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Abstract: For the non-stop demands for a better and smarter society, the number of electronic devices keeps increasing expo-
nentially;  and  the  computation  power,  communication  data  rate,  smart  sensing  capability  and  intelligence  are  always  not
enough. Hardware supports software, while the integrated circuit (IC) is the core of hardware. In this long review paper, we sum-
marize and discuss recent trending IC design directions and challenges, and try to give the readers big/cool pictures on each se-
lected small/hot topics. We divide the trends into the following six categories, namely, 1) machine learning and artificial intelli-
gence (AI) chips, 2) communication ICs, 3) data converters, 4) power converters, 5) imagers and range sensors, 6) emerging direc-
tions. Hope you find this paper useful for your future research and works.
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1.  Background

With  the  emerging  applications  of  artificial  intelligence
(AI),  big  data,  blockchain,  internet-of-things  (IoT),  autonom-
ous  driving,  drones/robots,  metaverse,  etc.,  and  also  due  to
the  CoVid-19  pandemic  makes  people  working  from  home
and  pushes  the  companies  to  setup  a  blended  work  model
with  distributed  workforce,  the  demand  for  integrated  cir-
cuits  (IC)  chips  sees  an  explosive  growth  in  recent  two  years.
Needless  to  say,  a  tremendous  amount  of  new  circuit  design
challenges  appears  along  with  these  new  applications.  Cut-
ting-edge  technologies  and  circuit  innovations  are  the  ena-
blers for satisfying the ever-increasing circuit performance spe-
cifications, in terms of data rate, precision, resolution, percep-

tion capability, intelligence level, and energy efficiency.
China  (the  Far-East  of  the  world),  as  the  largest  con-

sumer  of  IC  chips  in  the  world,  strategically  focuses  on  not
only the network infrastructures and the terminal equipment,
but  also  the  core  hardware  component  —  the  chip.  Driven
by the new waves of technology,  both the IC design industry
and academia in China are catching up. In particular, it seems
that the academia goes a little  bit  faster,  as  we can find from
the data of the number of published papers on the IEEE Inter-
national Solid-State Circuits Conference (ISSCC) and the Journ-
al of Solid-State Circuits (JSSC), which are the topmost confer-
ence  and  journal  in  the  field  of  IC  design,  respectively.  Here
in  this  review  paper,  we  invite  the  active  authors  from  China
to  provide  their  humble  opinions  on  the  recent  trending  IC
design directions in 2022.

The  following  contents  are  categorized  into  six  sections.
Section  2  on  machine  learning  and  AI  chips  introduces  AI
chips  for  domain-specific  applications,  and  emerging  com-
pute-in-memory circuits. Section 3 on communications IC dis-
cusses  wireless/wireline  transceivers,  power  amplifiers  (PAs),
clock generators and frequency synthesizers. Section 4 on ana-
log-to-digital  (ADC)  data  converters  covers  recent  promising
hybrid  ADC  architectures,  and  high-resolution  ADCs.  Section
5  on  integrated  power  converters  focuses  on  the  topology
and  controller  design  of  switched-inductor-capacitor  hybrid
power  converters,  isolated  power,  and  the  supply  modulator
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for PA in 5G communication. Section 6 on CMOS imagers and
range  sensors  talks  about  event-based  and  high  dynamic
range image sensors,  as  well  as  the time-of-flight (ToF)  range
sensors.  Last  but  not  least,  Section  7  on  emerging  directions
leads us to the cryogenic CMOS for qubit and biomedical fron-
tiers. Finally, we draw conclusions in Section 8. 

2.  Machine learning and artificial intelligence
chips

When  people  nowadays  are  working  towards  to  meta-
verse  or  the “Matrix”,  the first  trending direction has  to  be AI
chips. Besides the conventional general AI computer systems,
custom processors are becoming more ubiquitous in the ma-
chine learning space,  motivating the chip design for domain-
specific  applications,  which  include  voice,  image,  and  some
other  emerging  directions.  Meanwhile,  computing-in-
memory  chips,  at  both  the  macro-level  and  system-level,
have become an important technical approach for energy-effi-
cient or high-performance AI chips. 

2.1.  AI chips for domain-specific applications

Custom processors are becoming more ubiquitous in the
machine  learning  (ML)  space,  motivating  the  chip  design  for
domain-specific  applications  (DSA).  Through  the  methodo-
logy  of  hardware-software  co-optimization,  the  DSA  chips
can bring a great leap of performance for target applications.
Reviewing  the  ISSCC  publications  in  recent  three  years,  AI
chips  for  DSA have drawn extensive  attention for  various  ap-
plications,  including  voice,  image,  and  some  other  emerging
directions. 

2.1.1.    AI chips for voice applications
For voice applications, keyword spotting (KWS) and auto-

matic speech recognition (ASR) can be widely applied to vari-
ous wearable or mobile devices. For such battery-powered ap-
plications,  ultra-low  power  is  a  strong  requirement  for  voice
processing  chips.  Typically,  a  KWS  or  ASR  system  is  com-
posed  by  the  feature  extractor  and  the  AI  signal  processing,
and  recent  works  aims  at  optimizing  the  power  of  such  two
modules in circuit and system level.

Shan[1] implements  a  sub-μW KWS chip  in  ISSCC’20,  aim-
ing for 1–2 keywords spotting. To extract the voice feature of
mel  frequency  cepstrum  coefficient  (MFCC),  they  designed  a
specific  serial-pipeline  fast  fourier  transformation (FFT)  circuit
with compressed on-chip memory. In AI processing, the depth-
wise-separable  CNN  is  adopted  with  binarized  activations,
which  reduces  the  storage  and  computation  by  7×  com-
pared with normal CNN model. Different from traditional meth-
od to use the whole word for KWS, they eliminate the redund-
ant computations and data storage coming from similar adja-
cent  inputs.  As  a  result,  the  chip  achieves  94.6% accuracy  for
two-word  spotting  with  only  0.51 μW  power  and  2  KB  on-
chip memory.

Although  the  chip  in  Ref.  [1]  achieves  ultra-low-power
(ULP)  consumption,  it  adopts  the  noise-dependent  training
so  the  accuracy  will  degrade  in  low  signal-to-noise  (SNR)
level.  To  achieve  high  robustness  KWS,  one  method  is  to  in-
clude all the possible SNR levels and noise types in the AI mod-
el  training,  which  causes  the  increasing  of  model  size  and  is
challenging  for  ultra-low-power  applications.  To  overcome
the noise problem in KWS,  Wang[2] employed a simpler  voice
extracting  method  called  divisive  energy  normalization  (DN),

and  developed  a  normalized  acoustic  feature  extractor  chip
(NAFE)  for  analog  signal  processing.  The  frontend  of  NAFE  is
composed  by  a  low-noise  amplifier  (LNA),  a  bandpass  filter
(BFP),  a  half-wave  rectifier  (HWR)  and  an  integrate-and-fire
(IAF)  encoder,  and  extract  the  pre-normalized  features
(preNF).  Then,  the DN model  is  performed in  preNF to estim-
ate  the  background  noise  level  by  converting  background
noise  to  white  noise,  and  produces  post-normalized  features
(postNF).  In  AI  signal  processing,  they  use  a  well-developed
spiking  neural  network  (SNN)  classifier  chip  and  combine  it
with NAFE to realize an end-to-end KWS. The overall KWS sys-
tem is robust for noisy condition and achieves an average ac-
curacy of 92.8% in different SNR level.

Different  from  KWS  that  only  needs  to  implement  small-
vocabulary tasks (1–2 words), ASR has to deal with large-vocab-
ular tasks of more than 105 words. As a result, models with bid-
irectional recurrent neural network (RNN) and attention mech-
anism are necessary for improving the ASR accuracy. To accel-
erating  ASR,  Tambe[3] presents  a  16-nm  SoC  that  executes  a
full  speech-enhancing  pipeline  in  ISSCC’21.  The  chip  is  com-
posed  by  a  markov  source  separation  engine  (MSSE),  for  fea-
ture  extracting,  an  Arm  Cortex-A53  CPU  for  signal  pre-pro-
cessing, and a reconfigurable accelerator (FlexASR) for AI pro-
cessing.  In  feature  extractor,  the  MSSE  uses  bayesian  al-
gorithm and can make a binary label to distinguish noise and
speech,  which  realize  unsupervised  speech  denoising.  Then
the  FlexASR,  which  comprises  4  processing  elements  and  a
multi-function  global  buffer,  works  to  accelerate  the  bidirec-
tional attention-based speech-to-text model. It supports most
of the operations in seq2seq models, such as attention mech-
anism,  mean/max  pooling,  and  normalization.  For  attention
computing,  FlexASR  is  optimized  to  gate  and  skip  computa-
tions  in  null  states.  The  chip  can  achieve  2.25  mJ  of  energy
per  frame  with  real-time  18  ms  latency,  and  is  the  first  to
demonstrate  on-chip  support  for  denoised,  large-vocabulary
ASR for bidirectional attention-based speech recognition.

To further reduce the power for IoT platforms, the techno-
logy of  voice  activity  detection (VAD)  that  can gain  attention
on events-of-interest and is becoming an interesting topic.  In
such system, the always-on acoustic wakeup detector domin-
ates  the  overall  power  consumption  since  the  remainder  of
the VAD system is power-gated during sleeping time. As a res-
ult,  an  ultra-low-power  and  wide  bandwidth  feature  extract-
or  with  wakeup  detection  is  more  important  for  VAD.  Al-
though  achieves μW-level  power,  traditional  analog-domain
feature  extraction-based  VADs  often  adopt  a  simple  decision
tree  or  a  fixed neural  network  for  detection,  and can only  be
applied to limited acoustic event targets. In ISSCC’19, Cho[4] ad-
opts the time-interleaved mixer-based architecture to present
a  neural  network  NN-based  acoustic  sensing  system  for  both
VAD  and  non-voice  event  detection.  In  analog  frontend,  it
has two signal chains: a 142 nW ULP chain which is always on
for  wakeup  detection,  and  an  18 μW  high  performance  (HP)
chain  which  is  used  when  system  is  waked  up.  For  the  ULP
chain,  the  time-interleaved  mixer-based  architecture  sequen-
tially scans and down-converts the 4 kHz bandwidth signal to
less than 500 Hz passband, which reduce the power consump-
tion  of  amplifier,  ADC  and  DSP  by  4  times.  In  the  digital
backend, the power optimization of leakage power is import-
ant  for  the  always  on  circuits.  In  their  chip,  thick  oxide  I/O
devices are used to implement the always-on modules to sup-
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press the static leakage power. The NN processor adopts a 16
kB  custom  ultra-low  leakage  static  random-access  memory
(SRAM)  to  store  the  4-bit  weight.  In  the  ULP  mode,  the  pro-
cessor runs with a small NN every 512 ms when the feature ex-
traction  is  complete,  and  at  other  times  it  is  power-gated  to
minimize  the  leakage  power.  In  the  HP  mode,  the  processor
computes a  FFT and a larger  NN for  improved 32 ms latency.
The  chip  is  also  integrated  with  a  MEMS  microphone  and
achieves  91.5%/90%  speech/non-speech  hit  rates  at  10  dB
SNR  with  babble  noise  in  the  ULP  mode.  Although  the  work
in Ref. [4] achieved an ultra-low power for the feature extract-
or,  the  512-ms  decision  latency  prevents  it  from  real-time
VAD applications.

To  realize  real-time  wakeup  decision,  Chen[5] adopts  the
time-domain CNN (TD-CNN) for analog feature extracting in IS-
SCC’22.  Different  from  previous  analog  filter-based  frontend,
the TD-CNN evaluates the signal from LNA buffers by 1-D con-
volution layer in a temporal manner. As a part of the AI mod-
els,  the  TD-CNN  can  be  trained  with  the  entire  network,
which  permits  reprogramming  to  adapt  for  various  applica-
tions  with  different  characteristics.  The TD-CNN is  realized by
an analog circuit with a switched-capacitor (SC) array and ad-
opts  a  3-bit  sparsified  quantization  scheme,  which  shows  an
accuracy  higher  than  7-bit  binary  quantization.  After  the  TD-
CNN  pre-processing,  the  extracted  features  can  be  concaten-
ated  into  a  2-D  feature  map  and  be  further  processed  for
more  complex  tasks.  Compared  with  Ref.  [4],  it  achieves  50
times higher framerate with similar power budget. 

2.1.2.    AI chips for image or video processing
For  image  or  video  processing,  people  paid  more  atten-

tions  to  improve  the  energy  and  frame  efficiency  for  execut-
ing the AI models,  with the co-optimization technology of al-
gorithm  and  architecture,  low-bit  model  quantization  and
sparse model acceleration.

Lu[6] proposes  a  low-power  and  real-time  vision-based
hand-gesture recognition (HGR) system in ISSCC’21. The over-
all  architecture  is  mainly  composed  by  a  pre-processing  unit,
a  recognition  core  and  a  sequence  analyzer  (SA).  First,  the
pre-processing  unit  helps  to  segment  the  hand  region  from
color image. Second, a motion detection unit, a hand localiza-
tion unit, and a feature extraction unit in the recognition core
work together to generate the input feature data for two cus-
tomized  classifiers:  the  edge-CNN  core  (ECCNC)  and  the  de-
cision  tree  core  (DTC).  Finally,  the  SA  integrates  the  decision
of  ECNNC  and  DTC  to  improve  the  accuracy  and  robustness
of  HGR  system.  To  optimize  the  computing  efficiency,  this
work  explores  the  data  reuse  space  of  ECCNC.  The  2-layer
edge-CNN  model  shows  a  32×  space  of  weight  reusing  for
the first  layer and a 6× space of feature reuse for both layers.
To  maximize  the  data  reusing,  ECCNC  employs  the  shared-
link connection between multiple PEs so that the feature and
weight data can be reused by different PEs. Such flexible data
scheduling  reduces  27%  memory  access.  Besides  the  ECCNC,
the  DTC  works  to  improve  the  system’s  error  tolerance.  The
SA analyzes the results from ECCNC and DTC to judge the spe-
cific  gesture type,  and helps  the system to achieve 92.6% ac-
curacy  and  30-fps  real-time  recognition  with  only  184-μW
power consumption.

Im[7] aims at accelerating the depth image processing for
3D  bounding  box  extraction,  and  propose  the  depth  signal
processing unit (DSPU) in ISSCC’22. The overall flow for 3D ex-

traction  includes  many  modules,  such  as  depth  CNN,  neigh-
bor  search,  point  sampling  (UDS),  point  grouping  (BQ),  and
point CNN. To reduce the area overhead, DSPU develop a uni-
fied  matrix-processing  unit  (UMPU)  and  a  unified  point-pro-
cessing  unit  (UPPU),  where  all  matrix  computations  are
shared  in  the  UMPU  and  all  point  operations  are  shared  in
the UUPU. Since the point NN has high sparse input features,
the  DSPU  adopts  slice-level-skipping  PE  for  zero  input  skip.
To  reduce  the  redundant  computation  caused  by  the  max
polling layer, the largest values are predicted by 4-b MSB con-
volution  of  inputs  and  weights  to  skip  the  non-maximal  out-
puts.  By  the  optimization  of  sparse  acceleration,  the  total
latency  of  PNN  can  be  reduced  by  44.5%.  As  a  result,  the
DSPU  finally  achieves  31.9-fps  with  281.6-mW  to  realize  end-
to-end RGB-D acquisition and 3D BB extraction.

Compared  with  image  data,  video  has  one  more  dimen-
sion  of  time  and  provides  more  design  space  in  algorithm
and  hardware.  Since  adjacent  frames  share  similar  informa-
tion, efficiently leverage video temporal correlations to minim-
ize  the  computing  costs  for  video  model  is  worth  exploring.
In  ISSCC’20,  Yuan[8] proposes  an  inter-frame  data-reuse  pro-
cessors  for  video  accelerating.  Other  than  directly  inputting
the  original  frames,  the  work  processes  the  difference  fea-
ture between two frames in each CNN layer to reduce the re-
dundant  computation.  The  work  finds  that  although  typical
frames  in  a  period  of  time  are  similar,  it  does  not  mean  they
are  identical  and  the  diff-feature  has  limited  sparsity.  In  or-
der to process diff-feature without accuracy loss while improv-
ing the computing efficiency,  the chip adopts  a  hybrid-preci-
sion  inter-frame  data-reuse  scheme.  In  hybrid  precision  cod-
ing, low precision 4-b tensor is adopted for relatively small val-
ues in the feature map, while 8-b sparse tensor is adopted for
the others.  The two tensors have separate storages with mul-
tiple-type  sparse  coding  methods.  With  inter-frame  data  re-
use,  the off-chip data transmission is  significantly  reduced by
15%–30% for different datasets. Finally, the 65-nm chip can re-
duce  up  to  76.3%  power  to  achieve  a  24.7-μJ  per  frame  en-
ergy efficiency.

For  emerging  AI  models,  transformers  have  achieved
great success in multiple AI fields, from natural language pro-
cessing  (NLP)  to  computer  vision.  Compared  with  CNN  mod-
els,  transformer  calls  for  larger  memory storage and different
data  reusing  mechanism.  To  develop  specific  architecture  for
transformer accelerating, two relative chips are presented in IS-
SCC’22.  Wang[9] presents  a  digital  transformer  processor  to
achieve 27.5 TOPS/W energy efficiency by asymptotic sparsity
speculating.  This  work  find  that  the  transformer  model  con-
tains many weakly related tokens with small scores caused by
the  attention  operation.  Such  weak  tokens  can  take  up  to
93.1% energy consumption in the whole system, but has lim-
ited influence on the model  accuracy.  Moreover,  the  softmax
function  results  in  many  zero  data,  but  the  sparsity  is  irregu-
lar  and  hard  to  predict.  To  overcome  such  problems,  the
work adopts a big-exact-small-approximate (BESA) PE to gate
the  computation  of  LSBs  for  small  values,  which  saves  1.62×
MAC  power.  To  skip  the  sparse  computing,  a  bidirectional
asymptotic  speculation  unit  (BASU)  is  designed  to  explore
the  attention’s  local  properties  and  exploit  the  presence  of
sparsity,  which  skips  46.7%  of  the  redundant  computations.
The 28-nm chip uses 27.56 TOPS/W peak energy efficiency to
implement the transformer model.
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Also  in  this  year,  Tu[10] proposes  a  transformer  accelerat-
or TranCIM, but based on computing-in-memory (CIM) architec-
ture.  Different  from  static  model,  the  online  generated
weights  and  inputs  of  attention  layers  causes  redundant  off-
chip  memory  access.  TransCIM employs  a  CIM pipeline  archi-
tecture  combined  with  the  bitline-transpose  structure  to
align the directions of input and weight feeding, and allow in-
termediate  data  to  stream  from  the  first  engine  to  the  next.
The  CIM  chip  was  fabricated  in  28-nm  CMOS  and  achieves  a
20.5 TOPS/W energy efficiency for INT8 computing.

The  DSA  chips  mentioned  above  mainly  follow  the  road
of algorithm-architecture co-optimization. Aiming at one spe-
cific  applications,  they  analyze  the  demand  and  develop  the
high-efficiency  analog  or  digital  circuits.  Inspired  by  2.5D/3D
stacked  integrating  technologies  for  high  bandwidth
memory  fabrication,  the  road  of  monolithic  3D  and  hybrid
bonding  techniques  are  also  explored  for  DSA  chips.  Eki[11]

from  Sony  presents  a  stacked  CMOS  image  sensor  (CIS)  with
AI  computing  ability.  The  CIS  block  for  sensor  is  integrated
with  a  digital  signal  processor  (DSP)  for  CNN  computing  to-
gether  through  3D  stacking  in  this  work.  The  top  CIS  chip  is
fabricated  in  a  65-nm  process  while  bottom  DSP  chip  is  us-
ing a 22-nm process, which shows an attractive solution for in-
telligent and low-cost vision sensor.

Niu[12] stacks  a  25-nm  dynamic  random-access  memory
(DRAM)  die  on  top  of  a  55-nm  logic  die  and  gives  a  near-
memory-processing  solution  for  the  memory-bound  recom-
mendation system. The chip achieves a 307 bandwidth-to-ca-

pacity ratio and 0.88 pJ/b energy cost, which outperforms the
prior  processing-near-memory  chips  significantly  because  of
the  hybrid  bonding  scheme.  It  is  foreseeable  that  more  DSA
chips  using  monolithic  3D  and  hybrid  bonding  technologies
(sensor-logic stacking, memory-logic stacking, logic-logic stack-
ing  …)  will  be  explored  to  increase  the  data  transmission
speed and efficiency.

Based  on  the  reviews  above,  we  can  see  that  significant
progresses  have  been  made  in  machine  learning  processor
design  for  specific  application  acceleration. Table  1 gathers
the  performances  for  DSA  chips  appeared  in  recent  three
years  of  ISSCC.  One  important  trend  of  DSA  processor  is
designing the computing and storage architectures to match
with the specific application’s characteristics. Algorithm-archi-
tecture  co-optimization  is  adopted  by  researchers  to  explore
the  design  space  of  low-bit  quantization,  sparse  computa-
tion, dedicated circuit, and so on. The KWS chips used in wear-
able  devices  calls  for  low-memory hardware architecture  and
low-complexity  AI  models  to  reduce  power.  Moreover,  the
problem of background noise needs to be properly solved to
improve  the  speech  system’s  robustness.  Thus,  analog  single
processing circuit and unsupervised speech algorithms are un-
der  research  for  denoising.  Image  or  video  processing  pays
more  attention  to  the  frame  efficiency,  which  calls  for
pipelined  and  sparse  computing  optimization.  As  an  emer-
ging direction, transformer processors process different mod-
el architectures, necessitating innovations in customized hard-
ware  design  for  the  attention  mechanism.  Another  trend  is

Table 1.   Performance summary of AI chips for different DSA.

Speech (KWS/ASR)

ISSCC’20, 14.1, [1] ISSCC’21, 9.9, [2] ISSCC’21, 9.8, [3]

Technology (nm) 28 90 16

Model DSCNN DT RNN

Memory 2 KB – 9.8 MB

Latency (ms) 64 <100 15–45

Power (μW) 0.51 6 1.11 × 105

Word 1–2 1 2 × 105

Denoising No Yes Yes

Speech (VAD)

ISSCC’19, 17.2, [4] ISSCC’22, 22.5, [5]
Technology (nm) 180 28
Feature type Mixed-signal TD-CNN
Channel number 16–48 60
Freq. range (Hz) 75–4000 100–4000
VAD power (nW) 142 108
VAD accuracy 90% @ nonspeech 94% @ nonspeech
Energy/Classification (nJ) 73 1.08

Image/Video

ISSCC’21, 9.7, [6] ISSCC’22, 33.4, [7] ISSCC’20, 14.2, [8]
Technology (nm) 65 65 65
Model Edge CNN (GTR) Point CNN (3D detection) MobileNet (Classification)
Memory (KB) – 364 KB 196 KB
Power (mW) 0.184 544–609 7.3–99
Frame efficiency 30 fps 3.2 mJ/Frame 24.7–183.2 μJ/Frame

Emerging directions

ISSCC’22, 29.2, [9] ISSCC’22, 29.3, [10]
Technology (nm) 28 28
App. Transformer Transformer
Memory (KB) 336 192
Energy efficiency (TOPS/W) 1.91–27.56 5.1–20.5
Power (mW) 12–272 27–118
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monolithic 3D and hybrid bonding that stacks different kinds
of  chips  in  one  system  to  offer  significant  bandwidth  and
power benefits. 

2.2.  Computing-in-memory chips

Computing-in-Memory  (CIM)  chips  have  become  an  im-
portant  technical  approach  for  energy-efficient  or  high-per-
formance AI chips.  The recent CIM chips mainly focus on two
design levels: the macro-level and system-level CIM chips. 

2.2.1.    Macro-level CIM chips
The  macro-level  CIM  chips  aim  at  higher  energy  effi-

ciency,  higher  density,  better  accuracy  and  higher  perform-
ance.  The  current-based,  charge-based,  all-digital,  and  time-
based  CIM  macro  structures  have  been  proposed.  The  key
design  concerns  include  low-power  ADC,  high-density  CIM
cell structure, high accuracy, more functionality, etc.

