lattice  parameters,  relaxa-
tion  of  lattice  strain,  oscillatory  variation  of  lattice  structure,
etc.

Introducing DMA+ into ILHPs contradicts the original inten-
tion of making all-inorganic PSCs. The excess DMA+ prefers to
exist  at  the  top  surface  of  the  final  perovskite  film  in  an  in-
homogeneous  spatial  distribution[30].  The  local  heterogen-
eity  in  composition  at  the  film  surface  can  cause  heterogen-
eous  film  morphology  and  increase  structural  defects

throughout  the  film[31],  thus  deteriorating  device  perform-
ance.  How  to  remove  the  organic  component  to  obtain
phase-pure  all-inorganic  perovskite  is  a  challenge.  Some  re-
searches  showed  that  increasing  annealing  temperature  and
changing  annealing  environment  could  help  to  remove
DMA+ components.  Zhao et  al.[32] indicated that  annealing at
210  °C  for  5  min  was  enough  to  eliminate  DMA+ component
to  obtain β-CsPbI3 with  good  orientation  (Fig.  2(a), Fig.  2(b)).
They also found that DMAI residues in the films could deterior-
ate  device  performance.  Combining  DMAI  with  phenyltri-
methylammonium  chloride  (PTACl),  they  achieved  a  PCE  of

 

Fig.  2.  (Color  online)  (a)  TGA curves for  DMAI,  DMAPbI3 powders and the powder scratched from the precursor  film of  CsI+PbI2+DMAI.  (b)  GI-
WAXS for β-CsPbI3 films. Reproduced with permission[32], Copyright 2019, AAAS. (c) Schematic for black-phase CsPbI3 formation by using DMAI ad-
ditive. Reproduced with permission[33], Copyright 2019, Wiley. (d) Schematic for 2-TBA condensation reaction (top) and 3-TBA without condensa-
tion reaction (bottom); schematic for DMA+ removal by H2O from the condensation reaction. Reproduced with permission[36],  Copyright 2022,
American Chemical Society.

Journal of Semiconductors    doi: 10.1088/1674-4926/44/3/030202 3

 

 
Z L Zhang et al.: Dimethylammonium cation stabilizes all-inorganic perovskite solar cells

 



19.03%  (Fig.  2(c))[33].  Decreasing  annealing  temperature  to
180  °C  while  simultaneously  extending  annealing  time  could
also  remove  DMA+,  but  the  device  performance  was  dam-
aged  due  to  the  created  defects  in  films[34, 35].  Recently,  Liu
et al.[36] developed a low-temperature strategy to remove the
residual  DMA+ via 2-thiopheneboric  acid  oligomerization  at
the  surface.  2-Thiopheneboric  acid  joins  in  the  condensation
reaction,  releasing  H2O  molecules,  which  purge  DMA+ from
CsPbI3 film  surface  at  ~100  °C  (Fig.  2(d)).  Meanwhile,  the  re-
maining boro-thiophene trimer moiety acts as a Lewis base an-
choring group to passivate Pb0 defects.

In  short,  DMA+ additive  helps  ILHP  solar  cells  to  realize
>21%  PCEs[20, 21, 37, 38].  Several  groups  also  tried  other  addit-
ives  (e.g.,  zwitterion,  ionic  liquids,  and  zinc-based  Lewis  acid)
to  interact  with  perovskite  crystals  to  inhibit  intrinsic  phase
transition.  We  should  try  different  approaches  to  develop
phase-stable all-inorganic perovskites.
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