ADC  design  is  critical  for  an  energy-efficient  CIM  chip  as
it  occupies the majority of the power consumption. Based on
the  algorithm  analysis,  the  multiply-accumulate  (MAC)  val-
ues  of  the  ADC  input  concentrate  on  low  values.  Therefore,
one  reference  voltage  can  be  adopted  for  pre-classification,
which reduces the ADC sensing bit of low MAC values[13].  The
sparsity  technique  is  adopted  to  pre-train  a  whole  weight
block as zero, so that the corresponding ADC result can be de-
termined  as  zero  by  the  sparsity  index[14],  which  saves  the
ADC  sensing  power  for  zero  results.  Furthermore,  an  ADC
with  flexible  bit-precision  is  designed,  where  the  2-bit  index
can  dynamically  select  the  0-/2-/4-bit  ADC  sensing  modes[15].
In  the  all-digital  CIM  structure  that  does  not  need  the  ADCs,
the majority of the power consumption comes from the digit-
al  adder tree.  The interleaved 14T/28T full  adder can increase
the  energy  efficiency  by  30%[16].  Dynamic  logic  is  also  ex-
plored  for  better  energy  efficiency,  which  shows  no  leakage
and  hazard  problems[17].  The  evolving  time-based  CIM  struc-
ture  replaces  ADC  with  time-to-digital  converter  (TDC)[18, 19].
By  eliminating  ADC  and  adopting  the  dynamic  differential-
reference  TDC,  the  time-based  CIM  structure  shows  37.1×
and  6.18×  higher  energy  efficiency  than  the  current-based
and  charge-based  CIM  structure[18].  Besides,  the  time-space
readout  can  be  executed  simultaneously  to  the  analog  MAC
developing  operation,  which  avoids  long  computing  latency
due to heavy resistance and capacitance (RC) parameters[19].

Storage  density  and  computation  density  are  also  key
features  for  the  CIM  macro.  For  higher  computation  density,
several  storage cells  are  grouped together  to  share  the same
local-computing-cell  for  CIM  operation[13].  The  all-digital  CIM
structure  shows  better  scaling  improvement  for  higher  stor-
age/computation  density,  which  achieves  221  TOPS/mm2

area  efficiency  at  5-nm technology node[20].  Approximate  cir-
cuits  for  all-digital  CIM  structure  can  reduce  the  transistor
quantity.  The  double  approximate  compressor  shows  56.4%
transistor reduction with 2569 F2/b area efficiency[21].

Accuracy  is  an  important  concern  for  CIM  macro  design.
For better accuracy, the output ratio, which is the ratio of the
real  output  resolution  and  the  ideal  output  resolution,  is  a
key  parameter  for  current/charge-based  CIM  structures[22].
A  higher  output  ratio  improves  the  accuracy,  while  requiring
higher  power  consumption.  Compared  with  the  current/
charge-based  CIM  structures  that  are  sensitive  to  process,
voltage,  and  temperature  variations,  the  all-digital  CIM  struc-
ture  shows  no  analog  accuracy  loss[16, 20].  The  charge-based
CIM  structure  shows  reasonable  accuracy  with  high  parallel-
ism,  which  can  activate  1152  input  rows  simultaneously[23].
The evolving time-based CIM structure presents better accur-
acy and lower power consumption[18, 19]. In each delay comput-
ing unit, the MAC operation result is converted to the accumu-
lated  time  delay  between  the  input  and  output  signals[18],
which  achieves  8×  higher  normalized  signal  margin  than  the
previous voltage-domain ADC based CIM structure.

More  functionality  is  also  explored  on  the  CIM  macro
structures.  Several  works  have  explored  configurable  activa-
tion/weight  bit-precision,  among  which  the  2’s/non-2’s  com
plementary  ADC  is  designed  to  support  signed/unsigned
MAC operations[14]. To support both inference and training ap-
plications,  a  two-way  transpose  CIM  macro  is  proposed,
which  can  utilize  two  directions  of  CIM  operation  without
weight  data  transpose  operation[24]. Table  2 summarizes  the
key features of the state-of-the-art SRAM-based CIM macros. 

2.2.2.    System-level CIM chips
On  the  other  hand,  the  system-level  CIM  chips  present

more sophisticated CIM architecture with more flexible operat-
or support.

Inter/intra-macro  data  reuse  and  channel/kernel-order
weight  mapping strategies  are  explored on the CIM architec-

Table 2.   Summary of the SRAM-based CIM macros.

Ref. CIM
mode

Tech.
(nm)

Macro size Input
precision
(bit)

Weight
precision
(bit)

Output
ratio

Performance
(TOPS)

Energy
efficiency
(TOPS/W)

Area efficiency
(TOPS/mm2)

Inference
accuracy
(Cifar-10)

[13], 2020
Current
based

28 64 Kb 4/8 4/8 1 : 1 − 68.44@4b/4b
16.63@8b/8b

− 92.02%

[14], 2020 65 16 Kb 2/4/6/8 4/8 1 : 12 2.0*@2b/4b 158.7*@2b/4b 3.38*@2b/4b 91.74%
[15], 2021 65 64 Kb 2/4/6/8 1−8 1 : 1 3.16*@2b/1b 370*@2b/1b 1.85*@2b/1b 92.65%

[22], 2021 Charge
based

28 384 Kb 4/8 4/8 1 : 1 − 94.31@4b/4b − −
[23], 2021 16 4.5 Mb 1−8 1−8 1 : 4.5 11.8@4b/4b 121@4b/4b 2.67@4b/4b 91.51%

[16], 2021
All-
digital

22 64 Kb 1−8 4/8/12/16 1 : 1 3.3@4b/4b 89*@4b/4b 16.3*@4b/4b #
[17], 2022 28 32 Kb 1−8 1/4/8 1 : 1 − 27.38@8b/8b − #
[20], 2022 5 64 Kb 4 4 1 : 1 2.94@4b/4b 254*@4b/4b 221@4b/4b #
[21], 2022 28 16 Kb 1 1 1 : 1 20@1b/1b 2219@1b/1b 606@1b/1b 86.9%

[18], 2022 Time
based

28 1 Mb 4/8 4/8 1 : 1 4.96@4b/4b 148.1*@4b/4b
37.01*@8b/8b

− 92.08%

*: with sparsity improvement or at 10% input toggle rate. @4b/4b: 4bit input, 4bit weight. #: the same accuracy to the software baseline at the
same precision.
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tures  for  better  resource  utilization[14].  Multi-core  CIM  sys-
tems are  designed to  extend the  CIM performance and func-
tionality.  A 16-core CIM system with programmable single in-
struction multiple  data  (SIMD)  data  path  and flexible  on-chip
network  shows  96%  bit-cell  utilization  on  Cifar-10  dataset[23].
To  utilize  both  digital  and  CIM  architecture  for  optimal  per-
formance  on  the  various  layer  characteristics,  a  low-power
SoC,  comprising  a  digital  neural  network  accelerator,  an  ana-
log CIM core and a RISC-V CPU, is designed to realize simultan-
eous  execution  of  subsequent  layers  and  high/low  precision
on corresponding cores[25].

Algorithm-hardware co-design method is utilized for high-
er  energy  efficiency.  For  example,  the  block-wise  weight
sparsity  and dynamic activation sparsity  is  proposed to apply
sparsity techniques on the regular CIM structure[14]. The set-as-
sociate  block-wise  sparsity,  tensor-train  compression  and  bit-
wise  sparsity  are  also  explored  to  save  execution  time  or
power consumption[15, 26].

To support high-precision training application, a reconfig-
urable  unified  floating  point  or  integer  (FP/INT)  CIM  pro-
cessor  is  proposed[27].  The  activation/weight  data  are  pre-
aligned  to  the  local  maximum  point  so  that  the  CIM  macro
can execution floating-point MAC operation as the same flow
of integral MAC operation. 

2.2.3.    Various devices based CIM chips
SRAM  is  one  of  the  most  popular  devices  for  CIM  chip

design,  while  other  devices  for  CIM are also explored,  includ-
ing  conventional  storage  devices  such  as  DRAM  or  embed-
ded  DRAM  (eDRAM),  and  the  emerging  non-volatile  memory
(NVM)  devices  such  as  resistive  RAM  (RRAM),  spin-transfer
torque  magneto-resistive  RAM  (STT-MRAM),  phase-change
memory (PCM), etc.

DRAM/eDRAM device is adopted for CIM for its high stor-
age  density.  Xie[28] proposes  a  16-Kbit  eDRAM-based  CIM
chip,  utilizing  the  intrinsic  charge  share  operation  in  eDRAM
bitcell  to  implement  the  DAC/MAC/ADC  circuits.  A  4-Gb
GDDR6-based CIM accelerator is implemented to support vari-
ous  MAC  and  activation  functions[29].  The  fabricated  DRAM
die  has  16  processing  units  with  corresponding  storage
banks,  and  a  two  2-KByte  global  buffer.  It  supports  to  activ-
ate  16/4  banks  simultaneously  for  different  parallelism,  with
flexible dataflow controlled by the newly defined DRAM com-
mand  set  for  deep  learning  operations.  It  achieves  1  TFLOPS

performance (two die per chip) under BF16 precision.
A  three-transistor,  one-capacitor  (3T1C)  dynamic  analog

RAM  (DARAM)  structure  is  proposed[30],  which  features  high-
er density than SRAM, while achieves higher computing paral-
lelism than DRAM. By storing 4-bit  weight in one 3T1C cell,  it
shows  10×  less  transistor  counts  compared  with  the  SRAM-
based CIM cell.

RRAM  is  another  well-explored  device  with  macro-level
and system-level chip verification. From 2020 to 2022, the fore-
most  storage  capacity  of  RRAM-based  CIM  macro  increases
from 2, 4, to 8 Mbit[31, 32, 19]. The RRAM-based CIM macros usu-
ally adopt current-domain ADCs due to the limited CIM opera-
tion  voltage[31].  The  2’s  complement  weight  mapping  is  ex-
plored  to  reduce  the  cell  usage  for  multi-bit  weight  data.  To
meet  the  accuracy  and  energy  efficiency  requirement,  the
asymmetric  group  modulated  input  and  hybrid  precision
readout circuits  are  proposed,  which separates  an 8-bit  input
data  into  high  2  bit,  middle  3  bit  and  low  3  bit,  and  adopts
full-precision/reduced-precision  for  the  most/least  significant
bits[32].  The  time-based  CIM  structure  is  adopted  in  RRAM-
based  CIM  macro,  which  shows  5.15×  average energy  reduc-
tion, 1.36× latency reduction, and 1.58× time-step sensing mar-
gin[19].  The  average  energy  efficiency  for  8-bit  MAC  opera-
tion achieves 21.6 TOPS/W. A system-level CIM chip[33] is imple-
mented  with  two  fully-connected  layers  for  the  MNIST  data-
set, which shows 78.4 TOPS/W energy efficiency and 94.4% ac-
curacy. The proposed 2T2R array generates the differential cur-
rent  of  the  positive  and  negative  RRAM  cells,  which  reduces
the  accumulated  source  line  current,  relieve  the  IR  drop,  and
decreases corresponding ADC power.

Spin-transfer  torque  magneto-resistive  RAM  (STT-
MRAM)[34] and  phase-change  memory  (PCM)[35] based  CIM
macros have also been explored. A 4-Mbit STT-MRAM comput-
ing-near-memory macro is fabricated[34],  which utilizes a high
bit-width of  576 bit  organized in bitwise weight-mapping or-
der  for  near  memory  partial  MAC  operation.  It  also  adopts  a
bidirectional  bitline  access  readout  scheme  supporting  high-
to-low  and  low-to-high  voltage  sensing,  which  reduces  pre-
charge  latency  and  power  consumption.  A  25.1  TOPS/W  en-
ergy  efficiency  is  achieved  at  50%  input  sparsity  and  8-bit
MAC  precision.  The  PCM  device  is  another  resistive  memory
device  that  can  be  configured  as  1-bit  single-level  cell  (SLC)
or multi-level cell (MLC). A PCM macro with 2-M cells is fabric-

 

 

Fig. 1. (Color online) Comparison of the state-of-the-art CIM macros (scaled to 4-bit input, 4-bit weight), with (a) energy efficiency and area effi-
ciency, and (b) performance and storage capacity.
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ated.  It  adopts  a  hybrid  SLC-MLC  structure,  utilizing  five
SLC/MLC cell  for  each part  of  the  [7]/[6]/[5:4]/[3:2]/[1:0]  bit  of
a  8-bit  weight  data.  The  hybrid  SLC-MLC  structure  shows
slight accuracy loss compared with the pure SLC implementa-
tion.

Fig.  1 presents  the  energy  efficiency  and  area  efficiency
comparison of the CIM macros with different devices. The en-
ergy/area  efficiency  value  are  scaled  to  4-bit  input,  4-bit
weight. The SRAM-based CIM macros shows better energy effi-
ciency,  area efficiency,  and higher  performance due to sever-
al factors. The first influence factor is the more advanced tech-
nology  node,  such  as  the  5  nm  SRAM  CIM  chip[20].  The
second  factor  is  that  the  SRAM-based  CIM  macros  focus  on
high computation/storage ratio (i.e. higher computation paral-
lelism),  which  benefits  the  area  efficiency  and  the  perform-
ance.  On  the  other  hand,  the  emerging  NVM  devices  and
DRAM  shows  higher  storage  capacity  thanks  to  the  higher
storage  density.  Note  that  the  technology  and  sparsity  influ-
ences are not scaled since these features are difficult  to scale
to  an  accurate  value.  The  area  of  RRAM/STT-MRAM/PCM-
based macros  is  estimated from the effective  area  of  the test
chip photograph.  The area efficiency of  DRAM only considers
the  area  of  processing units  since  the  total  area  with  storage
cells is not reported.

In summary, the CIM chip has become an emerging tech-
nology  route  for  more  energy-efficient  computing  and  high-
performance AI applications, which shows competitive or high-
er  energy  efficiency  compared  with  the  digital  NN  processor.
The macro/system-level  CIM chip keeps moving towards bet-
ter  macro  metrics  (power,  area,  performance,  accuracy,  func-
tionality) and sophisticated CIM architecture with more operat-
or  support.  CIM  on  various  devices  and  specific  applications
is also a promising direction. 

3.  Communication ICs

Telecommunication  industry  has  been  growing  explos-
ively  over  the past  few decades.  Communication ICs,  ranging
from block-level  circuits  to system-level  transceivers,  have at-
tracted intensive attention from both academia and industry.
This  section  covers  the  latest  research  trends  of  communica-
tion ICs during the past few years,  which includes the follow-
ing  sub-topics:  1)  wireless  transceivers,  2)  wireline  and  optic-
al  communication  circuits,  3)  phase-locked  loops,  4)  critical
building  blocks  including  power  amplifiers,  voltage-con-
trolled oscillators, and crystal oscillators. 

3.1.  Wireless transceiver ICs

Wireless  transceivers  are  central  components  of  wireless
systems. For mobile communication applications, the continu-
ous  demand  for  faster  wireless  data  in  the  context  of  mobile
battery  limitations  drives  the  development  of  high-through-
put  and  energy-efficient  wireless  transceivers  in  more  carrier
aggregation  and  wider  bandwidth  per  path,  as  shown  in
Fig.  2.  Due  to  growing  demand  for  faster  data  rate  in  wire-
less  systems,  better  resolution  requirement  in  radar  system,
and  emerging  sensing  applications,  mm-wave  transceivers
for  radar  and communication have  become very  attractive  in
recent  years.  Ultra-low-power  radios  are  the  main  building
blocks of internet-of-everything connectivity. Bluetooth low-en-
ergy  (BLE)  radios  are  extensively  used  for  wireless  connectiv-
ity  in  many  small  portable  devices,  where  longer  battery  life

dramatically improves user experience. In this section, we will
discuss,  in  the  following,  the  state-of-the-arts  of  high  data
rate  wireless  transceivers  with  multiple  mobile  communica-
tion  standards,  millimeter-wave  and  radar  transceivers,  as
well as ultra-low-power radios.

5G  radio  technology  promises  tens  of  Gb/s  data-rates
with  a  10×  reduction  of  latency.  This  will  enable  applications
in  enhanced  mobile  broadband,  massive  internet  of  things
and  mission-critical  services.  In  Ref.  [36],  MediaTek  intro-
duces  a  2/3/4/5G  compliant  transceiver  in  12-nm  FinFET
CMOS supporting 6-carrier aggregation downlink, 2-carrier ag-
gregation  uplink,  and  4  ×  4  MIMO  256-QAM  for  the  first
demonstration of 2 × 2 coherent up-link MIMO. Samsung Elec-
tronics demonstrates a highly integrated lost-cost, low-power
transceiver IC supporting legacy 2G/3G/4G and new-radio fre-
quency  range  1  (FR1)  communications  with  dual-mode  glob-
al  navigation  satellite  system  (GNSS)[37].  In  this  year,  Sam-
sung Electronics  introduces  a  digital-IF  sub-6GHz FR1 cellular
receiver supports up to 15 inter/intra CA by 3 downlink paths
with the capability of achieving 300 MHz bandwidth per path
in 14-nm FinFET CMOS[38].

Millimeter-wave (mm-wave) wireless communication and
radar transceiver systems are the key drivers for cutting-edge
integrated circuits design advancement. Mm-wave antenna ar-
rays  allow  fine  beam  steering  with  large  radiated  power  and
compact  size.  Scalability  of  large-scale  arrays  to  hundreds  of
elements  is  necessary  to  extend  the  range  of  mm-wave  for
5G and the next-generation radio systems. In Ref. [39], Broad-
com presents a 144-element phased-array transceiver using a
tiled  approach  for  IEEE  802.11ad.  It  reports  the  measured  an
effective  isotropic  radiated  power  (EIRP)  of  51  dBm  and  sup-
ports  scan  angle  of  ±  60°  in  azimuth  and  ±  10°  in  elevation.
Samsung  demonstrates  a  16-channel,  28/39  GHz  dual  polar-
ized  5G  phased-array  transceiver  IC  with  a  quad-stream  IF
transceiver  supporting  non-contiguous  carrier  aggregation
up to 1.6 GHz bandwidth (BW)[40]. Transitions from phased-ar-
rays  to  digital  beamforming/MIMO  arrays  allow  increased
FDD/TDD/Massive  MIMO  functionality.  Researchers  from  the
University  of  California  Berkeley[41] present  a  16-element  by
16-beam  multi-user  beamforming  integrated  receiver  with
baseband  analog  BF  matrix  and  on-chip  LO  generation  in
28-nm  CMOS  technology,  which  supports  up  to  2  Gb/s/user
wireless  links  and  handles  16  concurrent  user  streams  over
the  whole  band.  CMOS  radar  technologies  continue  to  ad-
vance  with  demonstration  of  mm-wave  MIMO  radar,  which

 

Fig. 2. (Color online) Trends of the number of CA from downlink path
and maximum BW per path for recent cellular SoC implementations.
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leads  to  improved  3D  resolution  and  object  discrimination
for  automotive  radar.  The  work  in  Ref.  [42]  demonstrates  a
77/79 GHz MIMO radar SoC with 12 transmitters and 8 × 2 re-
ceivers  resulting  in  192  virtual  receivers.  The  radar  system
based on the IC achieves 6 cm range resolution, 1° angular res-
olution,  and  0.099  km/h  Doppler  resolution.  In  addition,  two
high-level  integration  76–81  GHz  FMCW  MIMO  radar  module
are  demonstrated  in  Refs.  [43, 44].  With  the  continuing  ad-
vancements  of  terahertz  (THz)  technologies  in  silicon  pro-
cesses, more and more THz transceivers are demonstrated for
spectrum-to-space mapping,  wideband communication,  high
resolution mapping[45, 46].

Advances in the ultra-low-power radio continue the drive
towards  power-efficiency  and  high  sensitivity  wireless  nodes.
In  Ref.  [47],  researchers  from  Columbia  University  describe  a
wake-up  receiver  achieving  a  –78.3/–79.1dBm  sensitivity  at
151.25/434.4  MHz  with  a  110  ms  latency,  while  consuming
370/420  pW  from  0.4  V.  It  enables  practically  unlimited  bat-
tery  lifetime  for  sensor  nodes.  UWB  radio  technology  prom-
ises  high  data  rate  and  precise  positioning  over  a  small  dis-
tance,  which  can  be  useful  in  many  consumer  electronic  and
brain-computer  interface applications.  Researchers  from Yon-
sei  University  introduces  an  IR-UWB  radio[48] with  1.25  Gb/s
data  rate  over  2  m  range  while  only  consuming  28  mW,
which  is  the  best  among  state-of-the-art  for  energy  effi-
ciency at 2 m range up until now. 

3.2.  Wireline and optical communication circuits

With the development of cloud services and mobile com-
puting,  the  datacenter  drives  an  ever-growing  demand  for
the  high-speed  and  low  power  interconnects.  In  the  past
three  years,  the  wireline  I/Os  have  witnessed  a  doubled  per-
channel  data-rate,  scaling  from  112  to  224  Gb/s.  The  four-
level  pulse  amplitude  modulation  (PAM-4)  has  been  em-
ployed as an enabling technique. To keep the power consump-
tion  acceptable,  some  of  the  most  advanced  processes  have
been  utilized,  scaling  from  7-nm  to  5-nm  FinFET  technology.
A  universal  figure-of-merit  factor,  pico-Joule-per-bit  (pJ/bit),
has  been  widely  adopted  to  evaluate  the  power  efficiency.
The  trends  of  wireline  communication  circuits  is  briefly  sum-
marized in Fig. 3.

Categorized  by  the  communication  distance,  wireline
transceivers  employ  different  wiring  channels  (copper  or
fiber)  and  circuity  topologies.  In  the  past  three  years,  the
long-reach (LR) and extra short reach (XSR) serializer/deserial-
izer (SerDes), as well as the co-packaged optics (CPO) have at-
tracted the most research attentions worldwide. 

3.2.1.    LR and XSR SerDes
The  LR  Serdes  attempts  to  overcome  up  to  40-dB  chan-

nel loss and beyond 112 Gb/s channel speed. State-of-the-art
LR receivers have largely converged on an architecture based
on time-interleaved SAR ADCs (RX) and multi-bit equalizer em-
bedded  DACs  (TX).  There  are  two  fundamental  design  chal-
lenges  need  to  be  addressed  in  the  SerDes  transceivers.
Firstly,  the  data  path  analog  bandwidth  keeps  increasing,
while maintaining about 1-Vpp output swing and sufficient lin-
earity  for  the  PAM-4  signaling.  Inverter-based  analog  front-
end  circuits  are  widely  adopted  to  accommodate  the  ad-
vanced  CMOS  technology[49−51].  Hybrid  continuous-time  lin-
ear  equalizer  (CTLE)  architecture  with  inductive  peaking  and
source degeneration can be used to extend the circuit  inher-

ent  BW[52].  To  improve  the  TX  bandwidth,  current  mode  lo-
gic (CML) DAC-based output stage with active inductor peak-
ing  pushes  the  data  rate  to  112  Gb/s  PAM-4.  High-order  T-
coil and π-coil network with precise electromagnetic (EM) mod-
eling  can  be  employed  to  address  the  parasitic  capacitance
from ESD and I/O PADs[53]. Secondly, the SerDes transceiver re-
quires  high-frequency  clock  with  precise  phase  spacing  and
low  jitter  to  serialize  and  re-time  the  symbols  up  to  112
GBaud. Quarter rate serializer architecture has been widely ad-
opted[49, 54, 55],  in  which  the  pulse-based  MUX  and  quadrat-
ure clock phase calibration are of great importance[53].

High-performance  XSR  SerDes  with  both  high  area  effi-
ciency  (mm2/lane)  and  energy  efficiency  (pJ/b)  are  driven  by
the  interconnects  in  datacenter,  XPU  and  AI  applications.  It
enables  chiplets,  multi-die  integration  for  low  cost,  high
yield,  and  high  throughput.  The  XSR  SerDes  employs  simpli-
fied TX DAC and RX DSP functions to save power and area. In
Ref.  [56],  5-tap  TX  FIR  equalization  and  a  delay-line  based
continuous-time  RX  linear  equalizer  are  adopted,  realizing
50%  power  saving  and  12%  speed  improving.  Baud-rate
PAM-4 CDR instead of multi-bit  ADC is  utilized to recover the
112 Gb/s data over up to 12 dB loss in an XSR channel. The op-
timized  power  efficiency  achieves  less  than  1.5  pJ/bit  in  a  7-
nm process[56]. 

3.2.2.    Optical links and silicon photonics
The  datacenter  switch  throughput  has  been  growing

from  12.8  to  25.6  Tb/s.  To  support  inter-  and  intra-rack  inter-
connects,  the  optical  links  are  expected  to  achieve  longer
reach (<500 m) at higher data rate (>400 Gb/s). Silicon photon-
ics  (Si-Ph)  solutions  are  of  particular  interest  to  achieve  high-
density  integrated  100+  Gb/s/λ  optical  transceivers,  which
would be deployed in the CPO modules[57, 58].  On the TX side,
Si-Ph  mirroring  modulators  (MRMs)  have  the  unique  feature
of  high-Q resonant  filtering  that  can  be  utilized  for  the  on-
chip wavelength-division multiplexing (WDM) links.  To stabil-
ize the resonance wavelength, a hybrid electrical-optical  con-
trol loop is necessary to be integrated, while an automatic tun-
ing  algorithm  is  also  preferred.  In  Ref.  [57],  a  28-nm  CMOS
driver  is  co-designed  and  flipped-chip  mounted  onto  the  Si-
Ph  MRM.  The  optical  TX  achieves  4  ×  112  Gb/s  data-rate  and
7.5  pJ/bit  power  efficiency.  The  integrated  temperature  con-
trol realizes sub-GHz wavelength tuning resolution at temper-
atures  up  to  55  °C.  On  the  RX  side,  original  SiGe  transimped-
ance  amplifiers  (TIA)  are  expected  to  be  replaced  by  CMOS

 

Fig. 3. (Color online) Trends of wireline communication circuits: power
efficiency and data rate.
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ones  for  higher  integration  and  lower  power.  To  achieve  a
comparable sensitivity, digital intensive feedforward equaliza-
tion  (FFE)  and  decision  feedback  equalization  (DFE)  circuits
are  integrated  in  the  TIA  to  compensate  for  the  insufficient
TIA  BW  without  contributing  additional  noise[59].  Besides  of
the  intensity  modulation  direct-decision  (IMDD)  solution,  co-
herent  optical  transceivers  would  have  longer  reach  (>2  km)
and  higher  data  rate  (>640  Gb/s).  The  first  challenge  is  to
design  a  high-swing  and  high-linearity  modulator  driver  in
CMOS.  In  Ref.  [60],  the  distributed  multi-peaking  using  on-
chip  coils  and  T-lines  could  significantly  extend  the  analog
BW. In addition, the stacked current re-use topology can be ad-
opted  to  save  power  in  a  high-swing  driver  with  sufficient
voltage headroom.

In  conclusion,  after  three  years  of  continuous  research,
the  112  Gb/s/lane  wireline  circuits  have  become  mature.  To
save  power  and  further  double  the  speed,  more  advanced
5-nm  CMOS  process  starts  to  be  adopted  as  a  mainstream
technology, enabling the exploring for 224 Gb/s/channel. The
full  link  (TX+RX)  power  efficiency  of  112G  LR  SerDes  has
reached 2.2 pJ/bit, while the 224G is still beyond 3 pJ/bit. Op-
tical  links  would  be  utilized  to  replace  the  copper-wire  for
meter-scale  connectivity  and  beyond.  By  co-packaging  elec-
tronics  and  silicon  photonics,  chip-scale  high-BW  and  high-
density throughput would be feasible in the future. 

3.3.  Low-jitter PLL

Phase-locked  loops  (PLL)  are  widely  used  in  modern  ul-
tra-high  speed  wireless/wireline  communication  circuits  and
systems, such as 5G transceivers, over-100-Gbps SerDes trans-
ceivers,  and  high  sampling  rate  analog-to-digital  converters
(ADCs). Fig. 4 summarizes the recently published representat-
ive  low-jitter  PLLs  from  recent  years’  ISSCC  or  JSSC  papers.
Based  on  the  recently  published  works  shown  in Fig.  4,  we
will  give  an  overview  of  the  PLL  development  trends,  includ-
ing the trends of PLL architectures,  and the performance gap
between integer-N PLL and fractional-N PLL.

Among  the  PLLs  shown  in Fig.  4,  five  PLL  architectures
are  widely  used,  including  charge-pump  based  PLL
(CPPLL)[61−63],  sampling/sub-sampling  PLL  (SPLL/SSPLL)[64−71],
time-to-digital  converter  (TDC)  based  digital  PLL  (TDC-based
DPLL)[72, 73],  and  digital  sampling/sub-sampling  PLL  (D-SPLL/
D-SSPLL)[74−76],  injection-locked  PLL  (ILPLL)[77],  and  injection-
locked clock multiplier (ILCM)[78, 79].

The  CPPLL,  which  adopts  a  phase/frequency  detector
(PFD) with unlimited phase and frequency detection range, is
simple  and  robust[80].  Thus,  it  is  widely  used  especially  in  in-
dustry. However, the low PFD gain, which is only 1/2π, makes
the in-band phase noise of  CPPLL (mainly contributed by the
CP)  difficult  to  be suppressed[80]. Fig.  5 illustrates  a  simplified
linear  phase noise  model  of  the PLL with noise  transfer  func-
tion of the PD. It indicates that a low-noise CP with a large CP
current  is  required  for  the  CPPLL  to  achieve  low  in-band
phase  noise  and  low-jitter  performance  due  to  the  low  gain
of PFD. This makes the CPPLL not a suitable choice for low-jit-
ter  low-power  PLL  design.  The  jitter  figure-of-merit  FoMjitter

(the lower the better) of CPPLL, can be improved by newly pro-
posed techniques including the reference frequency multipli-
er[62] and  time-amplifying  phase  detector  (PD)[63].  However,
the  FoMjitter improvement  of  the  CPPLL  is  still  less  than  that
of the other PLL architectures.

As  discussed  before,  it  is  significant  to  increase  the  PD
gain  so  as  to  suppress  the  in-band  phase  noise  to  achieve
low-jitter  with  low  power  consumption.  The  SSPLLs[64−69] ad-
opt  a  sub-sampling  PD  (SSPD)  to  sample  the  voltage-con-
trolled oscillator (VCO) output signal for phase detection pur-
pose,  and  thus  can  achieve  high  PD  gain  as  the  SSPD  gain
equals the slope of the VCO output signal. Similar to the sub-
sampling PD, the sampling PD (SPD) in SPLL[70, 71] achieves sim-
ilar  high  PD  gain  by  sampling  the  sharp  edge  of  the  divider
output  signal  for  phase  detection.  In  addition,  the  SPD
achieves  much  higher  phase  detection  range  than  the  SSPD.
Thanks  to  the  high  PD  gain,  the  SSPLL  reported  in  Ref.  [64]
achieves  the  best  FoMjitter of  –259.2  dB  with  integrated  jitter
below 50 fs; and several other SSPLLs/SPLLs[66−68] obtain FoMjit-

ter below –255 dB, which are obviously better than that of oth-
er PLL architectures.

Digital  PLL  is  getting  more  popular  due  to  its  scalability
in  advanced  CMOS  technology  and  the  design  portability
between  technologies.  TDC-based  PLL[72, 73] is  a  commonly
used DPLL architecture. For low-jitter design, a high TDC resol-
ution is required for high PD gain purpose. Recently,  Ref.  [72]
reports the first  TDC-based PLL that achieves sub-50-fs  integ-
rated  jitter  with  a  significantly  improved  TDC  resolution.
However,  its  power  consumption  of  56  mW  is  large.  Hence,
its FoMjitter is  still  higher than –250 dB. This is mainly because
that  the  high  resolution  TDC  with  low  thermal  and  flicker

 

Fig.  4.  (Color  online)  The jitter  variance  versus  power  of  the  recently
published PLLs from ISSCC/JSSC.

 

Fig. 5.  Simplified PLL linear phase noise model with its noise transfer
function of the PD.
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noise is usually power hungry.
To  relax  the  power  consumption  issue,  the  D-SSPLL/D-

SPLLs[74−76] are  proposed.  A  low-resolution  ADC  (including  1-
bit  ADC,  which  is  also  called  bang-bang  PD[74, 76])  with  low
sampling rate  of  the reference frequency is  used to  digitalize
the  output  of  SSPD  or  SPD.  Hence,  it  combines  the  advant-
ages  of  SSPLL/SPLL’s  high  PD  gain  and  low  jitter  with  DPLL’s
small  area.  As  illustrated  in Fig.  4,  D-SSPLL/D-SPLL  can
achieve  FoMjitter between  –250  and  –253  dB.  This  indicates
that the D-SSPLL/D-SPLL can reduce the performance gap.

Besides  the  PLLs  introduced  above,  the  ILCM  is  also  a
low-cost solution to achieve low-jitter performance by simply
injecting a clean pulse to the oscillator to simultaneously sup-
press  the  in-band  and  output  phase  noise  of  the  PLL[70].
State-of-the-art  ILPLLs  achieve  sub-70-fs  integrated  jitter  and
<–250  dB-FoM  at  the  frequency  of  over-20-GHz[77, 78].  The
main drawback of the ILPLL or ILCM is its worse spur level com-
pared with other  low-jitter  PLLs.  Hence,  low spur  level  is  also
a  key  research  focus  for  ILPLL  or  ILCM.  Recently,  the  spur
level  of  state-of-the-art  ILCM  reaches  below  –70  dBc[79],
which  is  comparable  with  other  low-jitter  PLL  with  low  spur
level.

As  discussed  above,  the  SSPLL/SPLL  (including  analog
and  digital  architectures)  and  the  ILPLL/ILCM,  achieve  better
performance  than  the  CPPLLs  in  terms  of  jitter  and  FoMjitter.
However, actually, the CPPLL is still the most widely used archi-
tecture in the industry.  The main reason is  that the unlimited
locking  range  makes  the  CPPLL  robust  to  maintain  its  lock-
ing state over any disturbance[80]; whereas other PLL architec-
tures are more vulnerable to the disturbance because they suf-
fer  from  the  risk  of  losing  lock  due  to  their  limited  locking
range,  and  thus  requires  additional  settling  process  for  fre-
quency  relocking  with  the  help  of  auxiliary  building  blocks.
However,  recently,  more and more efforts are made to devel-
op  the  fast  relock  technique  (e.g.  the  technique  proposed  in
Ref. [65]) for these PLL architecture to mitigate this issue. This
will  make  these  low-jitter  PLL  architectures  more  robust  and
attractive for the industry.

In  summary,  both  analog  and  digital  sampling/sub-
sampling  PLLs  are  popular  for  low-jitter  low-power  PLL
design,  because  the  analog  SSPLL/SPLL  achieves  the  best
FoMjitter of –259.2 dB and lowest integrated jitter of sub-50 fs,
and  also  dominate  the  state-of-the-art  PLL  performance;  the
digital  sampling/sub-sampling  PLLs  can  effectively  reduce
the  performance  gap  between  analog  and  digital  PLLs  with
the  advantage  of  smaller  area.  In  addition,  the  development
of  spur  reduction  technique  makes  the  ILPLL  or  ILCM  be-
come attractive as a low-cost low-jitter clock generation solu-
tion;  and  the  continuous  research  on  the  fast  relock  tech-
nique  is  improving  the  robustness  of  the  SSPLL/SPLL  and
ILPLL/ILCM. 

3.4.  Critical building blocks in communication system

In  this  subsection,  we  are  going  to  discuss  some  com-
monly  used  critical  building  blocks  in  communication  sys-
tems,  including  power  amplifiers,  voltage-controlled  oscillat-
ors, and crystal oscillators. 

3.4.1.    Power amplifiers
Power  amplifiers  (PAs)  are  still  one  of  the  most  import-

ant  building  blocks  in  wireless  transceivers  since  it  domin-
ates  the  power  consumption  of  transmitters.  Therefore,  PA  is

currently  a  very  active  research  area.  Various  PAs  spanning
from  RF  bands  to  terahertz  bands  towards  higher  efficiency,
higher output power, more compact chip area, and so on are
published  in  recent  year’s  ISSCC  and  JSSC,  including  milli-
meter-wave  (mm-wave)  CMOS  PAs  with  Watts-level  output
power, both digital and analog PAs with back-off efficiency en-
hancement,  large-scale  power-combining  CMOS  PA,  wide-
band  PAs,  and  mm-wave  PA  in  GaN  HEMT  process  and  in
CMOS  FinFET  process. Fig.  6 surveys  the  state-of-the-art  PAs
in different  process.  Particularly,  the frontier  mm-wave CMOS
PAs  have  close  to  50%  peak  power  added  efficiency  (PAE)
and near 30 dBm saturated output power (Psat). Among those
works,  the  major  research  efforts  have  been  focused  on  im-
proving the deep back-off efficiency of the PAs, including lin-
ear  PAs  and  digital  PAs,  to  support  advanced  modulation.
The  most  recently  published  linear  PAs  work  at  the  milli-
meter-wave (mm-wave)  frequency range,  driven by the rapid
development  of  5G  mm-wave  communications,  where  the
huge  power  consumption  is  still  the  bottleneck.  On  the  oth-
er  hand,  most  digital  PAs  work  at  a  frequency  below  10  GHz
due  to  the  degraded  transistor  switching  performance  at  a
higher frequency range.

For  mm-wave  linear  PAs,  the  Doherty  architecture,  been
invented  in  1936  and  hot  for  several  decades,  is  still  the
most  popular  technique  to  improve  the  back-off  efficiency
nowadays.  Various  Doherty  PA  implementations  on  silicon
have been demonstrated[81−84]. In Ref. [81], a mixed-signal Do-
herty PA composed of an analog main path and a digital auxili-
ary path is proposed to create multiple back-off efficiency en-
hance  points  with  a  small  power  step.  However,  the  digital
auxiliary  path  control  is  complicated,  limiting  the  modula-
tion  symbol  rates.  The  textbook  Doherty  PA  uses  a  quarter
wavelength  transmission  line  as  the  impedance  inverter,
which  is  not  suitable  for  on-chip  implementation  due  to  the
area and insertion loss of  long transmission lines.  Various on-
chip  lumped  element  networks  have  been  proposed  to  re-

 

Fig. 6. (Color online) The state-of-the-art PA peak PAE and Psat perform-
ance in different processes[90].
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place the transmission lines for compact chip area and low in-
sertion  loss[82−84].  At  a  low  mm-wave  frequency  range,  trans-
formers are proven to be one of the optimal choices. A paral-
lel-series  3-way  transformer-based  Doherty  PA  in  55-nm  bulk
CMOS is reported in Ref. [82], achieving 20.4% and 14.2% PAE
at  6  and  12-dB  back-off  at  28  GHz.  Marchand  balun  like
coupler  has  also  been  used  in  the  Doherty  PA  for  wideband
back-off efficiency in Ref. [83]. At frequencies higher than 100
GHz, on-chip transformers face degraded performance due to
the small diameter, increased parasitics, and reduced port bal-
ance.  The  slotline-based  technique  proposed  in  Ref.  [84]
provides attractive method to realize the on-chip power com-
bining  and  Doherty  operation  above  100  GHz.  The  slotline-
based  Doherty  PA  reported  in  Ref.  [84]  has  22.7  dBm  satur-
ated power (Psat)  and 12.1% PAE at  6-dB back-off  at  110 GHz.
Besides  Doherty  PA,  the  recently  emerging  load-modulated
balanced amplifier  (LMBA) can also improve the back-off  effi-
ciency  by  modulating  the  impedance  from  the  isolation  port
of  a  hybrid  coupler.  As  demonstrated  in  Ref.  [85],  LMBA  has
the  potential  for  wideband  operation.  Regarding  higher  out-
put  power,  massive-scale  power-combining  technique  has
been demonstrated in  Ref.  [86].  Using 128-to-1  power-comb-
ing  architecture,  the  CMOS  PA  achieves  a  1.6  W  output
power  above  100  GHz,  which  established  a  new  benchmark
for CMOS PA.

For  digital  PAs,  the  switched-capacitor  PA  (SCPA)  has
been the dominated architecture due to its easy implementa-
tion,  well  matching,  and  flexibility.  Recent  researches  about
the SCPA focus on the back-off efficiency enhancement meth-
od  such  as  Doherty  power-combining,  subharmonic  switch-
ing,  and  floated-capacitor  techniques.  Transformer-based
power-combining  networks  introduces  Doherty-like  opera-
tion into SCPAs[87−89]. In Ref. [87], an eight-way power-combin-
ing  transformer  enhances  the  deep  back-off  efficiency  of  a
1.5  GHz  SCPA.  At  6/12/18-dB  back-off,  the  efficiency  is  en-
hanced  by  1.77/2.12/1.97  times  compared  with  a  class-B  PA.
In  Ref.  [88],  the  back-off  efficiency  is  enhanced  by  reducing
the switching frequency of the SCPA in the power back-off re-
gion.  In  Ref.  [89],  the transformer-based Doherty power-com-
bining  together  with  the  floated-capacitor  techniques  have
been used in a 2.4 GHz Watts-level quadrature PA, the power
back-off PAE 6-dB of which is 29.1%. 

3.4.2.    Voltage-controlled oscillators
The emerging 5G communication sets a stringent require-

ment for the phase noise of the local oscillator (LO). As calcu-
lated in Ref.  [91],  the phase noise requirement for  64 QAM at
80  GHz  is  –102  dBc/Hz  at  1  MHz  offset  frequency.  Recently,
the  effort  has  been  made  to  improve  the  phase  noise  from
three directions: the harmonic tuning, the multi-core, and the
series-resonant  techniques. Fig.  7 summarizes  the  state-of-
the-art  oscillator  FoM  and  the  FoM  with  tuning  range  (FoMT)
at 1 MHz offset versus frequency.

Harmonic  tuning techniques  such as  class-F,  tail  filtering,
and  implicit  common-mode  resonance  have  already  been
proven  to  be  efficient  in  phase  noise  improvement,  which
has  been  further  exploited  in  recent  years[92, 93].  In  Ref.  [92],
a  single-turn  multi-tap  inductor  is  employed  in  a  25.5-to-
29.9 GHz and 191.6 dBc/Hz FoM VCO to create high Q high im-
pedance  resonances  at  the  1st,  2nd,  and  3rd  harmonic  fre-
quencies.  The  single-turn  multi-tap  inductor  has  the  advant-
age of higher Q in the mm-wave frequency range over conven-

tional  multi-turn  transformers.  In  harmonic  tuning  VCOs,  the
harmonic  peak  impedance  frequency  misalignment  de-
grades the phase noise. In Ref.  [93],  a head-resonator consist-
ing  of  two  inductors  and  one  capacitor  is  added  to  a  5.0-to-
6.36  GHz  VCO  to  create  a  wideband  2nd  harmonic  response,
eliminating  the  need  for  dedicated  2nd  harmonic  capacitor
tuning, and suppressing the flicker noise over the whole oscilla-
tion frequency range.

It is well known that an N core oscillator can improve the
phase noise by 10log(N) times. In Ref. [94], a 3.09-to-4.04 GHz
quad-core  oscillator  using  distributed-boosting  transformers
is  proposed.  The  high-order  distributed-boosting  trans-
former network provides the freedom to implement harmon-
ic  tuning and impedance expanding in addition to the multi-
core,  which  significantly  improves  the  phase  noise  and  FoM.
The  proposed  oscillator  achieves  excellent  –138.9  dBc/Hz
phase  noise  and  195.1  dBc/Hz  FoM  at  1  MHz  offset.  The  au-
thors in Refs. [95, 96] show that a mode-rejected multi-core to-
pology  favors  the  mm-wave  operation  compared  with  resist-
ance-coupled  multi-core  because  the  slab  topology  induct-
ors in the mode-rejected topology can achieve a very small in-
ductor  (~20  pH)  with  considerably  high Q (>25).  The  repor-
ted phase noise and FoM of the 60 GHz quad-core[95] and 16-
core[96] oscillators  are  –104.7  and  186.5  dBc/Hz,  and  –111.1
and  185.7  dBc/Hz  at  1  MHz  offset,  respectively.  The  multi-
core  oscillator  draws  more  current  from  the  power  supply,
thus  lowering  the  phase  noise.  It  has  an  inevitable  chip  area
overhead,  although  not  significant  in  the  millimeter  fre-
quency range.

This year, the series resonance VCO presented in Ref. [97]
emerges,  providing  an  interesting  alternative  method  that  is
to  draw  more  current  to  trade  for  phase  noise.  In  this  work,
the  LC tank  is  arranged in  a  series-connected form,  therefore
creating  a  near-short  path  at  the  resonance  frequency,  and
drawing  a  great  amount  of  current  from  the  source  using
only  one  single  inductor.  The  VCO  reports  a  phase  noise  of
–138  dBc/Hz  and  FoM  of  –190  dBc/Hz  at  1  MHz  offset  from
10  GHz.  The  series-resonance  is  a  promising  low-phase-noise
technique  with  unsettling  challenges.  The  first  challenge  is
the  suitable  negative  resistance  in  the  CMOS  process.  The
second challenge is the frequency tuning range (FTR). To pro-
tect  the  variable  capacitance  for  the  boosted  voltage  swing
in the series-resonance VCOs, the efficient max-to-min capacit-
ance ratio is sacrificed through a voltage divider.

Besides low-phase noise,  very wide FTR VCOs are also at-
tractive  to  support  the  widely  distributed  frequency  bands
allocated  for  5G  communication.  Usually  one  octave  FTR  is
considered  sufficient  since  all  lower  frequencies  can  be  gen-
erated  by  cascaded  frequency  dividers,  whose  design  cost
is  low.  The  most  straightforward  way  to  improve  the  FTR  of
an LC oscillator is to scale up the size of the switched-capacit-
or  arrays  to  improve  the  max-to-min  capacitance  ratio.
However,  this  solution  faces  the  fundamental  trade-off
between the on-resistance and off-capacitance of the transist-
or  switches,  which  translates  to  the  trade-off  between  the
max-to-min  capacitance  ratio  and  the  tank Q and  the  trade-
off between the FTR and phase noise. On the other hand, the
mode-switching technique[98−100] has shown superior perform-
ance  on  improving  the  FTR  while  less  affecting  the  phase
noise,  which  is  still  a  very  active  research  area.  In  Ref.  [98],  a
dual-mode dual-core  VCO using a  4-port  resonator  exhibits  a
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41.3%  FTR  from  25  to  38  GHz,  corresponding  to  195  dBc/Hz
FoMT.  To  further  extend  the  FTR,  a  quad-mode  quad-core
VCO  using  EM  mixed  coupling  and  a  triple-mode  dual-core
VCO using 4-port resonator are proposed in Refs. [99, 100], re-
spectively,  which  achieve  73.2%  FTR  from  18.6  to  40.1  GHz
with  201.7  dBc/Hz  FoMT and  80.6%  FTR  from  7.1  to  16.8  GHz
with 204.4 dBc/Hz FoMT, respectively.

The mode-switching technique has been proven to be suc-
cessful  in  wide  FTR  VCOs.  However,  two  major  design  chal-
lenges remain. The first is to further reduce the parasitic capa-
citance introduced by the mode-switching technique, such as
the  coupling  capacitors  in  Ref.  [99]  and  the  off-state  cross-
coupled pairs in Ref. [100]. The second is to suppress the flick-
er  noise  over  the  more  than  octave  FTR,  especially  in  ad-
vanced  process  nodes,  the  satisfied  solution  to  which  is  still
missing in literature. 

3.4.3.    Crystal oscillators for IoT devices
Lowering the startup time (ts) and energy (Es) of the crys-

tal  oscillator  (XO)  for  the  IoT  devices  has  been  an  emerging
and  popular  trend  in  recent  years[101].  Fueled  by  the  de-
mands  on  extending  the  battery  lifetime  of  the  IoT  devices,
or  eventually  culminating  in  perpetual  operation  with  en-
ergy  harvesters,  duty-cycling  the  power-hungry  transceivers
becomes  a  popular  approach.  It  effectively  reduces  the  over-
all  power consumption by putting the transceivers into sleep
mode for a prolonged period. As an indispensable part of the
radio  transceiver,  the  XO  is  praised  for  its  excellent  fre-
quency  stability  and  spectral  purity.  Yet,  these  advantages
come  at  the  expense  of  a  long ts due  to  the  high  quality
factor (Q) of the quartz crystal; the MHz-range XO takes a mat-
ter  of  milliseconds  to  start  if  no  startup  technique  is  presen-
ted.  This  long ts hampers the duty-cycling operation.  Further,
the  requisite  energy  to  start  the  XO  remains  a  bottleneck  to
the  power  reduction  efficacy  of  the  IoT  radio  brought  by  the
duty-cycling technique.

In this regard,  there is  a thrust to radically improve the ts

and Es of  the  XO,  as  shown  in Figs.  8(a)  and 8(b),  such  that
the  IoT  transceivers  can  be  duty-cycled  efficiently  to  reduce
the  average  power  consumption.  Essentially,  the  fast  startup
techniques of the XO can be categorized into negative resist-
ance  boosting  and  energy  injection.  The  negative  resistance
boosting  technique  boosted  the  negative  resistance  (RN)  of
the  amplifier  sensed  by  the  crystal[102−111].  A  negative  resist-
ance is compulsory to compensate for the resistive loss of the
crystal unit and fulfill the Barkhausen stability criterion to sup-
port  the  oscillation  of  the  XO.  Besides,  the RN is  also  influen-

tial  to  the ts.  In  the  beginning,  the  XO  builds  up  its  amp-
litude  from  the  thermal  noise  that  existed  in  the  circuit.  The
growing  rate  of  the  XO’s  amplitude  is  proportionate  to  the
RN.  Hence,  a  high RN effectively  shortens  the ts by  promoting
the exponential growth of the XO’s amplitude. As no extra os-
cillator  or  sensing  circuit  is  necessary,  the  hardware  over-
head for the negative resistance boosting technique is minim-
ized.

Instead  of  waiting  for  the  crystal  to  accumulate  its  amp-
litude,  the  quintessence  of  energy  injection  technique  is  to
pour energy into the crystal by exciting it with an auxiliary sig-
nal[102, 105, 107, 110−120].  Although  its  foundation  is  relatively
straightforward, the injection source must have frequency con-
tent in close proximity to the resonant frequency of  the crys-
tal (Δf < 5000 ppm, depending on the final XO-swing and the
injection  duration)  to  excite  the  crystal  effectively  due  to  its
high-Q bandpass  nature.  To  this  end,  substantial  endeavors
have  been  invested  in  recent  years  to  properly  inject  energy
to the crystal, such as dithering, two-step injection, signal syn-
chronization,  etc.  At  ISSCC  2022,  a  fast  startup  XO  based  on
the  energy  injection  method  is  proposed[119].  The  startup  of
the  XO  is  expedited  by  the  initial  dithering  and  a  sampling

 

 

Fig. 7. (Color online) The state-of-the-art oscillator FoM and FoMT at 1MHz offset versus frequency.

 

Fig. 8. (Color online) The trends of (a) startup time and (b) startup en-
ergy of the MHz-range fast startup XO.
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phase-locked  loop  (S-PLL).  The  initial  dithering  signal  gener-
ated by the injection voltage-controlled oscillator (i-VCO) is in-
jected  into  the  crystal  at  the  beginning  to  produce  a  0.2-V
XO-swing robustly.  The frequency of the i-VCO is then locked
onto  this  XO  signal  by  the  S-PLL  in  8 μs.  Finally,  the  accur-
ately  locked  signal  is  re-injected  to  the  crystal  for  another
12 μs to yield an XO-swing of 1.2 V.  It  achieves a ts of  39.6 μs
and Es of  92.8  nJ,  attaining  18.2×  and  6.4×  reductions  com-
pared to that without startup technique, respectively.

Stimulated  by  the  expansion  of  the  ultra-low-power  IoT
market,  we expect  that  the research on the fast  startup tech-
nique  for  the  XO  will  continue  to  be  active  in  2022  and  bey-
ond.  Even though the ts of  the fast  startup XOs implemented
recently  are  close  to  the theoretical  minimum,  for  instance,  a
mere  17%  of  the Es is  delivered  to  the  core  of  the  crystal[118].
Hence, there is still significant room to improve the energy effi-
ciency of the startup scheme. On top of this, the energy injec-
tion  technique  requires  a  precise  source  signal.  Con-
sequently,  we  expect  this  will  also  prompt  the  research  on
the  fully-integrated  low-power  oscillators[121, 122] and  associ-
ated calibration methods, especially using the signal from the
XO itself[119]. 

4.  Data converters

There  have  been  significant  advances  in  the  design  of
data converters over the past decade. This review article cov-
ers  three  major  directions  as  demonstrated  in  latest  ISSCC
works.  The  first  one  is  a  novel  hybrid  architecture  called
noise-shaping  successive  approximation  register  (SAR)  ADCs.
The  second  is  high-resolution  incremental  ADC.  Last  but  not

least,  state-of-the-art  pipelined  ADC  developments  will  also
be reviewed. 

4.1.  Noise-shaping SAR ADCs

The noise-shaping SAR (NS-SAR) is a promising hybrid ar-
chitecture  emerged  in  past  few  years.  NS-SAR  is  a  hybridiza-
tion of  the SAR and the delta-sigma (DS)  architectures,  and it
benefits  from  the  both  side:  it  is  low-power  and  area-effi-
cient  like  SAR,  and  provides  high  SNR  as  DS  ADCs.  NS-SAR  is
also  easy  to  down-scale  and  good  for  advanced  CMOS  pro-
cesses. Fig.  9 shows  a  power  and  area  comparison  between
NS-SAR  and  other  architectures[123],  where  NS-SAR  exhibits
significant advantages over discrete-time DS ADCs. Therefore,
NS-SAR is getting more and more interest from the ADC com-
munity  recently.  Various  techniques  are  proposed  and stead-
ily  improving  the  performance  of  NS-SAR  in  all  aspects.
Fig.  10 plots  the  Schreier  figure  of  merit  (FoMs)  and  band-
width (BW) of NS-SAR over years.  Roughly,  FoMs increases by
6.4 dB, and BW increases by 8.4× per decade.

Fig.  11(a)  shows  a  basic  framework  of  NS-SAR,  which  is
modified  from  SAR  ADC[124].  Generally,  an  NS-SAR  consists  of
three  parts:  1)  A  SAR  ADC  core  that  samples  and  quantizes
the  input  signal.  In  most  designs  it  is  a  capacitive  digital-to-
analog  converter  (CDAC)  based  one,  and  a  residue  voltage
(VRES) left on the CDAC at the end of conversion; 2) A loop fil-
ter  (HEF and/or HCIFF,  depends  on  architecture)  that  proce-
sses  the  residue,  which  is  also  highly  efficient  and  scaling-
friendly;  3)  A  signal  adder  that  feeds  back  the  loop  filter’s
output. Fig.  11(b)  shows  the  signal  model  of  the  NS-SAR  in
Fig.  11(a),  where ES is  the  errors  and  noise  added  by  samp-
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Fig. 9. (Color online) Comparison between NS-SAR and conventional architectures.
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ling  (e.g.,  kT/C  noise), EQ is  the  quantization  error  including
comparator  noise,  and ED is  DAC mismatch errors.  Loop filter
HCIFF forms the cascaded-integrator feed-forward (CIFF) struc-
ture[125] and HEF forms  the  error-feedback  (EF)  structure[126].
EN1 and EN2 are  the input-referred noise  of  the two filters. z−1

is  the  delay  from  residue  sampling,  which  is  the  minimum
loop delay  in  NS-SAR.  We can derive  the signal  transfer  func-

tion (STF) and noise transfer function (NTF) as:
 

STF (z) = DOUT (z)
VIN (z) = ,

NTF (z) = DOUT (z)
EQ (z) =

 − HEF (z) z−
 + HCIFF (z) z− . (1)
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Fig. 10. (Color online) Schreier figure-of-merit (FoMs) and bandwidth (BW) of NS-SAR over years.
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Fig. 11. (Color online) (a) The basic framework of NS-SAR, and (b) its signal model.
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However,  in  NS-SAR, EN1, ED and ES are  not  suppressed,  and
EN2 is  only suppressed by the EF loop.  Since HEF is  on the nu-
merator  of  the  NTF,  a  simple  FIR HEF can  implement  the  zer-
os  in  NTF,  making EF-NS-SAR simple  in  implementation. HCIFF

is  on  the  denominator  of  the  NTF  and  it  needs  high  gain
integrators to suppress EQ. However, EF-NS-SAR is more sensit-
ive  to  filter-gain  because HEF should  be  close  to  1  in  the  sig-
nal band. CIFF-NS-SAR is more tolerant to variation as long as
HCIFF is large enough.

Despite the advantages over DS ADC, NS-SAR also has vari-
ous challenges,  which are the main focus of current research.
The  main  challenges  in  NS-SAR  architecture  are  in  four  as-
pects:  loop  filter,  DAC  mismatch,  bandwidth  limitations,  and
kT/C noise. 

4.1.1.    Loop filter
The loop filter is the most critical analog block in NS-SAR,

and  it  dominates  the  SNR  and  power  efficiency.  For  effi-
ciency  and  scaling  purpose,  the  loop  filter  in  NS-SAR  is  usu-
ally opamp-free and uses simpler alternative schemes. Many re-
cent NS-SAR designs adopt passive switched-capacitor loop fil-
ters  as  they  are  simple,  linear,  PVT  robust,  efficient,  and  scal-
ing-friendly.  But  passive filter  is  not  able  to  provide sufficient
loop  gain,  and  thus  additional  active  gain  is  usually  neces-
sary  for  high  performance  noise-shaping,  including:  1)
Opamp is  used in some early NS-SARs[125] but is  known to be
less efficient. 2) Multi-input comparator with different input dif-
ferential-pair  sizing[127] can  provide  a  moderate  gain  and  sig-
nal  summation.  It  is  simple and dynamic,  and is  thus popular
in some early designs. However, it can only implement the CI-
FF  structure,  and  it  is  noisier  due  to  the  extra  input  pairs.
Thus it is hard to achieve high SNR by using a multi-input com-
parator.  3)  Capacitor  stacking[128] provides  mild  gain  by  first
charging  two  capacitors  and  then  connecting  them  in  series.
It  is  fully  passive,  highly  linear,  and  low  noise.  It  can  also
provide  a  free  gain  of  2×  and  eliminate  the  common  mode
by using differential sampling[128]. The main drawback of capa-
citor  stacking  is  that  it  can  hardly  drive  any  resistance  load,
and  it  is  highly  sensitive  to  parasitic  capacitances,  but  these
can be solved by adding an active amplifier or buffer[129].  This
is one of the most popular schemes in recent NS-SAR.

Another  popular  scheme  is  using  optimized  active  am-
plifiers,  such  as  dynamic  gm-C  amplifiers[130] and  open-loop
gm-R  amplifiers[131].  They  are  more  power-efficient  and  are
more  scaling-friendly  than  op-amps,  however  at  the  cost  of
higher sensitivity to PVT and timing variations. Recent amplifi-
ers,  such  as  floating  inverter  amplifier  (FIA)  and  closed-loop
dynamic amplifier[132],  achieve a better  balance between per-
formance  and  robustness,  and  push  the  FoMs  of  NS-SAR  to
over  180  dB  without  compromising  PVT  robustness.  On  the
other hands, cascaded NS-SAR architecture[131] addresses amp-
lifier’s  variation  by  placing  NS-SAR  in  a  nested  structure  and
forming  a  cascaded  NTF.  It  has  much  better  tolerance  to  the
variations  in  NTF  coefficients,  especially  for  high  order  NTFs.
Besides,  it  shapes the thermal noise of  the former stages and
improves  power  efficiency.  This  method  enables  NS-SARs
with aggressive 4th-order NTF[131]. 

4.1.2.    DAC mismatch
DAC  mismatch  causes  significant  accuracy  degradation

in NS-SAR and it cannot be suppressed by noise shaping. A dir-
ect  scheme  of  reducing  the  DAC  mismatch  is  enlarging  the
DAC. But it is too costly and is rarely practical.  Another popu-

lar method is digital calibration, either in foreground or back-
ground.  However,  foreground  calibration  takes  extra  testing
cost and cannot deal with real-time variations; background cal-
ibration can track  variations  in  real-time,  but  it  is  much more
complicated and converges slower.

Mismatch-shaping  (MS)  is  another  solution  to  DAC  mis-
match for oversampled ADCs such as NS-SAR. It does not rely
on  the  prior  knowledge  or  measurement  of  the  mismatch.
There are two popular MS schemes: dynamic element match-
ing (DEM) and mismatch error shaping (MES)[133].

DEM is based on an element selection logic (ESL) that ac-
tivates  the  DAC  elements  in  a  certain  pattern,  such  that  the
mismatch error  is  irrelevant to the DAC code and suppressed
in-band.  Data  weighted  averaging  (DWA)  is  one  of  the  most
popular  ESL  that  1st-order  shapes  the  mismatch  error,  and
some  advanced  ESL  techniques[134] can  achieve  higher-order
shaping  with  more  complicated  logic.  The  main  drawback  of
DEM is that it uses unary DAC, which makes circuit cost expo-
nentially  glowing  as  the  DAC  resolution  increases.  Therefore,
most NS-SARs apply MES to only a few MSBs, limiting its effect-
iveness.

In  contrast,  MES  captures  the  mismatch  error  in  the  ana-
log  domain  and  feeds  it  back  for  noise-shaping.  Specifically,
we  can  preset  the  CDAC's  least  significant  bits  (LSBs)  before
sampling,  such  that  the  mismatch  error  from  the  previous
conversion  is  captured  and  subtracted  in  the  current  conver-
sion,  and  the  preset  LSBs  are  then  subtracted  from  the  cur-
rent  digital  output.  Compared  to  DEM,  MES  is  relatively
simple and works for binary DAC. The main drawback of MES
is  that  the  presetting  of  the  CDAC  also  feeds  back  the  previ-
ous  input  signal,  which  occupies  a  part  of  the  input  range.
This issue can be mitigated by using larger bits of MSB[133], di-
gital prediction[135], or pre-comparison[136]. 

4.1.3.    Bandwidth limitation
Due to oversampling and the multi-cycle SAR conversion,

NS-SAR  trends  to  be  limited  in  bandwidth.  Time-interleaving
(TI)  is  a  common  solution  to  increase  the  sampling  rate,  but
TI  is  not  compatible  with  noise-shaping  ADC  because  of  the
memory  effect  in  them.  Some  early  examples  of  interleaved
noise-shaping ADC[137] pass  the residue between channels  to
keep  noise-shaping  property.  But  the  inter-channel  feedback
stalls  the  quantizers,  and  makes  them  effectively  running  at
the full  rate.  Therefore the designs achieve 2-way interleaved
only and show limited advantages. On the contrast, NS-SAR is
more  suitable  for  time  interleaving  because  SAR  conversion
can  accept  feedback  signals  during  the  multi-cycle  conver-
sion  process.  TI-NS-SARs  thus  do  not  need  to  run  the  SAR
quantizer faster and can preserve the efficiency advantage.

TI-NS-SARs  can  be  implemented  in  EF  form[138] and  CIFF
form[139].  TI-NS-SAR  in  EF  form  feeds  the  residue  between
channels,  and TI-NS-SAR in CIFF form shares a global  loop fil-
ter between channels. TI-NS-SAR has lower sensitivity to chan-
nel  mismatch  because  most  errors  from  channel  mismatch
are  at  high  frequency  and  are  out-of-band,  if  the  over-
sampling  ratio  (OSR)  is  larger  than  the  channel  numbers.  Re-
cently,  TI-NS-SAR  (in  CIFF  form)  can  achieve  80  MHz  band-
width  with  66  dB  signal  to  noise  and  distortion  ratio
(SNDR)[140]. 

4.1.4.    kT/C noise
Another challenge in NS-SAR is the input sampling. Since
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the  kT/C  noise  is  not  shaped,  a  large  CDAC  is  necessary  in
high-resolution ADCs,  which brings a large burden on the in-
put driver. Oversampling reduces kT/C noise by the OSR, thus
the  sampling  capacitor  can  be  OSR-times  smaller.  But  as  the
sampling frequency increased,  the input  driver  has  to  charge
the capacitor faster and is not fully relaxed.

There  are  two  techniques  to  reduce  the  kT/C  noise[141].
Firstly,  we can decouple the noise source impedance and the
noise  bandwidth  by  a  feedback  circuit.  A  SAR  ADC[142]

achieves 3.5× kT/C noise reduction by this method. Secondly,
we  can  use  an  extra  amplifier  and  a  sampler  to  capture  the
kT/C noise and then cancel  it  out  in  a  later  phase.  In  an ideal
case,  this  technique  completely  removes  kT/C  noise  at  the
cost  of  introducing  amplifier  noise  and  power.  This  method
will  also  limit  the  input  bandwidth  and  thus  is  very  suitable
for  NS-SAR.  An  NS-SAR[143] achieve  87  dB  DR  with  only  a
0.8  pF sampling capacitance by this  method.  Essentially  both
techniques trade sampling capacitance for amplifier cost. The
amplifiers  in  these  techniques  process  only  small  signals  and
thus  they  can  be  less  costly  than  the  input  drivers  that  need
to process large signals. 

4.1.5.    NS-SAR directions
There  still  remain  many  interests  in  NS-SAR  research  re-

garding the following topics: 1) Higher speed, 2) higher resolu-
tion, 3) reference buffer, and 4) further hybridization.

1)  The highest  reported NS-SAR BW is  only  80 MHz (with
interleaving)[144]. There are two possible directions to further in-
crease  BW:  a)  Speedup  SAR  conversion  by  using  some  exist-
ing  techniques  in  conventional  high-speed  SAR  ADCs,  such
as  multi-bit-per-cycle  conversion[145],  loop-unrolling[146],  and
ping-pong  comparator  operation.  b)  Optimize  the  loop  filter
with  advanced  filtering  methods,  such  as  continuous-time
(CT) filters.

2)  For  higher  resolution,  few  published  NS-SARs  can
achieve >100 dB SNDR so far,  but  many applications,  such as
audio  and  sensing,  requires  dynamic  range  over  120  dB.  Ad-
vanced  mismatch-shaping  or  low-cost  background  calibra-
tion is the key to this goal.

3) Most NS-SAR design relies on massive reference decoup-
ling  capacitors  and  rarely  discuss  practical  reference  genera-
tion. It remains chances to co-design a reference buffer optim-
ized for NS-SAR, which might be beneficial as NS-SAR emphas-
izes  an  accurate  residue  at  the  end  of  conversion,  and  has  a
higher tolerance to the reference error during conversion.

4)  NS-SAR  can  be  further  hybridized  with  other  architec-
tures.  NS-pipeline-SAR[147] and  CT  ADC  with  NS-SAR[148, 149]

are two good examples.  Possible choices are the incremental
and zoom architectures,  as both offer high resolution but are
not very scalable, which are going to be discussed next. 

4.2.  High resolution incremental ADCs

In  recent  research  developments  of  high-resolution  data
converters, the incremental converter (IADC) is one of the ex-
cellent  candidates  to  achieve  high  resolution  with  the  trade-
off of reduced bandwidth. Also, different from its delta–sigma
counterparts,  the  IADC  incorporates  a  reset  operation  in  its
analog  integrators  and  digital  decimators.  It  exhibits  a
Nyquist  ADC  property  in  terms  of  out-of-band  noise  pro-
cessing,  allows  multiplexing,  and  leads  to  a  simple  decima-
tion filter  and thus  significantly  reducing the latency in  digit-
al  post-processing.  The  recent  development  trend  of  IADCs
will be qualitatively discussed below. 

4.2.1.    Slicing or reconfigurable IADCs
In  the  delta-sigma  modulators  or  IADCs,  the  first  inte-

grators  occupied  the  most  power  consumption  because  of
the  thermal  noise  considerations.  The  later  stages’  perform-
ance  were  benefited  from  the  gain  of  the  first  stage,  and
their  capacitors  can  be  selected  with  a  small  size.  As  a  re-
sult,  reconfigurations  of  the  loop  filters  are  proposed  in
works[150, 151] to  dynamically  decrease  the  power  consump-
tion of the first integrator.

Fig.  12 depicts  the  simplified  schematic  of  a  3rd-order
IADC  with  the  slicing  integrator  by  utilizing  the  property  of
the non-uniform input weighting function[150].  The first integ-
rator is split into four identical slices, which can be independ-
ently  activated  for k1,2,3,4 =  40,  30,  10,  70  cycles,  and  the
power  consumption  can  be  reduced  in  the  latter  cycles.  A
minor  penalty  is  a  result  of  only  0.7  dB/0.8  dB  loss  in
SNR/SNDR due to the signal loss. Another similar implementa-
tion  is  presented  in  Ref.  [151]  with  reconfigurable  capacitor
scaling  along  with  the  accumulation.  However,  the  3rd  order
loop  filter  suffers  from  thermal  noise  and  mismatch  aver-
aging  penalty  (a  penalty  factor  of  1.8  in  3rd-order[152]).  Thus,
Ref. [150] uses a single-bit quantizer to keep the linearity. 

4.2.2.    Exponential IADCs
The  resolution  of  traditional  incremental  ADCs  can  be

improved  by  cascading  the  integrators  with  increasing  or-
ders,  resulting  in  a  faster  accumulation.  The  modulator  accu-

 

 

Fig. 12. (Color online) Block diagram of DT-Slicing IADC in Ref. [150].
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mulates from linearly to bi-quadratically with increasing over-
sampling ratio (OSR) from 1st- to 4th-order IADCs. Straightfor-
wardly,  one  can  build  an  exponential  growth  of  accumula-
tion  (instead of  order-based accumulation),  which  is  the  fast-
est  way  by  nature.  However,  the  exponential  accumulation
dramatically  reduced  the  required  OSR  by  emphasizing  the
strong  accumulation  weights  at  the  beginning  of  the  accu-
mulation  cycles,  causing  penalties  in  the  thermal  noise  and
mismatch averaging efforts in DWA. As a result, the fast expo-
nential  accumulation  simultaneously  served  as  the  pros  and
cons for such architecture at the same time. The noise and mis-
match  averaging  penalty  factors  range  from  1  to  2.3  from
1st-  to  4th-order  IADCs,  and  for  the  exponential  accumula-
tion, the effort of oversampling is completely killed[152].

Indeed,  for  high-resolution  IADCs,  there  are  two  kinds  of
fundamental noises required to be suppressed during the con-
version:  the  smaller  thermal  noise  and  the  larger  quantiza-
tion  noise.  The  oversampling  ratio  can  only  reduce  the
thermal noise (given a fixed capacitance),  while a faster accu-
mulation growth can suppress the quantization noise. As illus-
trated in Fig. 13, Ref.  [152] proposed a single-loop IADC com-
bining  a  1st-order  integrator  for  the  linear  accumulation  in
246-cycle,  and  during  the  latter  10-cycle,  the  integrator  is  re-
used with the noise-coupling quantizer to generate exponen-
tial accumulation. With such a combination, the noise and mis-
match  penalty  factor  of  this  work  is  1.03,  very  close  to  the
baseline in 1st-order IADC. 

4.2.3.    Hybrid IADCs
High-order  incremental  ADCs  provide  faster  accumula-

tion but induce thermal noise penalty. On the other hand, hy-
brid  architectures  are  developed  to  overcome  the  long  con-
version  time  of  low-order  (≤2)  IADCs.  The  basic  concept  of
the hybrid IADC is to digitalize the residue of the coarse ADC
further to reduce the final quantization noise in the output of
the ADC. The residue estimation will combine with the decim-
ated  output  bit-stream  in  the  digital  domain,  canceling  the
quantization  error.  In  a  work[153],  a  multi-step  incremental
ADC  with  a  single  op-amp  uses  multi-slope  extended  count-
ing  to  achieve  16-bit  resolution  with  320  (256-32-32)  clock
cycles.  The  residue  voltage  of  the  coarse  quantization  is  can-
celed  and  passed  to  the  next  step  by  reconfiguring  the

switched-capacitor array in the integrator.  Thus, it  is more ro-
bust  than  the  traditional  extended  counting  ADC  because  of
the  smaller  residue,  which  is  less  sensitive  to  non-ideal  ef-
fects.

Zoom  IADCs[154−156] are  another  typical  example  of  hy-
brid  IADCs.  The  hybrid  uses  a  SAR  ADC  initially  to  make  a
coarse  conversion,  and  the  preliminary  digitalization  would
be  used  to  adjust  (or  “zoom”)  the  reference  of  the  fine  IADC.
Recently  Ref.  [155]  (Fig.  14)  proposed  using  a  self-timed  dy-
namic amplifier in the integrators, allowing the fully autonom-
ous  operation  of  the  complete  zoom  ADC  without  using  an
oversampling clock. A self-time common-mode detector with-
in  the  dynamic  amplifier  is  proposed.  When  the  discharging
of the common-mode voltage of the amplifier reaches the tar-
get  threshold,  the amplifier  generates  a  ready time signal  for
the  next  asynchronous  operation.  Another  example  of  a  CT-
Zoom-IADC  is  presented  in  Ref.  [156],  where  a  counting  ADC
is  used  in  combination  with  continuous-time  incremental
zoom to achieve excellent power efficiency. 

4.2.4.    Continuous-time IADCs
Continuous-time  (CT)  IADCs  have  attracted  attention  for

circuit  implementation  for  their  simple  driving  circuitry  and
low power consumption. Thanks to the resistive input imped-
ance,  the  front-end  preceding  driver  does  not  need  to  drive
the  switched-capacitor  load.  Moreover,  the  integrators  in  CT
consume  lower  power  than  the  discrete-time  (DT)  counter-
part.

Its  resetting  operation  is  one  of  the  largest  differences
between  the  CT  IADC  and  the  CT  delta-sigma  ADC  (CTDSM).
This  results  in  reduced  anti-aliasing  performance  and  the  re-
settling  of  the  FIR  DACs.  In  CTDSM,  since  the  converter  is
free-running,  the  loop  filter  can  be  designed  and  considered
as an IIR  filter,  setting up a satisfactory anti-aliasing rejection.
If  the  FIR  DACs  are  used,  the  free-running  operation  of  the
DAC  in  CTDSM  will  perform  well  in  steady-state  also.  While
for the cases of  CT-IADCs,  the resetting operation causes two
issues:  1)  the  integrator  memory  is  reset,  which  effectively
translate  the  loop  filter  as  an  FIR  filter,  degrading  its  anti-ali-
asing performance;  2)  the  resetting operation of  the  FIR-DAC
feedback  induces  a  long  settling  behavior  at  the  beginning
of  the  incremental  accumulation.  In  Ref.  [157],  a  careful  reset

 

 

Fig. 13. (Color online) Block diagram of DT Linear-Exponential IADC in Ref. [152].
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of  the  FIR  DAC  register  is  required  (by  resetting  their  re-
gisters  alternatively  to  0  and 1),  as  shown in Fig.  15.  While  in
Ref. [158], a presetting implementation is utilized.

The  loop  filters  in  CTDSM  can  also  be  effectively  used  in
the  CT  IADCs.  For  example,  Ref.  [159]  proposed  a  CT-IADC
based on a 3-0 Study-MASH CTDSM in Ref. [160]. With the util-
ization  of  the  unique  non-uniform  weighting  property  in  the
3rd-order  IADCs,  the  use  of  combinations  of  single-bit/multi-
bit DAC feedbacks allows the calibration-free DWA-free multi-
bit IADC. 

4.2.5.    Incremental ADCs comparison and discussion
Table  3 summarizes  the  above-discussed  IADCs  and

compares their performance. They are power efficient, achiev-
ing  >160  dB  FoMS (SNDR)  for  wider  bandwidth  and  >175  dB
for  lower  bandwidth. Fig.  16 also  shows  a  state-of-the-art

comparison  chart  for  the  Nyquist  ADCs  published  in  ISSCC
and  VLSI  so  far.  It  is  worth  noting  that  most  published
Nyquist  ADCs  reach  performance  bottleneck  as  highlighted
by  the  “Nyquist  gap”[161] in Fig.  16 (all  data  points  sourced
from B.  Murmann[123]),  and IADCs strongly show their  roles in
filling  the  performance  of  Nyquist  converters  within  the  gap,
compared with the other types of Nyquist converters. 

4.3.  Pipeline hybrid ADCs

The  pipelined  concept  in  analog-to-digital  converter  can
be  traced  back  to  the  1960s  when  Servin  from  Texas  Instru-
ments  presented  a  1  b/stage  pipelined  ADC  in  a  patent[162],
as captured in Fig.  17.  Due to the appearance of fast  BiCMOS
and  CMOS  processes,  pipelined  ADCs  were  widely  adopted
starting  from  the  1990s  and  replaced  bipolar/CMOS  flash
topology in moderate resolution designs.

 

 

Fig. 14. (Color online) Block diagram of DT-Zoom IADC in Ref. [155].

 

 

Fig. 15. (Color online) Block diagram of CT IADC in Ref. [157].
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Through  the  ADC  performance  survey  done  by  Boris
Murmann[123], it can clearly be observed that the pipelined ar-
chitecture  thrives  thereafter  in  various  dimensions,  including
resolution  (SNDR),  speed  (sampling  rate)  and  energy  effi-
ciency  (FoMS).  The  pipelined  technique  breaks  the  conver-
sion  into  multiple  steps  (two  or  more)  which  speeds  up  the
conversion  (when  allowing  latency)  and  simultaneously  re-
laxes  the  requirement  of  the  sub-quantizer  with  inter-stage
gain  and  redundancy.  Even  though  the  pipelined  architec-
ture  poses  a  higher  design  complex,  it  also  enables  a  new
paradigm  to  hybridize  and/or  optimize  the  conversion  for
various performance targets. Nowadays, the research focus of
hardcore  pipelined  ADC  is  mainly  on  speed  and  digital-as-
sisted solutions. For the high-speed target, except for optimiz-
ing  the  ADC  core  and  residue  amplifier  design  with  calibra-
tion  backup,  time-interleaved  (TI)  technique  is  also  applied.
12 b 3.2, 10 and 18 GS/s TI-pipelined ADCs linearized by calib-
rations  are  demonstrated  in  Refs.  [163–165],  respectively.
They all  maintain a  competitive FoMS with a  feasible  number
of interleaving channels, as marked in Fig. 18.

In recent years,  the basic  operation of  the pipelined ADC

has  been  revisited.  Conventionally,  each  stage  (except  the
last one) has to accomplish three major operations in series, in-
cluding  sampling,  quantization,  and  residue  amplification.
Ref.  [166]  with  post-amplification  residue  generation  (PARG)
scheme alters  this  sequence and allows the quantization and
amplification to happen simultaneously. Rather than generat-
ing  the  residue  after  the  sub-quantizer  conversion,  this  new
scheme amplifies the input right away after the sampling; sim-
ultaneously,  the  sub-quantizer  also  makes  its  decision.  The
residue  is  eventually  generated  after  the  amplification  in  the
following  stage.  The  PARG  can  provide  a  1.5-fold  improve-
ment  in  the conversion speed compared to  the conventional
pipelined  ADCs  with  a  low-to-moderate  resolution  target.  In-
deed, the actual speed improvement is more as the sampling
period often prefers half-cycle of the clock. This new arrange-
ment from PARG achieves a top speed of 3.3 GS/s single-chan-
nel pipelined ADC (marked as Ref. [166] in Fig. 18).

Another  recently  proposed  technique  that  changes  the
nature  of  conventional  pipelined  ADCs  is  to  move  the  archi-
tecture  in  fully  continuous-time  (CT)[167, 168].  By  combining
the  residue  amplification  and  the  filtering,  the  CT  pipelined

Table 3.   Performance comparison of IADCs.

P. Vogelmann S. Mohammad B. Wang Y. Liu L. Jie M. Mokhtar M. Mokhtar

ISSCC'18, JSSC'19,
[150]

JSSC'20,
[151]

VLSI'18, JSSC'19,
[152]

ISSCC'22,
[155]

ISSCC'22,
[156]

ESSCIRC'19, SSCL'19,
[157]

CICC'21,
[159]

Architecture DT Slicing DT IADC+SAR,
cap scaling

DT Linear-Exp DT Zoom CT-Zoom-
Counting

CT CTI-SMASH

Tech. (nm) 180 180 65 55 28 180 28
Supply (V) 3 1.8 1.2 1 1.2 3 0.9
Active area
(mm2)

0.363 0.66 0.13 0.23 0.014 0.175 0.125

OSR 150 98 256 128 8192 160 60
Bandwidth
(kHz)

100 2.04 20 1.35 25 100 1000

Power (μW) 1098 25.4 550 4.96 590 1270 3600
SNDR (dB) 86.6 95.5 100.8 93* 100.1 83 81.2
SFDR (dB) 101.3 106 121 N/A 113.7 94.3 97
FoMS (SNDR) 166.2 175 176.4 177.3* 176.4 161.9 165.6

* Only SNR is available for FoMS calculation.

 

 

Fig. 16. (Color online) State-of-the-art Nyquist ADCs survey published in ISSCC and VLSI[123, 161].
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ADCs  give  a  reasonable  anti-aliasing  performance  at  wide-
band.  This  architecture  also  relaxes  the  strict  opamp  require-
ment for stability in the conventional CT sigma-delta modulat-
or.  This  and  a  later  work  combined  with  VCO-based  ADC[168]

demonstrate  a  promising  performance  toward  very wide-
band  (0.8–1  GHz  bandwidth)  CT-ADC  designs  (marked  as
Refs. [167, 168] in Fig. 18).

Going  for  the  hybrid  is  the  next  popular  option  that  fur-
ther  pushes  the  pipelined  ADC  performance.  Benefiting  from
the outstanding energy efficiency of SAR architecture, the hy-
bridization  between  the  pipeline  and  SAR  ADCs  has  also  be-
come  attractive.  From  2019  to  2022,  various  SAR-assisted
pipelined (Pipe-SAR) ADCs achieve a top FoMs in their corres-
ponding  specification  range.  In  Ref.  [169],  a  3-stage  single-
channel  12  b  ADC reaches  1  GS/s  with  168.2  FoMs.  Ref.  [170]
further  push the 16  b  ADC to  15  MS/s  with  176.8  FoMs.  A  14
b  100  MS/s[171] and  130  MS/s  ADC[172] shows  a  top  FoMS of
180.2  and  181.5  dB,  respectively.  A  wide  tuning  sampling
range  (0−40MS/s)  >75  dB  ADC  maintains  an  outstanding
FoMS of  179.6  dB  in  Ref.  [173].  All  their  core  architecture  is
Pipe-SAR  and  they  are  marked  as  Refs.  [169–173],  respect-
ively, in Fig. 19.

Besides  hardcore  Pipe-SAR  ADCs,  other  works[164−176] in-
crease  the  hybridization  domain  where  their  performance
also  shines  out  in  their  specification  range.  While  Refs.  [174,
175]  taking  advantage  of  the  outstanding  energy  efficiency
of  Pipe-SAR  ADC  at  the  large  signal  swing  in  the  voltage  do-
main,  it  switches  the  fine  conversion  in  the  time  domain  to
maintain  the  efficiency  at  a  low  supply  voltage  (half  of  regu-
lar VDD).  The  13  b  ADC[174] design  running  at  20  MS/s  achi-
eves  182.4  dB  FoMS and  the  12  b  ADC  samples  at  260  MS/s
with  171.8  dB FoMS,  as  marked in Fig.  19.  Noise-shaping (NS)

technique  is  also  added  in  Pipe-SAR  ADC[176],  where  a  single
residue amplifier involves all pipelining, loop filtering and sum-
ming operations to save power. This solution provides an addi-
tional  error  shaping  on  the  noise  of  the  2nd  stage  quantiza-
tion,  thus  potentially  leading  to  a  higher  resolution  or  a  bet-
ter  energy efficiency.  It  also  extends  the NS-SAR-type ADC to
tens of Mega-Hertz bandwidth range while keeping outstand-
ing energy efficiency.  The ADC obtained a  75.2  dB SNDR and
40  MHz  bandwidth  with  177.1  dB  FoMS as  marked  in Fig.  19.
Such  additional  domain  of  hybridization  also  can  allow  a
more robust pipelined operation.

It  is  well  known  that  the  inter-stage  gain  error  in  the
pipelined  ADCs  is  circuital  and  often  calls  for  power-hungry
opamp  or  calibration.  Ref.  [177]  introduces  the  incremental
delta-sigma  ADC  in  Pipe-SAR  and  puts  the  residue  amplifica-
tion stage (gain = 1 in their design) in the 2nd stage SAR feed-
back loop, removing the gain error by matching it  with refer-
ence  gain.  Ref.  [178]  places  the  noise-shaping  in  the  first
stage of the NS Pipe-SAR ADC, the inter-stage gain error there-

 

 

Fig. 17. Early pipelined ADC patent with 1 b/stage[162].

 

Fig. 18. (Color online) ADC survey with Schreier FoM vs. speed.
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fore  a  2nd  order  shaped  to  the  high  frequency  and  eventu-
ally  filtered  by  the  decimation  filter.  Furthermore,  as  the
pipeline  operation  inherently  contains  stage  isolation  and
signal summation ability, they are also adopted to enable low
input  capacitance  SAR-type  ADCs  (120  fF  in  Ref.  [179]  and
260 fF in Ref. [180] for 13–14 b resolution, respectively).

Last but not least, the pipelined concept itself is now mov-
ing  from  the  classical  voltage  domain  to  the  time  domain.
This  new  thought  has  been  mentioned  in  Ref.  [181]  and  well
demonstrated  in  Ref.  [182].  Such  time-domain  pipelining
opens up a new research direction for very-speed single-chan-
nel  ADC  design  with  great  potential,  especially  in  advanced
nodes. 

5.  Power converters

Many  new  architectures  and  emerging  applications  ap-
peared in recent years in the power converters area. This sec-
tion will summarize the recent hybrid DC–DC converter topolo-
gies,  which  provide  higher  power  density  and  higher  effi-
ciency  at  large  voltage  conversion  ratios.  Then,  we  discuss
the fast transient response issues of both conventional and hy-
brid  DC–DC  converters  for  point-of-load  applications.  In  the
second-half  of  this  section,  we  discuss  the  challenges  of  the
two emerging applications:  isolated power for harsh environ-
ments, and supply modulator for 5G PA. 

5.1.  Hybrid DC–DC converter topologies

With  the  developments  of  portable,  wearable,  and  IoT
devices,  the  energy  conversion  technologies  face  many  new
challenges.  These  applications  often  require  higher  power
density and efficient space utilization, wider input-output cov-
erages, and the ability to maintain high efficiency over a wide
voltage conversion ratio (VCR) range. Actually, there is a com-
promise  among efficiency,  power  density,  and conversion ra-
tio.

Traditional  inductive  topologies,  such  as  buck  and  boost
converters,  can  achieve  high  efficiency  with  a  wide  voltage
range and a continuous VCR, but require large-size high-qual-
ity  inductor(s),  which  leads  to  low  power  density.  Besides,
when  the  input/output  voltage  is  high,  the  conduction  and
switching loss deteriorate. On the other hand, switched-capa-
citor  (SC)  converter  can  achieve  high  efficiency  at  a  specific
VCR  only,  limited  by  the  charge  sharing  loss.  Even  if  the  ad-
justable  VCR  is  adopted,  the  increase  of  the  number  of
switches will sacrifice power density.

The  hybrid  architecture  converter  combines  the  advant-
ages  of  inductive  and  SC  topologies.  The  large  inductor  can

be replaced by a smaller one, while the soft charging of capa-
citors  can  alleviate  the  issue  of  charge  sharing  loss.  The  hy-
brid architecture provides an effective scheme to realize the fa-
vorable  trade-off  among  the  efficiency,  power  density  and
VCR.

As summarized in Fig. 20, the works on hybrid DC–DC con-
verter  architectures  can  be  classified  in  5  types,  namely  fly-
ing capacitor multi-level (FCML) topology[183−189], hybrid SC to-
pology[190−193],  inductor-first topology[194−198],  dual-path topo-
logy[198−203],  and  double  step-down  (DSD)  topology[204−207].
On  the  other  hand,  resonant  SC  converter  that  uses  a  reson-
ant  inductor  to  reduce  the  output  impedance  is  essentially
an  SC  converter,  which  still  suffer  from  the  charge  sharing
loss, is different from the above categories and will not be dis-
cussed here. 

5.1.1.    Flying capacitor multi-level topology
FCML  topologies  can  reduce  the  voltage  stress  on  the

switches  as  well  as  the  voltage  ripple  on  the  switching  node
by  adding  flying  capacitor(s)  in  the  buck  topology,  and  can
also realize a higher effective switching frequency (Fig. 20 bot-
tom  left).  Therefore,  the  inductor  current  ripple  is  smaller,
and  the  overall  power  density  can  be  improved  by  using  a
smaller inductor.  In recent years,  progresses have been made
in  terms  of  higher  efficiency  with  larger  VCR  and  cascoded
switches,  and  flying  capacitors  voltage  balancing.  For  the  4-
level FCML topology proposed in Ref. [183], an effective switch-
ing  frequency  of  three  times  of  the  pulse-width  modulation
(PWM) frequency is realized, and thus the inductor can be re-
duced to  10  nH.  However,  the  start-up and capacitor  voltage
balancing issues deteriorate. Similarly, in the modified fully-in-
tegrated  4-level  hybrid  converter  proposed  in  Ref.  [184],  by
designing  the  switching  state  of  the  flying  capacitors,  the
voltage  stress  on  the  capacitor  is  reduced,  and  thus  saving
75%  of  the  capacitor  area.  Ref.  [185]  presents  a  symmetrical
modified  multilevel  ladder  converter,  which  divides  the
cascoded  switches  into  2  channels.  The  number  of  switches
on the current path in each phase is halved, reducing the con-
duction  loss,  while  the  capacitors  can  be  naturally  balanced.
In Ref.  [186],  two 3-level bucks are merged to achieve an effi-
ciency of 85.5% at the VCR of 12.5.  Of course, FCML topology
can  also  be  applied  to  boost[187],  buck-boost[188] and
isolated[189] converters to enjoy its advantage of reducing the
device voltage stress. 

5.1.2.    Hybrid switched-capacitor topology
Hybrid  switched-capacitor  topology  (Fig.  20 middle  left)

is  the  deformed  structure  based  on  SC  topologies,  such  as
Dickson,  Fibonacci,  series-parallel,  ladder,  doubler,  etc.  By
adding a power inductor and PWM phase operation, it can real-
ize  capacitor  soft  charging,  so  as  to  achieve  high  efficiency
and high power density.

A hybrid SC converter based on Dickson topology is  pro-
posed  in  Ref.  [190].  Buffer  phases  are  added  to  obtain  a
smooth  capacitor  current,  which  achieves  high  power  dens-
ity  and  efficiency.  But  the  capacitor  balance  is  still  a  chal-
lenge,  and  the  increase  of  the  number  of  switches  also  puts
pressure  on  the  gate  driver  and  level  shifter  designs.  The
work in Ref. [191] eliminates the need of external bootstrap ca-
pacitors, which saves the area and cost. A Fibonacci hybrid to-
pology  in  Ref.  [192]  reduces  the  volume  of  passive  compon-
ents and lowers the frequency to 78 kHz. A reconfigurable ca-

 

Fig. 19. (Color online) ADC survey with energy vs. SNDR.
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pacitive-sigma  converter  is  proposed  in  Ref.  [193].  It  consists
of  a  2  :  1  SC  high-side  and  a  2-/4-level  hybrid  Dickson  low-
side, and achieves high efficiency over a broad VCR range.
 

5.1.3.    Inductor-first topology

Repositioning  the  inductor  from  the  output  to  the  input
(Fig.  20 top  right)  is  an  attractive  solution  to  the  conduction

 

 

Fig. 20. Overview map of hybrid DC–DC topologies and their relevance.
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loss  caused by  the  inductor  DCR.  With  extra  flying capacitors
maintaining  the  step-down  conversion,  the  inductor  is  relo-
cated to the low current path (input path). Meanwhile, the in-
put  pulse  current  is  changed  into  continuous  current,  which
spares the area of the input capacitor.

A passive-stacked 3rd-order buck (PS3B) converter[194] re-
places  the  large  inductor  in  the  buck  converter  with  two
front  small  flying inductors.  The cancelling of  input  capacitor
helps to realize a high power density of 0.7 W/mm2. Based on
PS3B,  a small  inductor and two switches are added to enable
the  recycling  of  gate  charge[195].  This  technology  improves
the  light  load  efficiency  and  the  peak  efficiency  is  as  high  as
98.2%.  Ref.  [196]  presents  a  topology  combining  PS3B  with
FCML, where a scheme for high input voltage is presented.

A  flying  inductor  hybrid  architecture  for  USB-C  charging
is  proposed  in  Ref.  [197].  The  inductor  at  the  input  can  be
provided  by  the  parasitic  inductor  of  USB  cable  (about  500
nH),  as  a  result,  the  power  density  is  up  to  1.48  W/mm2.  A
switching inductor capacitor (SIC) buck topology is realized in
Ref.  [198]  to  improve the  performance of  the  fully  integrated
buck. By arranging fewer resistive elements in series on the cur-
rent  path,  the  requirement  for  the  inductor  is  effectively  re-
duced. 

5.1.4.    Dual-path topology
An  additional  power  path  is  formed  by  flying  capacitors

to  share  the  current  pressure  on  the  inductor  in  the  dual-
path topologies (Fig. 20 middle right), which can effectively im-
prove  the  efficiency  of  the  converter  under  heavy  load  cur-
rent.  At the same time, similar to the advantages of inductor-
first  topology,  this topology provides a chance to use smaller
inductor.

A  dual-path  buck  converter  topology  is  presented  in
Ref. [199]. The average current and current ripple of the induct-
or are reduced at the same time, and the loss caused by DCR
is  reduced.  However,  the  dual  path  of  this  topology  only  ex-
ists  in  specific  phase.  When  VCR  and  the  duty  cycle  changes,
it  may  lose  its  advantage.  An  always-dual-path  (ADP)  buck
converter[200] improves this defect, and keep the inductor cur-
rent  half  of  the  load  current.  Ref.  [201]  presents  a  hybrid  SC-
parallel-inductor buck to reduce the inductor current without
enlarging  the  current  ripple.  Four  types  of  dual-path  topolo-
gies  are  summarized  in  Ref.  [202],  while  Ref.  [203]  comple-
ments  the  last  type  of  dual-path  topology  other  than Refs.
[198, 199, 202]. 

5.1.5.    Double step-down topology
Double-step down (DSD)  topology (Fig.  20 bottom right)

is  commonly adopted in  the scene from 12/24/48 V to  1  V  in
the automotive industry and datacenter, which helps to allevi-
ate  efficiency  degradation  at  large  VCR.  The  DSD  topology
mainly  takes  the  advantage  of  low  voltage  stress  on  devices
by  the  flying  capacitors  clamping  voltage,  and  two  inductors
connected to the output share the current stress but cause ad-
ditional cost.

The advantages of DSD topology are analyzed in detail in
Ref.  [204],  and  the  direct  conversion  from  48  to  1  V  is  real-
ized  with  GaN  devices.  A  tri-state  DSD  topology  merged
FCML  and  DSD  structures  is  realized  in  Ref.  [205],  achieving
88.3%  efficiency  under  24-to-1  conversion  ratio.  Ref.  [206]
presents  a  flying  capacitor  cross-connected  (CCC)  buck  with
an improved the transient performance using a dedicated op-
eration phase. Also, all  the switches in Ref. [206] only need to
sustain VIN/2  voltage  stress,  considerably  reducing  the  chip
area.  A  12-level  series  capacitor  DC–DC  converter[207] is  de-
signed  to  disperse  most  of  the  input  voltage  stress  on  the
series capacitors, in which only 5 V switches and a single GaN
FET are used to realize the conversion from 48 to 1 V.

The  comparison  of  the  five  different  hybrid  DC–DC  cat-
egories is  listed in Table 4.  The hybrid DC–DC topology is  ex-
pected  to  remain  popular  in  the  future,  and  plays  a  signific-
ant role in the field of large VCR power conversion. It helps to
reduce  the  average  current  and  current  ripple  in  the  induct-
or,  disperse  the  voltage  stress  and  achieve  soft  charging.
Thus,  it  is  proven to be a good solution to the system requir-
ing high power density, large VCR, and high efficiency. Mean-
while,  complex  capacitor  balancing,  gate  drivers,  internal
voltage  domains,  and  operation  phase  control  make  the
designs  difficult.  As  the  development  of  hybrid  converter  is
still  evolving,  we  believe  that  a  better  categorization  can  be
made in the near future. 

5.2.  Fast transient DC–DC converters

Besides  efficiency  and  power  density,  fast  transient  re-
sponse is an important property of point-of-load voltage regu-
lator  for  microprocessors  for  high-performance  computing,
which  could  have  a  fast  load  current  transient  approaching
1  A/ns  and  would  require  a  dynamic  voltage  scaling  (DVS)
speed  of  1  V/μs.  Low-dropout  regulators  (LDOs)  can  provide
both fast  load transient  response and DVS speed,  but  its  effi-
ciency degrades proportionally with the input-output voltage
difference.  Therefore,  the  buck  DC–DC  converter  as  the  1st-
stage of the power delivery system should also have fast transi-
ent  capability  to  support  the  LDOs  for  higher  system  effi-

Table 4.   Pros and cons of different hybrid DC–DC topologies.

FCML Hybrid SC Inductor-first Dual-path DSD

Typical
topology

Pros Small IL ripple
Wide VCR range

Small IL ripple
Wide VCR range

Small IL & ripple
Continuous IIN

Small IL & ripple
High power density

Small IL ripple
Shared IL
Less components

Cons
Needs CF balancing
Large IL

Needs CF balancing
Large IL
Many components

Extra L
Limited VCR range
Negative voltage

Hard charging
Limited VCR range

Extra inductor
Needs 1 HV device
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ciency.
As a large inductance is favorable for reducing the induct-

or current ripple, the maximum transient response speed of a
conventional  buck  converter  is  limited  by  the  current  slew
rate  of  the  power  inductor  (SRL).  Also,  the  transient  response
can  be  limited  by  the  controller’s  delay.  For  the  hybrid
DC–DC converters discussed in the sub-section above, a smaller
inductor  can  be  used  for  higher  efficiency  and  also  higher
power  density,  which  should  be  good  for  fast  transient.
However,  as  the  voltage  across  the  power  inductor  in  a  hy-
brid topology is  also reduced,  the SRL would be considerably
limited by the lower voltage across the inductor. Recent literat-
ures[206, 208−214] tried  to  address  these  issues  from  the  power
stage  and/or  the  controller’s  perspectives.  Refs.  [208, 209]
presented  fast  transient  techniques  for  single-phase  conven-
tional  buck  converter.  Meanwhile,  Refs.  [210–214]  proposed
the  techniques  for  multiple-phase  buck  converter,  where  the
SRL is  increased  by N times  benefiting  from  the  multi-phase
characteristics.  The  transient  improvement  techniques  in
Refs.  [206, 215]  are  for  hybrid  DC–DC  topologies,  which  are
used in large conversion ratio applications.

Table  5 lists  the  key  performances  of  these  literatures.
We  use  the  performance  normalized VOUT undershoot
(∆VOUT,Norm)  to  fairly  compare  how  fast  can  these  works
achieve,  under  different VIN, VOUT, L, N,  output  capacitance
COUT,  load current step ∆ILOAD,  load current step edge time ∆t,
and  even  topologies.  Here,  we  define  ∆VOUT,Norm as  the  ratio
of  the  measured  ∆VOUT and  its  theoretical  minimum  value
∆VOUT,MIN

[210], where ∆VOUT,MIN is: 

ΔVOUT,MIN =

ΔILOAD
SRL

− ΔILOAD ⋅ Δt

COUT

=

ΔILOAD ⋅ L(VIN − VOUT)N − ΔILOAD ⋅ Δt

COUT
. (2)

The  ∆VOUT,Norm should  be  larger  than  one  if  all  the ILOAD dur-
ing  the  transient  response  is  provided  by  inductor  current IL.
The smaller ∆VOUT,Norm indicates a faster controller speed.

Ref.  [208] uses the voltage mode (VM) PWM control,  with
a  30-MHz  switching  frequency  (fSW),  90-nH  inductance.  The
transient  response is  accelerated by a  digital  linear  regulator,
sourcing/draining  additional  current  under  a  transient  event,
and hence allowing ∆VOUT,Norm < 1. The error amplifier (EA) out-
put  voltage VEA is  designed  to  swing  out  of  the  RAMP  signal
range during transient, turning on the regulator rapidly. In or-
der to not to interrupt the PWM loop,  the regulator is  turned
off slowly. Meanwhile, the large VEA swing during transient en-
forces a 100% duty cycle (D),  in other words a maximum SRL.
An  improved  type-III  compensator  extends  the  bandwidth
and reduces the settling time. The ∆VOUT,Norm is 0.742 as tabu-
lated.

Ref.  [209]  uses  a  synchronized  hysteretic  (SH)  control
with  a  double  adaptive  bound  (DAB),  working  under  a  10-
MHz fSW,  200-nH inductance.  The DAB facilitates  a  fast  transi-
ent response under both ILOAD step up and down. A ripple in-
jection  scheme  is  implemented,  with  an  inductor  DC  resist-
ance  offset  cancellation  for  an  improved  load  regulation.
Moreover,  the  controller  power  consumption  is  designed  to
be  scalable  with  the ILOAD,  benefiting  a  high  efficiency  over  a
wide  power  range  (80%  efficiency  over  99.9%  of  full  load
range). The measured ∆VOUT,Norm is 1.082.

Ref.  [210]  is  a  4-phase buck converter  with a  30-MHz fSW,
90-nH  inductance/phase.  VM  control  is  employed  at  the
steady-state,  implemented  with  a  conventional  type-II  com-
pensator  that  provides  the  proportional-integral  (PI)  control.
A  one-cycle  charge  balance  (OCB)  scheme  is  activated  to
regulate VOUT within  a  single  switching  cycle  from  the COUT

current detected by a capacitor–current sensor (CCS). This op-
timizes  ∆VOUT close  to  its  theoretical  minima.  An  improved
CCS  calibration  scheme  is  proposed  to  provide  an  accurate
COUT current information under process, bias voltage and tem-
perature  (PVT)  variations  and  taking  PCB  parasitics  into  ac-

Table 5.   Recent fast-transient DC–DC converters.

[208] [209] [210] [211] [212] [213] [214] [215] [206]

Process (nm) 130 180 180 28 350 28 4 180 BCD 180 BCD
Topology Buck Buck Buck Buck Buck Buck Buck DSD CCC
Vin (V) 3.3 3.3 3−5 1.2 3.3 1.2 1.8 12/24 12
Vout (V) 1.8 1−2.5 0.5−2.5 0.6−1 0.3−2.6 0.45−0.9 1 1 0.9−1.8
fsw (MHz) 30 10 30 75 25 400 50 1 2
Phase number 1 1 4 4 4 6 4 2 2
Inductor/phase (nH) 90 200 100 15 200 1 (bond-

wire)
5 (in
package)

1800 740

Cout (μF) 0.94 2 0.84 0.2 2.47 0.0002 0.8 10 10.6
Control law &
transient technique

VM & LDO
assist

SH & DAB VM & OCB DAOT SH & AW,
APC

VM VM VM & delay-
insensitive,
DP charging

SH & Intrinsic
DP charging

Auto phase shedding n.a. n.a. No Yes Yes Yes Yes n.a. n.a.
Compensator
optimization

n.a. n.a. No Not
necessary

Not
necessary

Yes Yes n.a. n.a.

Peak efficiency 90.70% 91% 91% 89%@1 V 88.10% 83.70% 91.50% 88.3%@1 V 86.8%@1.2 V
∆Iload (A) 1.25 1 2 1 4 1 10 3 4
∆t (ns) 2 3 5 10 5 1 10 20 20
∆Vout (V) 0.036 0.031 0.034 0.08 0.1 0.2 0.09 0.056 0.11
Normalized ∆Vout 0.742 1.082 1.008 12.800 1.096 n.a.* 2.560 3.833 4.981

*Load current step edge time ∆t is too slow that is comparable to its switching cycle.
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count.  The calibration is  executed in  the background,  adding
a  flexibility  for  the  controller’s  transient  scheduling.  As  pre-
dicted,  the  measured  ∆VOUT,Norm is  1.008,  very  close  to  the
ideal value.

Ref.  [211]  proposes  an  integrated  4-phase  buck  convert-
er,  with  a  digital  adaptive  on-time  (DAOT)  control  for  high-
speed  digital  systems.  A  75-MHz fSW and  75-nH  inductance/
phase  are  employed.  To  fix  the fSW in  AOT  control,  the  pro-
posed controller  adapts the turn-on time accurately  from the
VIN and VOUT,  using a digital-controlled delay line (DCDL).  The
turn-on  time  accuracy  should  thereby  be  higher  than  that  in
an  analog  control.  Meanwhile,  a  digital  ripple-injection
scheme is  optimized to mitigate VOUT droop.  All  the sub-con-
verters  share  the  off-time  comparator  and  DCDL  to  reduce
the IL imbalance among phases.  Additionally,  the digital  con-
trol allows a multi-phase synchronization with a higher accur-
acy.  An  automatic  phase  shedding  scheme  is  used  to  extend
the good efficiency to light load conditions. With a synthesiz-
able digital controller, the achieved ∆VOUT,Norm is 12.8.

Ref.  [212]  shows  a  4-phase  buck  converter  with  25-MHz
fSW and 200-nH inductance/phase.  By adding a VOUT transient
sensing  circuitry,  an  adaptive  hysteretic  window  (AW)
scheme  fulfills  a  fast  transient  response.  The  hysteretic  con-
trol is  synchronized for a fixed fSW.  The VOUT transient sensing
is  reused  to  activate  all  phases  within  one  cycle,  a.k.a.  active
phase counting (APC), benefitting the transient response signi-
ficantly.  The  APC  also  ensures  a  high  efficiency  over  a  wide
power range. The measured ∆VOUT,Norm is 1.096.

Ref. [213] presents a 6-phase buck converter with 400-MHz
fSW and 1-nH inductance/phase. The small inductors are imple-
mented  with  bonding  wires.  Then  the  output  stage  complex
pole  pair  is  located  at  a  high  frequency,  allowing  a  VM  con-
trol  with  a  type-I  compensator.  A  flying  capacitor  (CF)-based
IL balancing scheme is  proposed,  removing the high-speed IL

sensors  in  conventional  designs.  In  addition,  fine-grained
phase  shedding,  allowing  any  phase  count  from  1  to  6,  is
achieved with the proposed delay locked loop (DLL). This fur-
ther  extends  the  high-efficiency ILOAD range.  Finally,  the COUT

is re-allocated as CF,  and the compensation capacitance is ad-
justed, both in proportional to the shedded phase count. This
allows a faster response under the phase shedding operation.
As the load current step edge time ∆t is too slow that is com-
parable to its clock cycle, the ∆VOUT,MIN indicator is not applic-
able to this work.

Ref. [214] presents a 4-phase buck converter for a fully-in-
tegrated voltage regulator in compute platform power deliver-
ing.  It  operates  at  50-MHz fSW,  with  5-nH  inductance/phase.
The  converter  is  implemented  with  a  4-nm  class  CMOS  pro-
cess,  together  with  in-package  magnetic  inductors.  It
achieves  a  highest  current  density  of  47  A/mm2.  By  monitor-
ing  the  current  and  asynchronous  events,  the  phase  count  is
decided as an automatic  phase shedding.  The converter  uses
a type-III compensator, where the RC components are automat-
ically  tuned  to  ensure  the  stability  under  different  phase
count. The automatic phase shedding almost tracks the optim-
al efficiency. Hard switching is used at 4 phases for a better effi-
ciency at heavy load, while the controller transits to soft switch-
ing at other phase counts. The measured ∆VOUT,Norm is 2.56.

Refs.  [215, 206]  are  hybrid  converters  based  on  double
step down (DSD) topology, which has a two-phase operation.
The CF is  used  to  halve  the  voltage  swing  on  the  switching

nodes  (VX),  and  hence  allows  low-voltage  rating  low-side
power  switches  for  a  better  efficiency.  The CF is  soft
charged/discharged  by  the  two  inductor  currents,  enforcing
IL balancing automatically. However, this topology under a con-
ventional  control  does  not  favor  for  a  fast  transient  response
for  two  reasons.  First,  the  halved VX swing  also  reduces  the
single-phase SRL to (VIN/2−VOUT)/L, compared to a convention-
al buck converter. Secondly, with a conventional control, only
single-phase  charging  is  allowed  at  transient,  otherwise  the
low-side switches will be overstressed.

Therefore, Ref. [215] adds auxiliary power switches to facil-
itate  a  dual-phase  charging,  doubling  the SRL compared  to
the conventional control. Furthermore, Ref. [215] uses VM con-
trol with a delay-insensitive technique. This allows the control-
ler  to  response  the  transient  event  without  waiting  for  the
next  system  clock.  The  achieved  ∆VOUT,Norm is  3.83.  Here,
∆VOUT,Norm is  defined  as  the  ratio  of  measured  ∆VOUT and
∆VOUT,MIN defined  in  Eq.  (2),  facilitating  the  comparison
among different topologies.

Ref.  [206]  achieves  dual-phase  charging  based  on  the
symmetric  DSD,  or CF-cross-connected  (CCC)  topology[216].
CCC  divides  the CF and  one  power  switches  in  the  DSD  con-
verter[217] into  two,  resulting  in  more  control  states  than  the
DSD without  degrading the power  density  and efficiency.  An
intrinsic dual-phase charging can be achieved through combin-
ing some of the states, without adding any auxiliary switch. A
synchronized hysteretic control is used to activate dual-phase
charging  quickly  when  load  transient  occurs.  In  addition,  a
shared bootstrap capacitor scheme is proposed to reduce the
silicon area and switching loss. The ∆VOUT,Norm is 4.981.

As  a  brief  summary,  recent  fast-transient  buck  convert-
ers used small inductors (down to several nH), to increase the
SRL.  Therefore,  they  used  several  tens  of  MHz fSW to  reduce
the  inductor  current  ripple  and  prevents  the  inductors  from
saturation.  Multiple-phase  buck  converters  require  auto
phase  shedding  to  extend  high  efficiency  to  a  wider  power
range.  Subsequently,  the  VM-based  multiple-phase  convert-
ers  need  to  optimize  compensator  according  to  the  phase
count activated.  For the hybrid converters,  they may have in-
herently inferior SRL. The study for their fast transient perform-
ance should be a future hotspot. 

5.3.  Isolated DC–DC converter

Galvanic  isolation  separates  the  input  and  output  sup-
plies of a system to allow power and data delivering through
an  isolation  barrier  instead  of  electrical  connections.  Unlike  a
non-isolated DC–DC converter that has only one ground, isol-
ated DC–DC converter  can avoid the surge and ground shift-
ing  problems  by  adding  this  isolation  between  two  voltage
sides. So isolated DC–DC converter plays a key role in guaran-
teeing system safety and reliability in harsh industrial environ-
ments (e.g. electrical vehicle, communication systems, medic-
al  devices,  etc.).  Some examples  include preventing electrical
shock  to  human  operators,  protecting  expensive  devices
from  risk  of  damage  in  a  high  voltage  side,  and  breaking
ground  loop.  In Fig.  21,  the  isolated  DC–DC  converters  com-
monly consist of three parts: a transmitter (TX), an isolation bar-
rier,  and  a  receiver  (RX).  To  transfer  power  across  the  isola-
tion  barrier,  an  inverter  for  DC–AC  conversion,  a  rectifier  for
AC–DC conversion,  and an  isolated feedback  control  for  load
regulation  are  implemented  in  the  TX  and  the  RX,  respect-
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ively. However, delivering hundreds of mW power under low-
EMI emissions across an isolation barrier presents several chal-
lenges  regarding  the  cost,  efficiency,  power  density,  and  EMI
performance. Fig. 22 compares the efficiency, power capacity,
and EMI performances of the prior-art isolated DC–DC convert-
ers[218−229]. 

5.3.1.    Efficiency and power density of isolated DC–DC
To keep improving the efficiency and power density of isol-

ated  DC–DC  converters,  some  state-of-the-art  efforts  have
been devoted to meet these challenges recently. Power deliv-
ering  with  isolation  barrier  can  be  implemented  through
capacitive  coupling  or  a  transformer.  Due  to  the  output
power  is  proportional  to  isolation  capacitance,  and  its  in-
versely  proportional  to  thickness  of  dielectric,  and  thus high-
isolation-rate  capacitors  limit  the  power  capacity[218, 219].  For
example,  an isolated DC–DC converter using on-chip capacit-
ors  and  an  off-chip  inductor  is  presented  in  Ref.  [218],  but  it
only  transfers  a  maximum  output  power  of  62  mW  with
<1  kV  isolation  rating  that  is  limited  by  the  on-chip  capacit-
ors.  A  capacitive  isolated  DC–DC  converter  proposed  in
Ref.  [219]  achieves  a  significant  efficiency  improvement  to
68.3%  and  reconfigurability  of  single-  and  dual-phase  opera-
tions with 1TX-1RX and 1TX-2RX for a power capacity extend-
ing from 0.4 to 0.8 W. However,  ceramic SMD capacitors with
PCB  coils  takes  up  a  large  size  of  the  converter  that  is  diffi-
cult to achieve a miniaturized package, and the dielectric insu-
lation strength is 1 kV only.

In order to increase both the output power and the isola-
tion  rating,  isolated  DC–DC  converters  using  micro-trans-
formers have been reported[220−228]. Some open-loop convert-
ers with an on-chip transformer and an LC tank oscillator oper-
ate  over  160  MHz  while  the  measured  efficiency  is  less  than
30%[220, 222].  Soon after,  6-μm-thick gold winding for both the
primary and the second coils, with 20-μm polyimide between
them  to  provide  >5  kV  isolation  rating,  are  implemented  in
Ref. [223] and an AC-coupled LC tank oscillator with the trans-
former  resonates  at  180  MHz,  transferring  a  maximum  out-
put  power  of  0.8  W.  But  the  peak  efficiency  of  the  converter
is lower than 34% because Q of the micro-transformer is only
6.8  at  200  MHz.  A  high-performance  integrated  transformer
with  a  magnetic-core  achieving  a Q of  15.8  and  an  induct-
ance  of  130  nH  is  demonstrated  in  Ref.  [224]  to  achieve  a
peak  efficiency  of  52%  and  a  maximum  power  capacity  of
1.1 W. However,  the fabrication process of  the magnetic-core
transformer is complex and the cost is high. In Ref. [225], a co-
reless micro-transformer is formed by using 100-μm-thick wind-
ing  with  silicon-embedded,  and  large  inductances  with  a
high-Q of 15.7 for primary coil  are achieved to allow the con-

verter  switching  at  11  MHz.  However,  the  efficiency  of  trans-
former  is  still  limited  by  secondary  coil  and  the  fly-back
power converter produces large resonant currents that flow in-
to  the  coils,  and  thus  degrading  the  efficiency  to  34%  with
only 165 mW output power.

In  addition,  these  isolated  converters  are  assembled  in  a
small-outline  integrated-circuit  (SOIC)  package  with  size  of
6 × 10 mm2[220] and 10 × 18 mm2[221] that  measure a  maxim-
um  power  density  of  13.33  and  6.11  mW/mm2 only,  respect-
ively.  A  transformer-in-package  solution  for  galvanic  isolated
DC–DC  converter  by  using  fan-out  wafer-level  packaging
(FOWLP) is presented in Ref. [226] to achieve a maximum out-
put  power  of  1.25  W  in  a  5  ×  5  mm2 package  (maximum
power  density  of  50  mW/mm2)  and  a  peak  efficiency  of
46.5%.  Although  the  power  density  is  significant  enhanced,
this  small  form  factor  of  the  converter  will  limit  the  distance
between  pin  and  pin  in  different  voltage  side  that  causes  a
low  isolation  voltage  by  air-creepage  and  bring  heat  dissipa-
tion  issue.  An  isolated  DC–DC  converter  with  a  high-Q sub-
strate-based transformer in a land grid array (LGA) package is
presented in Ref.  [227] recently,  the converter reaches a peak
efficiency  of  51%  at  0.4  W  output  power  and  maximum
power  capacity  of  1.2  W  in  a  10  ×  12  mm2 package  (maxim-
um  power  density  of  10  mW/mm2),  while  due  to  the  thick-
ness  of  insulation  material  in  the  substrate  process  is  limited
to  100 μm,  the  coupling  coefficient  of  the  substrate-based
transformer will be restricted. 

5.3.2.    EMI emission of isolated DC–DC
Along with isolated DC–DC converters scaling, those con-

verters  above  switch  currents  of  several  hundred  mA  at  fre-
quencies more than tens of MHz, and thus operation at these
high  frequency  raises  concerns  about  EMI  radiated  emis-
sions.  Some  converters  use  the  LC  tank  oscillator  adopted  in
Ref. [223, 226] or the leakage-inductance-resonant fly-back to-
pology  proposed in  Ref.  [225],  the  common-mode voltage of
primary  coil VCM_PRI suffers  from  large  and  quick  fluctuations
so as to a high radiation is caused by large common-mode cur-
rent ICM across the isolation barrier.  To pass the EN55032/CIS-
PR32  Class-B  EMI  radiation  standard,  a  multi-layer  (4-layer  or
6-layer) PCB with a stitching capacitor implemented by the in-
ternal  layers  is  taken  to  provide  a  low  impedance  path
between  two  ground  or  power  plane  to  reduce  dipole  radi-

 

Fig. 21. (Color online) Block diagram of an isolated DC–DC converter.
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ation[228],  which  will  greatly  increase  the  system cost  and the
effort of PCB layout.

Recently, low-cost circuit techniques to reduce EMI at the
source  are  demonstrated  in  Refs.  [223, 224, 227].  For  ex-
ample, frequency hopping technique can be employed to sup-
press ICM

[223],  the  converter  meets  the  CISPR22  Class-B  stand-
ard with a 6.4 dB margin at 500 mW output power on a two-
layers PCB without any stitching capacitor, but it will greatly in-
crease  the  circuit  complexity.  Besides,  the  frequency  hop-
ping  circuit  cannot  operate  in  full  PWM  duty  cycle,  and  thus
difficult  to meet the standard under heavy load.  In Ref.  [224],
an LLCC topology with a multistage pre-driver is proposed to
form a more symmetrical structure to reduce ICM,  passing CIS-
PR22  Class-B  limits  with  5.8  dB  margin  at  output  power  of
0.75  W.  Unfortunately,  a  costly  magnetic-core  transformer
and  two  extra  external  capacitors  are  needed.  In  Ref.  [227],  a
symmetric  Class-D  oscillator  with  shoot-through-free  tech-
nique is used for DC–AC inverter in TX chip to suppress ICM effi-
ciently and to avoid shoot-through currents, it can pass the CIS-
PR32  Class-B  certification  on  a  two-layer  PCB  without  using
any  stitching  capacitors  when  output  power  of  0.5  W  with
1.93 dB margin in the vertical  field and 2.27 dB margin in the
horizontal field,  respectively.  But the power stage topology is
difficult  to achieve fully symmetry during packaged by bond-
ing  wires,  resulting  in  difficult  to  pass  the  Class-B  limits  un-
der heavy load (output power >0.5 W).

In summary, the capacitive isolated DC–DC converters of-
fer  remarkable  conversion  efficiency,  while  extra  devices
needed  and  low-breakdown-voltage  capacitive  isolation  lim-
it the overall package from being further minimized and work-
ing in high isolation rating scenarios.  The peak efficiency and
power  density  of  transformer-based  isolated  DC–DC  convert-
ers  are  constantly  refreshed.  However,  the  efficiency  in  light
load condition and EMI  performance in  heavy  load condition
are still the main challenges. 

5.4.  Supply modulators for PA

The 5G mobile communication enables up to 100/200 MHz
signal  bandwidth,  which  is  much  faster  than  4G  long-term-
evolution  (LTE)  communication,  however,  features  a  higher
peak-to-average power ratio (PAPR) around 10 dB, which signi-
ficantly  reduces  the  radio-frequency  (RF)  power  amplifiers
(PA) efficiency to below 10%. To solve this critical problem, en-
velope tracking (ET) supply modulator (SM) is the key. The re-
quirements on the ETSM for 5G are extremely challenging, in-
cluding above several hundred MHz bandwidth, 0.5 to 6 V dy-
namic  output  voltage  range,  a  couple  of  Watts  instantan-
eous output power, and higher than 80% efficiency.

Most  supply  modulators  adopt  a  hybrid  topology  com-
posed  of  a  wide-bandwidth  low-efficiency  linear  amplifier  in
charge of high frequency power and a high-efficiency switch-
ing  converter  taking  over  low  frequency  power  as  shown  in
Fig.  23.  For  5G  communication,  the  linear  amplifier  is  re-
quired  to  provide  up  to  5  V  output  with  above  several  hun-
dred  MHz  unity  gain  frequency  (UGF).  To  fulfill  the  band-
width  requirement,  the  critical  signal  paths  are  implemented
with  core  devices  with  small  parasitic  capacitances.  At  the
same  time,  I/O  devices  are  stacked  to  handle  the  high
voltage and protect the core devices[229].  All  the poles except
the  output  pole  are  pushed  to  frequencies  higher  than  the
UGF without compensation. A voltage buffer, which has low in-

put  capacitance  and  low  output  resistance,  is  inserted  at  the
gate of  the power  transistors  to  push pole  at  the gate  to  fre-
quency higher than UGF[230].  Then a miller compensation can
be  adopted  to  stabilize  the  loop.  With  this  method,  the
achieved  bandwidth  is  above  100  MHz  but  the  voltage  buf-
fer  consumes  extra  currents.  However,  in  terms  of  efficiency,
one of the targets of supply modulator designs is always to re-
duce the power consumption.

On the topology level, to improve the linear amplifier effi-
ciency,  an  AC  capacitor  at  its  output  is  added  to  isolate  its
DC current and reduce its supply voltage[229−235]. The comparis-
on  of  state-of-the-art  supply  modulator  works  showing  effi-
ciency  versus  bandwidth  are  illustrated  in Fig.  24.  There  is  a
clear  trend  that  the  efficiency  drops  at  higher  bandwidth
since  more  power  will  come  from  the  linear  amplifier,  which
has  much  worse  efficiency  than  switching  converters.  As
for  5G,  the  signal  bandwidth  is  larger  and  the  power  of VPA

is  distributed  over  100  MHz.  To  alleviate  the  problem,  Sam-
sung[230] proposed  a  hybrid  topology  of  a  fast  buck,  a  slow
buck  and  a  linear  amplifier.  In  terms  of  the  mid-to-high  fre-
quency  power,  it  is  provided  by  the  fast  buck  converter
rather  than  the  linear  amplifier  to  improve  the  overall  effi-
ciency.  Both  the  feed-forward  envelope  signal  and  the  linear
amplifier current are used in the controller of the fast buck con-

 

Fig. 23. Design directions of supply modulators.

 

Fig. 24. (Color online) Comparison of state-of-the-art supply modulat-
ors showing efficiency versus bandwidth.
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verter  to  make  sure  that  the  power  between  the  fast  buck
and  the  linear  amplifier  is  appropriately  divided.  As  a  result,
this  topology  achieved  a  better  tradeoff  between  efficiency
and bandwidth.  This  supply  modulator  achieves 84% maxim-
um efficiency over 1.2 W output power for LTE-40M and 82%
efficiency  over  1.3  W  output  power  for  NR-100M  as  annot-
ated  in Fig.  24[230].  Those  points  are  on  or  above  the  bound-
ary, showing the effectiveness of the proposed topology. The
supply modulator enables a NR-100M ET-PA save 400 mW com-
pared with an APT-PA[230].

As  for  switching  converters,  they  are  required  to  have
high-efficiency,  fast  transient  response  and  high  voltage  rat-
ing.  Most  of  the  supply  modulators  are  designed  to  be  dir-
ectly connected to a lithium-ion battery, of which the voltage
can  range  from  2.5  to  4.2  V  with  a  typical  value  at  3.7  V.
However, the output of the supply modulator can range from
0.5  to  6  V  for  5G  applications.  So  both  step-up  and  step-
down  functions  are  required  for  the  supply  modulator.  A
buck-boost (BB) converter is usually designed in the SM to gen-
erate a stable and high voltage VBB

[229, 231].  A traditional buck-
boost  converter  has  slow  response  due  to  the  right-half-
plane  (RHP)  zero,  so  a  buck  converter  is  cascaded  after  that.
To  implement  the  buck  converter,  we  could  see  two  trends
from latest  arts,  which are  multi-level  and dual  supply  imple-
mentations.







To  support  high  voltage  with  good  efficiency,  low-
voltage devices in  advanced technologies  such as  65 nm can
be  stacked  to  replace  thick-oxide  devices  e.g.  LDMOS  or  I/O
devices  with  smaller  switching  loss[232−235].  With  a  3-level
power  stage,  the  switching  node  swinging  is VDD instead  of
VDD of  a  2-level  buck  converter  at  equivalently  doubled  fre-
quency,  thus  reducing  the  inductor  current  ripple  to  1/8,
which  can  reduce  the  conduction  loss  with  smaller  root-
mean-square current. Or, on other hand, smaller power induct-
or  can  be  used  to  improve  large-signal  response  or  power
density. Thanks to those advantages, the supply modulator in
Refs.  [232, 233] achieves 93% efficiency for LTE-40M and 91%
efficiency for LTE-80M both at 1 W Pout. The supply modulat-
or  in  Refs.  [234, 235]  achieves  88.7%  efficiency  at  0.7  W Pout

for LTE-20M. Those efficiencies are high and above the bound-
ary line,  but  also note that  they have low voltage rating with
output lower than 2.5 V. Multi-level converters also have their
own  concerns.  For  example,  the  voltage  of CFLY could  devi-

ate  from VDD and  a  calibration  loop  is  required.  The  system
complexity  is  also  increased,  as  multiple  floating domains  for
each  stacked  power  transistor  must  be  carefully  designed  to
ensure reliability, especially during startup or transients.

The  second  trend  is  to  design  a  dual-power-line  (DPL)
buck  converter  proposed  in  Refs.  [229, 231].  When VPA is
lower  than VBAT,  the  DPL  buck  switches  between VBAT and
ground  like  a  typical  buck  converter.  When VPA is  higher
than VBAT, it switches between VBB and VBAT (return to battery,
R2B)  instead of  ground (return  to  ground,  R2G).  R2B has  bet-
ter  efficiency  and  less  noise  compared  to  R2G.  The  work  in
Ref.  [229]  is  measured  to  have  87.1%  peak  efficiency  at  3  W
output  power  for  LTE-20M  and  81.2%  at  3.25  W Pout for  LTE-
80  M.  The  supply  modulator  in  Ref.  [231]  reaches  84%  peak
efficiency  for  LTE-20M  at  1.8  W  output  power  and  82%  for
LTE-40M  at  0.8  W Pout with  low  output  noises.  One  thing  to
be  careful  is  that  the  PMOS  in  the VBAT branch  needs  a  body

switch,  which  should  be  fast  and  in  synchronous  with  the
gate driving signal to handle the dead time current.

Both of multi-level and DPL buck have improved the per-
formance.  However,  when  cascaded  with  a  buck-boost  con-
verter,  the  overall  structure  has  lower  efficiency  and  higher
cost and volume, compared with a single-stage converter.  To
solve  those  problems  while  still  being  able  to  provide  both
step-up and step-down voltages, a novel buck-boost convert-
er,  which is  single  stage and does not  have RHZ,  is  proposed
in Ref.  [236].  With the help of  a  flying capacitor,  the available
voltage levels at the switching node are GND, VBAT and 2VBAT.
Thus  it  is  able  to  generate  a  higher-than-VBAT voltage  and  at
the  same  time  has  similar  transient  response  of  a  traditional
buck  converter.  Moreover,  the  3-level  topology  can  reduce
the  voltage  stress  of  the  power  transistor  to VBAT rather  than
2VBAT or VBB.  In  later  art[237],  the  novel  BB  is  directly  used  as
the switching converter  and a micro-BB only supplies the lin-
ear amplifier with much smaller current ratings.

As  the  bandwidth  of  5G  increases  to  200,  300  and  even
320  MHz,  traditional  analog  envelope  tracking  (AET)  encoun-
ters  an  almost  impossible  challenge  to  achieve  such  a  wide
bandwidth  with  around  5  V  voltage  rating  and  a  few  hun-
dred  pF  output  capacitor.  Moreover,  the  efficiency  predicted
by  the  boundary  is  lower  than  75%  for  200  MHz.  In  ISSCC
2022, a new concept — digital envelope tracking (DET) is pro-
posed  by  Samsung[238],  in  which  multiple  voltage  levels  in-
stead of the actual envelope are generated by the supply mod-
ulator  as  illustrated  in Fig.  23.  This  DET  supply  modulator  is
composed  of  the  fast-transient  buck-boost  converter  men-
tioned in last  paragraph and a switched-capacitor  voltage di-
vider (SCVD). The dynamic output voltage is produced by con-
necting  one  of  the  multiple  voltages  from  the  SCVD.  The
SCVD  has  higher  efficiency  than  the  linear  amplifier  while
does  not  have  the  bandwidth  requirement  thanks  to  DET
scheme.  Moreover,  this  DET  supply  modulator  is  not  sensit-
ive  to  distance  to  the  PA  and  the  RF-envelope  delay,  which
are  critical  for  AET  scheme.  The  peak  efficiency  is  93.6%  with
NR  200  MHz,  higher  than  other  state-of-the-art  works  which
target  for  lower  bandwidth.  However,  the  PA  will  have  lower
efficiency with DET compared with AET while this paper does
not  show  the  overall  efficiency  including  the  PA.  Moreover,
the  digital  levels  are  generated  from  Modem,  which  causes
some overheads. It is also an open question on how to gener-
ate the optimal digital levels.

In  summary,  the  design  of  supply  modulators  for  future
communications  is  difficult  and challenging but  on the other
hand it also opens new opportunities and provides new possib-
ilities. 

6.  CMOS image sensors and range sensors

The development of CMOS image sensors is in the trends
of  better  performance  and  diverse  functions,  including  high
speed,  high  dynamic  range,  3D  imaging  and  many  other  as-
pects. The high speed dynamic vision sensor mimics the biolo-
gical visual perception mechanism, which converts light intens-
ity  information  into  visual  pulse  data  to  quantify  high-speed
scenes  with  a  low  amount  of  data.  High  dynamic  range  im-
age  sensor,  which  improves  the  detection  ability  under  high
light  intensity  and  low  light  intensity  simultaneously.  Also,
we  will  discuss  the  state-of-the-art  time-of-flight  (ToF)  range
sensors  for  distance  detection,  including  direct  ToF  sensors
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and indirect ToF sensors, which have the features of low cost,
small size and low power consumption. 

6.1.  High speed dynamic vision sensors

Active  pixel  sensor  (APS)  quantifies  dynamic  scenes  as  a
series  of  images.  It  enables  high  frame  rate  recording  with
high  power  consumption.  Compared  to  APS,  biological  vis-
ion  system  has  superior  image  information  perception  and
processing  capabilities.  Inspired  by  its  imaging  characterist-
ics,  researchers  proposed  the  architecture  of  dynamic  vision
sensor  (DVS),  which  abandons  the  concept  of  frame,  to
greatly  improve  the  temporal  resolution  of  quantified  light
intensity.  The  schematic  diagram  of  DVS  pixel  is  shown  in
Fig. 25(a)[239].

The photoreceptor logarithmically converts the input pho-
tocurrent to the output voltage.  Then,  the amplifier  amplifies
the  variation  of  voltage.  Finally,  the  comparator  detects  the
voltage  change  and  triggers  an  event  pulse  when  it  exceeds
the threshold voltage. In other words, the intensity change de-
tector circuit encodes the light intensity changes over time in-
to pulse events of different polarities, as shown in Fig. 25(b).

Delbruck’s  group  proposed  the  classic  DVS  architectu-
re[239],  which  outputs  only  changing  pixel  information  and
quantizes  dynamic  scenes  into  event  streams  with  micro-
second precision. DVS can realize low time delay and large dy-
namic  range,  which  means  that  the  DVS  can  operate  under
high-speed scenes and challenging lighting conditions. The de-
velopment  trend  of  DVS  is  to  reduce  the  pixel  size,  increase
the event  rate,  and improve the imaging quality  with a  small
pixel size.

Ref. [240] proposed a threshold subtraction method to re-
place the reset method and used a programmable capacitive-
coupled  amplifier  as  a  pre-amplification  stage.  The  proposed
method  improves  the  signal  integrity  while  improving  the
temporal  contrast  sensitivity  to  1%.  In  Ref.  [241],  the  row
sampling circuit is adopted to group adjacent pixels and pro-
cessed  event  data  in  parallel,  greatly  improving  the  event
readout speed. The event output data rate is up to 300 Meps.
The pixel size is reduced to 9 μm using the backside illumina-
tion  (BSI)  and  gain  boosting  technology.  In  Ref.  [242],  the
pixel circuit is implemented in a two-layer wafer using Cu–Cu
connection, which achieved a pixel size of 4.95 μm. The minim-
um  chip  power  consumption  32  mW  and  the  maximum
event  rate  is  1.3  Geps.  A  gate  induced  drain  leakage  (GIDL)
scheme  is  used  to  suppress  periodic  noise  events.  A  global
event  preservation  function  is  employed  to  minimize  motion
artifacts.  In  Ref.  [243],  the  new  stacked  event  vision  sensor
uses  Cu–Cu  connection  process  to  achieve  the  pixel  size  of

4.86 μm. The sensor implements event data compression tech-
nology, increasing the event rate to 1.066 Geps.

Researchers  have  also  made  improvements  to  the  qual-
ity of sensor output event data. As DVS pixel size shrinks, it be-
comes  more  susceptible  to  noise  triggering  noise  events.  In
Ref.  [244],  the  proposed  dynamic  vision  image  sensor  sup-
presses  pixel  noise.  Since  the  background  noise  is  random
and has  no correlation  in  the  temporal  and spatial  neighbor-
hoods, the proposed method utilizes the spatiotemporal correl-
ation  of  valid  events  to  filter  out  random  background  noise.
In  Ref.  [245],  the  DVS  architecture  implements  spatiotempor-
al  redundant  compression  of  event  data.  It  is  implemented
by  redundant  compression  circuits  embedded  in  the  centers
of several neighboring DVS pixels.

However,  DVS  discards  absolute  light  intensity  informa-
tion which is useful for many computer vision algorithms. Re-
cently,  three  pioneering  works  address  the  need  for  high-
speed object  detection and tracking using dynamic  event  in-
formation  and  object  recognition  classification  using  intens-
ity  information[246−248].  This  will  make  event  sensors  more
widely  used  in  the  field  of  high-speed  sensing.  In  Ref.  [246],
the  dynamic  and  active  pixel  vision  sensor  (DAVIS)  integra-
tes  APS  and  DVS  at  the  pixel  level,  which  shares  a  photodi-
ode. It can output synchronous static background grayscale in-
formation  and  asynchronous  dynamic  event  information.  In
Ref.  [247],  the  CeleX  architecture  directly  uses  the  logar-
ithmic  photodetector  output  voltage  as  its  light  intensity  in-
formation.  When  a  pixel  is  selected,  this  voltage  can  be  read
out  by  the  source  follower,  thereby  quantifying  the  light  in-
tensity.  In  Ref.  [248],  the  asynchronous  time-based  image
sensor  (ATIS)  fuses  temporal  contrast  detection  and  lumin-
ance measurement.  The DVS pixel  structure only responds to
changing  pixels  and  triggering  events.  The  PWM  pixel  struc-
ture quantifies the varying light intensity information.

Bionic visual perception combines optoelectronic percep-
tion  with  neuromorphic  computing.  It  achieves  high-speed
sensing while the pixel structure is complex. The evolution of
the  event  sensor  process  is  shown  in Fig.  26.  Compared  to
front-side illumination (FSI), backside illumination (BSI) has be-
come another standard image sensor technology due to its su-
perior  quantum efficiency and fill  factor[249].  In  event  sensors,
the BSI  process  can greatly  increase the fill  factor  of  complex
pixels.  With the development of  the three-dimensional  stack-
ing process,  Researchers adopt the stacking process of Cu-Cu
connection to achieve small pixel size[242, 243].

With  the  advancement  of  process  technology  and  in-
depth  research,  the  pixel  size  of  the  event  sensor  is  continu-
ously reduced and the event rate is continuously increased, en-

 

 

Fig. 25. (a) DVS Pixel circuit diagram[239]. (b) Pixel-triggered event process.
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abling  faster  event  transmission  at  higher  spatial  resolution,
as  shown  in Fig.  27.  The  performance  of  state-of-the-art
event sensors is summarized in Table 6. Event sensors are de-
veloping in the direction of  further  realizing large-array high-
speed sensing and deepening the integration of  sensing and
computing. 

6.2.  High dynamic range image sensors

In the IoT era,  new vision applications in scientific,  secur-
ity,  automotive,  and  computer  vision  areas,  need  to  work  in
real-time  under  indoor/outdoor,  daytime/nighttime,  all  kinds
of  scenarios.  To  achieve  this,  high  dynamic  range  (HDR)
sensors,  which  has  excellent  imaging  performance  under
both high and low illumination environments, is required. Dy-
namic  range  (DR)  is  defined  as  the  ratio  of  the  maximum
non-saturated incident light intensity to the minimum detect-
able  optical  power,  and  typically,  it  can  be  calculated  by  the
full well capacity (FWC) of pixels divided by the noise signal un-
der dark conditions: 

DR =  lg ( FWC(e−)
noise(e−) ) . (3)

Therefore,  to  implement  a  HDR  sensor,  various  methods
to  increase  full  well  capacity  and  to  reduce  readout  noise
have been proposed, as shown in Fig. 28. 

6.2.1.    Multi-gain response HDR sensor
The dynamic  range of  image sensor  can be improved by

implementing  multiple  conversion  gain  (CG)  of  the  pixel,  as
high  gain  can  provide  low  noise  and  high  sensitivity,  while
low  gain  benefits  to  larger  full  well  capacity.  However,  the
simplest multiple gain design for the image sensor cannot real-
ize  HDR  imaging  in  a  single  exposure  time,  and  thus  they
need a  complicated post-processing.  Therefore,  the research-
ers  with  new  technologies  still  intend  to  achieve  HDR  within
a  single  exposure  time,  or  by  finishing  the  HDR  data  pro-
cessing on chip.

Ref.  [250] proposed a 64 Megapixels  CMOS image sensor
with  12  ke- FWC  and  low  readout  noise  by  dual  conversion
gain  (DCG).  A  stacked  voltage  mode  (VM)  GS  CIS  with  lateral
overflow integration capacitor  (LOFIC)  technology was repor-
ted  in  Ref.  [251].  Benefiting  from  the  development  of  3D
stack technology, the control signals of the pixel array can be
implemented  more  flexibly,  which  will  allow  the  exposure
time of different pixels being different. In Ref. [252], a back-illu-
minated  stacked  CMOS  image  sensor  with  adaptive  dynamic
range  based  on  the  coded-exposure  pixel  array  was  pro-
posed.  The  pixel  array,  arranged  on  the  top  chip  of  the  3D
stacked  structure,  were  divided  into  several  exposure  blocks.

And  the  pixel  driver  signals  were  provided  from  the  bottom
chip  of  the  3D  stacked  structure.  An  HDR  of  134  dB  can  be
achieved because the exposure time of  every exposure block
can be adjusted independently according to the illumination.
In Ref.  [253], a 132 dB image sensor was proposed, using two
different size photodiodes in each pixel for different sensitivit-
ies.

In  addition  to  combining  limited  linear  responses,  many
scholars are also engaged in the research of nonlinear photo-
response image sensors, which can be considered as a combin-
ation  of  numerous  linear  responses.  Ref.  [254]  proposed  a
HDR CMOS image sensor providing an instantaneous dynam-
ic  range  of  >120  dB  and  a  maximum  signal-to-noise  ratio  of
~56  dB.  The  image  sensor  offers  the  high  performance  re-
quired for  real-time surgical  application.  3T  architecture  used
in  digital  pixel  also  works  with  nonlinear  response  principle,
such  as  the  event  image  sensors[255].  Wide  DR  (>124  dB)  is
achieved  due  to  good  low-light  performance  and  the  ab-
sence of leakage activity from parasitic photocurrents at high
light. 

6.2.2.    Low-noise HDR sensor
Low-noise design of  image sensors  is  critical  for  HDR be-

cause the noise level decided the minimum detectable light in-
tensity.  The  correlated  multiple  sampling  technique  (CMS)
and  high  CG  are  useful  to  suppress  the  sensor’s  noise.  The
CMS, of  which the sample of  the pixel  readout signal  is  oper-
ated more than one time,  is  an  effective  method to  suppress
the  random  noise  caused  by  the  transistors  in  pixel,  espe-
cially the source follower. However, the repeated sample pro-
cess will occupy a large amount of readout time. High conver-

 

 

Fig. 26. (Color online) The evolution of the event sensor process.

 

Fig. 27. (Color online) Pixel size and event rate of the event sensors.
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sion  gain,  or  amplifying  the  floating  diffusion  (FD)  voltage  in
pixel  is  a  direct  way  to  suppress  the  noise  in  the  readout  cir-
cuits. But they need additional transistors and thus difficult to
apply in a small-pitch pixel.

For reducing the readout noise, Ref.  [256] introduces a 5-
transistors  (5T)  pixels  enabling the combination of  deep sub-
electron noise performance by reducing the sense node capa-
citance.  Ref.  [257]  released  a  1.45 μm  pitch  pixel  image
sensor.  An  amplifier  structure  is  used  in  the  sensor  pixel  to
achieve a conversion gain of 560 μV/e−, reducing the noise to
0.5 e−

rms. To reduce the time of CMS, Ref. [258] proposed a con-
ditional  CMS  method  that  achieved  0.66  e−

rms random  noise
with 5-time sampling at a frame rate of 7.2 frames/s, which cor-
responds  to  a  sampling-rate  frequency  of  36.1  kHz  for  the
column parallel ADC. 

6.2.3.    Quanta image sensor
In recent years, there are many new structures and opera-

tion  processes  of  image  sensor  proposed  to  achieve  HDR,
such  as  quanta  image  sensor  (QIS).  A  typical  QIS  integrates
up  to  a  few  photoelectrons  per  pixel  in  one  frame.  Spatial
and  temporal  oversampling  are  implemented  to  achieve  a
high  dynamic  range  and  a  high  frame  rate  that  are  compar-
able to the ideal CIS operating mode. Ref.  [259] proposed a 4

M  pixel,  3D-stacked  backside  illuminated  QIS,  which  realized
a  readout  noise  of  0.3  e−

rms and  a  single-exposure  dynamic
range of 100 dB.

The  performance  of  state-of-the-art  HDR  sensors  is  sum-
marized  in Table  7.  The  DR  can  be  over  100  dB  by  applying
new  structures  of  image  sensor,  or  combining  the  multiple
HDR  technique.  In  the  future,  for  typical  image  sensor,  the
LOFIC  which  is  known  to  have  a  potential  of  achieving  high-
er  DR  than  the  dual  CG  pixel,  would  be  the  dominant  tech-
nique  in  the  next  generation.  And,  we  expect  that  novel  im-
age sensors may improve the DR more drastically. 

6.3.  Range sensors

Range sensors have shown growing demand in many ap-
plications, such as autonomous driving, augmented reality, ro-
botics,  and  smart  homes.  Time-of-flight  (ToF)  sensor,  which
can be realized in  CMOS process,  is  one of  the range sensors
with  the  features  of  low  cost,  small  size,  and  low  power  con-
sumption.  There  are  two  types  of  ToF  sensors  according  to
the  depth  measurement  principles:  direct  ToF  (D-ToF)  sensor
and indirect ToF (I-ToF) sensor. Fig. 29 shows the principles of
the ToF sensor system. The modulated or pulsed light is emit-
ted  from  the  light  source  and  the  fight  time  is  measured
from  the  reflected  light  of  the  target  to  extract  the  depth  in-

Table 6.   Performance summary of state-of-the-art event sensors.

Supplier IniVation Prophesee Samsung CelePixel

Journal, Year, Ref JSSC,
2008, [239]

JSSC,
2014, [246]

JSSC,
2015, [240]

VLSI, 2019,
[244]

JSSC,
2011, [247]

ISSCC,
2020, [242]

ISSCC,
2017, [241]

ISCAS,
2020, [243]

CVPR,
2019, [248]

Resolution (pixel) 128 × 128 240 × 180 60 × 30 132 × 104 304 × 240 1280 × 720 640 × 480 1280 × 960 1280 × 800
Latency (μs) 12 12 N/A N/A 3 20–150 65–410 150 N/A
DR (dB) 120 120 130 N/A 143 >124 90 100 N/A
Sensitivity (%) 17 11 1 N/A 13 11 9 20 N/A
Power (mW) 23 5–14 0.72 4.9 50–175 32–84 27–50 130 400
Chip size (mm2) 6.3 × 6 5 × 5 3.2 × 1.6 2 × 2 9.9 × 8.2 6.22 × 3.5 8 × 5.8 8.4 × 7.6 2 × 2
Pixel size (μm2) 40 × 40 18.5 × 18.5 31.2 × 31.2 10 × 10 30 × 30 4.86 × 4.86 9 × 9 4.95 × 4.95 9.8 × 9.8
Fill factor (%) 8.1 22 10.3 20 20 >77 11 22 N/A
Max event rate
(Meps)

1 12 N/A 180 N/A 1066 300 1300 N/A

Stationary noise
(ev/pix/s)

0.05 0.1 N/A N/A − 0.1 0.03 N/A N/A

Technology (nm) 350 FSI 180 FSI 180 FSI 65 FSI 180 FSI 90 BSI-
stacked

90 BSI 65 BSI-
stacked

65 FSI

Grayscale output no yes no no yes no no no yes
Grayscale DR (dB) N/A 55 N/A N/A 130 N/A N/A N/A N/A
Max. frame rate
(fps)

N/A 35 N/A N/A N/A N/A N/A N/A N/A

 

 

Fig. 28. (Color online) Summary of high dynamic range techniques.
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formation based on timing or time-gated integration pixels. 

6.3.1.    Direct ToF (D-ToF) sensor
D-ToF  sensor  directly  measures  the  flight-time  of  the

pulsed  light  to  calculate  the  depth  between  the  target  and
the  sensor  by  recording  the  pulsed  light  emission  time  and
photon-incidence  time  using  high  resolution  time-to-digital
converter  (TDC)  and  high-gain  photodetector.  The  photode-
tector  is  usually  implemented  with  avalanche  photodiode
(APD) or  single-photon avalanche diode (SPAD).  As SPAD has
characteristics  of  high  sensitivity,  fast  response  speed  and
low  time  jitter,  it  is  more  commonly  used  in  D-ToF  sensors
compared  with  APD.  According  to  the  measurement  prin-
ciple of D-ToF sensor, the depth (d) can be calculated by 

d = ct

, (4)

where t is the flight time of the light and c is the speed of the
light. This equation shows that to reach a millimetric depth res-
olution,  the  flight  time  of  the  light  should  be  measured  with
picosecond level precision.

Although  D-ToF  sensor  can  achieve  long  detection  dis-
tance,  its  lateral  resolution  is  limited.  This  is  because,  a  large
number of  on-chip memories and processing units,  which in-
clude  transimpedance  amplifier  (TIA)  or  TDC  and  histogram
generating/processing  circuits,  are  usually  required  by  the
pixel array to avoid the influence of photon detection probabil-
ity and dark count rate of SPAD. Furthermore, the power con-
sumption,  dynamic  range (DR),  frame rate  and the adaptabil-
ity with ambient light of the D-ToF sensor still limit its applica-
tion areas.

To  improve  the  lateral  resolution  and  frame  rate,  the

pixel-wise  exposure  control  and  adaptive  clocked  recharging
have  been  proposed  to  suppress  the  maximum  power  con-
sumption  and  improve  the  DR,  so  that  the  lateral  resolution
of D-ToF sensor has been improved to 960 × 960 with 143 dB
DR, 90 fps frame rate and 0.37 W power consumption[260]. Fur-
thermore,  in  this  sensor,  3D-stacked  BSI  CMOS  process  has
been adopted to reduce pixel pitch down to 9.585 μm. To sup-
press  the  ambient  light,  small  clusters  of  pixels  and  shared
TDC with coincidence detection method are used to perform
photon detection, which makes sensor achieve maximum de-
tection  distance  above  100  m  at  10  klux  background  light
with TDC resolution of 60 ps[261]. In Ref. [262], macro pixels in-
cluding 3 × 3 or 6 × 6 SPADs and the background signal sub-
traction  in  the  histogram  processing  are  proposed  to  make
the  D-ToF  sensor  achieve  a  maximum  detection  distance  of
200 m at 117 klux background light.

The  technology trend of  the  D-ToF sensors  are  similar  to
the  CMOS  image  sensors.  The  early  D-ToF  sensors  realized
with front-side illuminated (FSI) CMOS process, have the disad-
vantages  of  large  pixel  size  and  low  lateral  resolution[263, 264].
Recently,  the  3D-stacked  BSI  CMOS  process  has  been  adop-
ted in D-ToF sensors to achieve small pixel size and high later-
al resolution[260]. In these sensors, the pixel array and logic cir-
cuits  can  firstly  be  optimized  individually  in  different  chips,
and  then  be  connected  with  face-to-face  bonding  techno-
logy. 

6.3.2.    Indirect ToF (I-ToF) sensor
I-ToF  sensor  measures  the  phase  shift  of  the  modulated

light to indirectly calculate the depth. The phase shift is meas-
ured  by  the  demodulation  process,  in  which  the  reflected
light signal  is  sampled by four clocks with different phases.  If
the  phase  shifts  between  the  sampling  clock  and  the  emit-
ted signal are set to be 0°, 90°,180° and 270° at four sampling
points, respectively. The phase shift ϕ can be calculated by 

ϕ = arctan
S − S
S − S

, (5)

where S0–S3 represents  the  sampled  signals  in  four  sampling
phases. Since the demodulated phase delay has an unambigu-
ous range of 2π,  the maximum measurement depth range dR

is limited by 

dR = c
πfm

⋅ π = c
fm

. (6)

I-ToF sensor can achieve higher lateral resolution than D-
ToF  sensor.  This  is  because  the  I-ToF  sensor  can  detect  the

Table 7.   Performance summary of the state-of-the-art HDR sensors.

IEDM, 2019,
[250]

IISW, 2020,
[251]

ISCAS, 2020,
[254]

ISSCC, 2020,
[255]

EDL, 2020,
[256]

JSSC, 2018,
[258]

VLSI, 2021,
[259]

Sensor type Multi-gain
response

Multi-gain
response

Non-linear
response

Non-linear
response

Low-noise Low-noise QIS

Process N/A 45 nm CIS/65 nm
logic

350 nm CIS 90 nm CIS/45 nm
logic

180 nm CIS 45 nm CIS/65 nm
Logic

45 nm CIS/65 nm
Logic

Pixel array 64 M 0.8 M 0.07 M 9.2 M 0.02 M 8.3 M 4 M
Pixel pitch
(μm)

N/A 4 15 4.86 NA 1.1 2.2

FWC (e-) 1.2 × 104 1.3 × 105 N/A N/A 6.5 × 103 N/A 3 × 104

Noise (e-) 1.2 4 N/A N/A 0.32 0.66 0.27
DR (dB) 80 90 124 >124 dB 84.8 N/A 100
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Fig. 29. (Color online) Principles of ToF sensor system.
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phase  shift  by  performing  simple  calculations  without  large
volume  memories  and  complex  processing  units.  However,
the  maximum  detection  distance  of  the  I-ToF  sensor  is  short
because  of  the  limited  emitting  power  of  the  light  source
and  limited  sensitivity  of  the  photodetector.  Furthermore,
there  are  two  critical  problems  in  I-ToF  sensor:  motion  arti-
fact  for  moving  objects  and  depth  error  from  background
light or multi-user interference.

To suppress the motion artifact,  a dynamic pseudo 4-Tap
pixel  has  been  proposed  to  generate  a  depth  image  in  a
single  frame,  and  over-pixel  MIM  capacitor  has  been  used  to
achieve background light cancelling over 120 klux[265]. To can-
cel  out  the  multi-user  interference  and  suppress  the  motion
artifact,  another  I-ToF  sensor  with  4-tap  pixel  and  lateral  re-
solution of 1280 × 960 has also been proposed[266],  which ad-
opts  multiple-interleaving  and  pseudorandom  modulation
methods  reduce  the  peak  current  and  cancel  out  the  multi-
user  interference  respectively.  To  further  improve  the  depth
measurement  precision,  the  charge  injection  pseudo  photo-
current reference has been used to reduce the gating driver jit-
ter,  and  the  depth  measurement  precision  has  been  im-
proved to 38 μm[267].

The  technology  trend  of  the  I-ToF  sensors  is  similar  to
the D-ToF sensors. The early I-ToF sensors, implemented with
FSI  CMOS  process,  have  the  shortcomings  of  large  pixel  size
and  low  lateral  resolution[268].  Then,  the  BSI  CMOS  process,
has  been  used  to  improve  sensitivity  of  the  pixel  to  reduce
the pixel size and improve the lateral resolution[269].  Recently,
3D-stacked  BSI  CMOS  process  has  also  been  adopted  to
further  reduce  the  pixel  size  and  improve  the  lateral  reso-
lution[270].

To further improve the lateral  and depth resolution of D-
ToF sensor,  the ToF sensors  combining both D-ToF and I-ToF
methods  have  been  reported  recently.  By  detecting  phases
for short ranges while creating a sparse depth map with count-
ing photons for long ranges, the lateral resolution has been im-
proved  to  1200  ×  900  with  configurable  depth  resolution
down to 10 cm[271].  In  this  sensor,  a  6 μm pixel  circuit  includ-
ing  a  vertical  APD  and  a  charge  accumulator  has  been  pro-
posed, and the single-slope column analog-to-digital convert-
ers (ADC) are also included in the sensor.  Another ToF sensor
using  in-pixel  histogramming  TDC  based  on  quaternary
search and time-gated Δ-intensity phase detection achieves lat-
eral resolution of 80 × 60 and depth resolution of 1.5 cm[272].

Several  ToF  sensors  combing  D-ToF  and  I-ToF  methods
proposed in recent years are implemented with FSI CMOS pro-
cess[271−273].  The  prototype  sensor  in  Ref.  [271],  implemented
with  vertical  APD  in  FSI  CMOS  process,  not  only  achieves
high  depth  resolution  similar  to  the  I-ToF  sensors,  but  also
achieves  much  further  maximum  detection  distance  than  I-
ToF  sensors.  Although  the  sensors  implemented  with  SPAD
still suffer from low spatial resolution[272, 273], the depth resolu-
tion has been improved compared with that of D-ToF sensor.

In  summary, Fig.  30 illustrates  the  number  of  pixels
versus the maximum detection distance of ToF sensors[261, 262,

265, 266, 271, 273, 274−276], showing that the maximum detection dis-
tance  of  D-ToF  sensors  and  the  number  of  pixels  of  I-ToF
sensors are kept increasing in recent years. Although, the ToF
sensors  combing D-ToF and I-ToF methods show a moderate
maximum  detection  distance,  the  depth  resolution  is  higher
than  that  of  D-ToF  sensors.  Moreover,  for  the  ToF  sensors

combing  D-ToF  and  I-ToF  methods,  if  vertical  APD  is  adop-
ted in the pixel, the maximum detection distance and the later-
al resolution can be greatly improved. Table 8 shows the per-
formances  of  the  state-of-the-art  ToF  sensors.  For  D-ToF
sensors,  the  resolution  has  been  improved  up  to  1  M  pixels,
and the power consumption from the SPAD array grows signi-
ficantly  under  high  light  conditions.  In  the  future,  smarter
pixel  architecture  and  signal  processing  unit  can  be  expec-
ted  to  realize  an  energy  efficient  D-ToF  sensor  with  high
frame  rates.  For  I-ToF  sensors,  high  lateral  resolution  and
depth resolution have been achieved. However, the motion ar-
tifact and depth error from background light or multi-user in-
terference still need be reduced in the future for improving reli-
ability  in  applications.  For  ToF  sensors  combing  D-ToF  and  I-
ToF  methods,  3D-stacked  BSI  CMOS  process  could  be  adop-
ted to further reduce the pixel size and improve the lateral res-
olution. 

7.  Emerging directions

This  section  will  be  focusing  on  the  emerging  technolo-
gies  and  applications.  In  the  recent  years,  there  are  two  ma-
jor  emerging  hot  topics:  1)  the  quantum  computing,  and  2)
the application-specific integrated circuit (ASIC) design for bio-
medical and/or healthcare applications. 

7.1.  Cryogenic CMOS for qubit

Compare with the classical computing, quantum comput-
ing  features  higher  computing  speed  and  parallel  comput-
ing  capability[277, 278].  The  quantum  computing  systems  usu-
ally  work  in  the  cryogenic  temperature  environment,  while
the  qubit  control  devices  usually  work  at  room  tempera-
ture[279]. Typically, a computing system with only 50 qubits re-
quires about 2000 interconnecting cables and hundreds of mi-
crowave  instruments,  which  result  in  a  huge  system  volume
size.  With  the  rapid  development  of  quantum computing,  al-
though a 127-qubit computing system (IBM, Eagle)[280] has be
realized,  an  available  quantum  computing  system  with  error
correction  capability  needs  at  least  hundreds  of  qubits[281].
The  key  challenges  in  the  design  of  a  very-large-scale
quantum computing system are placed in the number of inter-
connect  cables,  noise  crosstalk,  limited  cooling  power,  and

 

[Kumagai, ISSCC 2021]

[Keel, JSSC 2021] [Okino, ISSCC 2020]

[Park, ISSCC 2022]

[Henderson, ISSCC 2019]

[Keel, JSSC 2020]

[Kim, ISSCC 2020]

[Padmanabhan, ISSCC 2021]

[Park, JSSC 2021]

Fig.  30.  (Color  online)  Number  of  pixels  versus  the  maximum  detec-
tion distance of ToF sensors.
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computing  system  volume.  The  cryogenic  CMOS  IC  techno-
logy  provide  a  promising  solution  for  the  miniaturization  of
quantum computing systems.

Charbon et al.[282, 283] first proposed a cryogenic qubit con-
troller  scheme based on the standard CMOS technology.  The
key  circuit  blocks  were  verified  at  the  cryogenic  temperature
of  4  K.  Bardin et  al.[284] realized  a  monolithically  integrated
qubit  control  chip  for  the  first  time,  which  can  directly  work
at a 3K cryogenic temperature and can only control the XY ax-
is  of  a  single  qubit.  Patra et  al.[285] realized  a  qubit  controller
with a complete pulse shaping circuits integrated. This control-
ler  integrated  4  independent  channels.  Each  channel  con-
trols  32  qubits  with  a  time-division  multiplexing  mode.  Park
et  al.[286] further  improved  the  qubit  controller  integrated
both the qubit state readout circuits and the auxiliary circuits,
such  as  the  microcontrollers,  the  temperature  sensors,  etc.
This  is  the  first  fully  functional  qubit  control  SoC  IC.  In  addi-
tion,  Frank et  al.[287] proposed a  qubit  controller  with  a  semi-
automatic  digital  processing  unit  integrated  on  the  chip  to
generate  the  specific  pulses  for  qubit  controlling.  The  power
dissipation  of  such  controller  has  been  reduced  significantly.
Kang et al.[288] further reduced the power consumption by ad-
opting a pulse shaping scheme combining a linear digital-to-
analog converter  and a  nonlinear  digital-to-analog converter.
A local oscillator circuit was also integrated on the chip.

The  qubit  state  readout  circuit  is  a  key  module  in  the
qubit  controller.  Prabowo et  al.[289] realized  the  quadrature
readout circuit of the gate-biased spin qubit for the first time,
which  can  work  directly  at  a  cryogenic  temperature  of  4.2  K.
Ruffino et al.[290] proposed the first low-IF readout circuit with
a  local  oscillator  circuit  integrated together.  A  noise  figure  of
0.55  dB  and  a  bandwidth  of  1.4  GHz  bandwidth  can  be
achieved.  In  addition,  Gong et  al.[291] realized  an  oscillator
with  an  on-chip  auto-calibration  technique  to  optimize  the
phase noise performance and ensure that the oscillator can ob-
tain  optimal  phase  noise  performance  at  each  frequency.
Peng et  al.[292] proposed  a  cryogenic  oscillator  with  wide  ad-
justment range and low flicker noise corner frequency for the

first time in SiGe process by adopted the hybrid mode switch-
ing  technology.  Kiene et  al.[293] realized  a  cryogenic  1  GS/s
8-bit  analog-to-digital  converter  circuit  for  the  first  time,
which  provided  the  possibility  of  on-chip  digital  post-pro-
cessing for qubit state readout.

The research on cryogenic  temperature qubit  controlling
IC is one of the emerging technology direction in the last dec-
ade. The reported solution still suffers from its high-power con-
sumption,  single  control  function,  and  limited  capability  of
multi-qubits  controlling.  Recent  researches  are  pushing  the
frontier  of  cryogenic  qubit  controller  with  lower  power  con-
sumption  and  higher  integration  of  more  complex  quantum
system controlling functionalities. 

7.2.  Biomedical frontiers

Recent  development  in  advanced  electrochemistry  ma-
terials  and low-power  circuit  technology makes  it  possible  to
create  super  compact  sensor  system  for  various  applications,
i.e.,  healthcare and scientific  researches.  Typically a sensor in-
terface  with  the  impedance  detection  capability  is  required.
Qu et  al.[294] presents  an  electrochemical  impedance  spec-
troscopy  (EIS)  SoC  for  electrochemical  gas  detection  with
0.28 mΩ sensitivity, 105 dB dynamic range and less than 1 μA
average  power,  by  maintaining  a  good  trade-off  between
the low-power module and the high speed.  Sonmezoglu and
Maharbiz[295] present  a  fully  implantable,  wireless,  battery-
free,  real-time  deep-tissue  oxygen  sensor  system  combines  a
luminescence  sensor  with  ultrasound  technology,  achieving
better  resolution,  lower  power  consumption  and  smaller
volume.  Yeknami et  al.[296] describes  a  0.3  V  biofuel-cell-
powered glucose/lactate, representative of physiologic indicat-
ors  in  human  perspiration,  biosensing  system  with  a  delta-
sigma ADC and a wireless transmitter.  Circuit  designs such as
dynamic threshold MOS (DTMOS) techniques, 3× clock boost-
ing  circuit,  and  passive  integrator  are  used  to  guarantee  effi-
ciency  at  low  supply  voltages.  Ansary et  al.[297] presents  a
CMOS-based  miniature  impedance  analyzer  for  low-power
high-spatial-resolution  monitoring  of  Potassium  (K+)  achiev-
ing near the 1pA sensitivity with the advanced electrode sur-

Table 8.   Performance summary of the state-of-the-art ToF sensors.

ISSCC ‘22,
Canon,
[260]

ISSCC ‘21,
Neuchâtel,
[261]

ISSCC ‘21,
Sony,
[262]

ISSCC ‘20,
Sungkyunkwan
U., [265]

JSSC ‘21,
Samsung,
[266]

ISSCC ‘2,
Panasonic,
[271]

ISSCC ‘22,
UNIST,
[272]

ToF type Direct Direct Direct Indirect Indirect Direct+Indirect Direct+Indirect
Process 90 nm/40 nm

3D-BSI CMOS
45 nm CIS3D-
BSI

90 nm/40 nm
3D BSI CMOS

90 nmBSI CMOS 65 nm/65 nm
3D BSI CMOS

65 nm CMOS 110 nm

Pixel array 960 × 960 256 × 128 189 × 600 320 × 240 1280 × 960 1200 × 900 80 × 60
Pixel pitch (μm) 9.585 7 10 8 3.5 6 75
Wavelength
(nm)

510 780 905 N/A 850/940 N/A 905

Fill factor (%) ~100 N/A N/A 43 N/A N/A 10.4
Frame rate (fps) 90 N/A 20 10−60 60 450 30
Maximum
range (m)

N/A 100 150−200 0.75–4.0 0.4–4.0 250 45

Depth
resolution/
Depth noise

N/A 7 cm 15–30 cm <0.54% <0.92% (full)
<0.3% (2 × 2
bin)

1.5 m@max.range
10 cm@min.range

2.5 cm

DR (dB) 143 N/A N/A N/A N/A N/A N/A
Background
light (klux)

N/A 8–10 117 >120 0.7/20 N/A 30

Power (mW) 330–370 51.9 N/A N/A 290 (full),
220 (2 × 2 bin)

2500 1500
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face in vivo in an anesthetized immobilized mouse.
Advanced  imaging  technologies  have  also  been  applied

to  realize  compact  device  for  biomedical  applications.  Jang
et al.[298] demonstrates a 4-camera VGA resolution capsule en-
doscope system with integrated high-throughput communica-
tions  and  sub-cm  range  capsule  tracking  with  360°-visual
angle. Park et al.[299] shows a 1225-channel neuromorphic retin-
al  prosthesis  (NRP)  SoC  with  56.3  nW/Ch  neuromorphic  im-
age processor and the localized (49-point) temperature regula-
tion  circuit.  The  NRP  SoC  adopts  spike-based  photo-diode
sensor  (Spike  PD)  and neuromorphic  image processor  (NMIP)
to minimize the static power dissipation and regulates the sup-
ply  voltage  of  LDOs  and  bridge  rectifier  to  reduce  temperat-
ure increase.

In  addition,  ultrasound,  light  and  other  energy  supply
methods  and  information  transmission  technology  have
been  introduced  into  neural  interface  applications  experi-
ments. Yu et al.[300] shows an implantable neuro-stimulator util-
izing magnetoelectric power and data transfer. The Magneto-
electric  neural  implant  integrates  a  1.5  mm2 180-nm  CMOS
SoC, an in-house built 4 × 2 mm2 magnetoelectric film, a single
energy storage capacitor, and on-board electrodes onto a flex-
ible  polyimide  substrate.  Lee et  al.[301] presents  the  electron-
ics for a wireless electrode unit, powered by, and communicat-
ing  through  a  microscale  optical  interface,  achieving  lower
power consumption and higher integration level. Xu et al.[302]

introduces  a  low-power  active  ASIC  for  multimodal  wearable
functional  brain  imaging  including  near-infrared  spectro-
scopy (NIRS) (supporting both SiPMs and PDs), electroenceph-
alogram (EEG),  electrical  impedance tomography (EIT)  for  the
first  time.  Li et  al.[303] shows  an  ambient  energy  harvesting
and  a  body-coupled  power  delivery  system,  achieving  full-
body coverage “body-coupled power delivery” and the place-
ment-independent  “body-coupled  ambient  energy  harvest-
ing”.  Tang et  al.[304] showcases  a  wireless  concurrent  EEG  re-
cording  and  body-coupled  communication  with  a  concentric
electrode based on blind courtesy copy data transmitting. 

8.  Conclusions

Thanks to the great joint efforts of a large number of Au-
thors,  who  presented  their  understanding  and  insights  with
their expertise,  this paper summarizes the IC design trends in
the  year  of  2022.  Although  the  integrated  circuits  have  been
developed for decades, new system architectures and novel cir-
cuit  topologies/techniques  still  keep  coming  out.  And
people's  demands  for  higher  data  rate,  higher  energy  effi-
ciency, higher level of integration, smarter and safer electron-
ic devices have not stopped.

Application-specific  or  domain-specific  IC  designs  are
trending in the AI machine learning and biomedical areas. Hy-
brid conversion topologies are very popular not only for data
converters,  but  also  for  power  converters  as  well  as  for
sensors.  The operation frequencies of  the communication ICs
range  from  kHz  to  mm-wave  bands.  To  arrive  at  energy-effi-
cient, compact, and robust solutions, the circuit systems heav-
ily  depend  on  semiconductor  technologies,  electronic
devices,  packaging,  as  well  as  high-quality  passive  compon-
ents.  Due  to  limited  capacity  and  capability,  we  cannot  dis-
cuss all the interesting and trending IC design topics in this pa-
per.  We believe that  more promising solutions to the current

challenges  and  more  killer  applications  will  appear  to  keep
the IC design area thriving and flourishing. Last but not least,
we  hope  you  enjoyed  reading  this  paper  and  could  find  this
paper useful for your future research and works.
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