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Abstract: Low-power and low-variability artificial neuronal devices are highly desired for high-performance neuromorphic com-
puting.  In  this  paper,  an  oscillation  neuron  based  on  a  low-variability  Ag  nanodots  (NDs)  threshold  switching  (TS)  device  with
low operation voltage, large on/off ratio and high uniformity is presented. Measurement results indicate that this neuron demon-
strates  self-oscillation  behavior  under  applied  voltages  as  low  as  1  V.  The  oscillation  frequency  increases  with  the  applied
voltage  pulse  amplitude  and  decreases  with  the  load  resistance.  It  can  then  be  used  to  evaluate  the  resistive  random-access
memory (RRAM) synaptic  weights accurately when the oscillation neuron is  connected to the output of  the RRAM crossbar ar-
ray for neuromorphic computing. Meanwhile, simulation results show that a large RRAM crossbar array (> 128 × 128) can be sup-
ported by our  oscillation neuron owing to  the high on/off  ratio  (>  108)  of  Ag NDs TS device.  Moreover,  the high uniformity  of
the Ag NDs TS device helps improve the distribution of the output frequency and suppress the degradation of neural network
recognition  accuracy  (<  1%).  Therefore,  the  developed  oscillation  neuron  based  on  the  Ag  NDs  TS  device  shows  great  poten-
tial for future neuromorphic computing applications.
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1.  Introduction

A  resistive  random-access  memory  (RRAM)-based  neural
network  has  been  extensively  studied  as  a  promising  solu-
tion to overcome the von Neumann bottleneck faced in con-
ventional  artificial  intelligence  (AI)  hardware[1−4].  As  inspired
by a biological neural network, an artificial neural network con-
sists  of  synaptic  and  neuronal  devices.  In  order  to  improve
speed  and  power  efficiency,  the  RRAM  crossbar  array,  which
can  significantly  accelerate  the  vector-matrix  multiplication,
has  been  developed  to  implement  artificial  synapses[5−8].  On
the  other  hand,  a  neuronal  device  is  needed  at  the  end  of
each  crossbar  bit  line  (BL)  to  convert  the  weighted  sum  cur-
rent  of  the  analog  RRAM  synapses  into  spikes  to  transmit
information  to  the  next  layer  of  neurons.  Here  integrate-
and-fire  neurons  built  with  CMOS  circuits  are  typically  em-
ployed[9].  However,  such  complex  CMOS  neurons  would  oc-
cupy  a  much  larger  footprint  than  the  BL  pitch  of  the  cross-
bar  array,  which causes serious column pitch matching prob-
lem[10, 11].

Recently, a compact oscillation neuron based on a metal–
insulator  transition  (MIT)  threshold  switching  (TS)  device  was
proposed  as  a  more  scalable  artificial  neuron[12−16]. Com-
pared to the CMOS neuron, an oscillation neuron has the bene-

fits  of  small  size and simple circuit  structure,  which is  appeal-
ing  for  large-scale  neuromorphic  system  applications.
However,  the  on/off  ratio  of  a  typical  MIT  TS  device  is  small
(~102),  which cannot be used for a large RRAM crossbar array
(e.g.,  12  ×  1  array)[15].  Moreover,  the  high  operation  voltage
of the MIT TS device may disturb the weights of the RRAM syn-
apses  and  also  increase  the  power  consumption[16].  Alternat-
ively,  TS  devices  based  on  electrochemical  metallization
(ECM) filaments  have attracted considerable  attention due to
their  simple  structure,  large  on/off  ratio,  and  low  operation
voltage[17−23].  However,  the  uniformity  of  typical  ECM  TS
devices is relatively poor, which may affect the accuracy of arti-
ficial  neural  networks.  More  recently,  we  have  developed  a
high-uniformity HfO2-based TS device with patterned Ag nan-
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Fig. 1. (Color online) (a) Schematic diagram of a typical artificial neur-
al network. (b) Circuit implementation of the oscillation neuron with a
TS device.
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odots  (NDs)  as  the  high-performance  selector,  which  shows
low  leakage  current  (<  1  pA),  high  on/off  ratio  (>  108),  and
high endurance (> 108 cycles)[24].

In  this  work,  we  further  implement  an  oscillation  neuron
using  the  HfO2/Ag  NDs  TS  device.  This  neuron  exhibits  self-
oscillation behavior at low applied voltage (1 V), where the os-
cillation frequency increases with the applied voltage and de-
creases with the load resistance.  In addition,  it  can work with
a large RRAM crossbar  array  (> 128 × 128)  owing to the high
on/off ratio (> 108) of Ag NDs TS device. Moreover, in the neur-
al  network  simulation,  a  high  recognition  accuracy  (loss  <
1%)  can  be  achieved  by  using  this  oscillation  neuron  be-
cause of its high uniformity.

2.  Results and discussion

Fig. 1(a) illustrates the schematic diagram of a simple artifi-
cial  neural  network.  When  the  input  voltages  are  applied  to
the crossbar synaptic array, the weighted sum currents are in-
tegrated  by  the  neurons  at  the  end  of  each  column  (BL)  and
trigger  output  spike  firing  when  they  reach  the  neuron
thresholds. The circuit implementation of the oscillation neur-
on based on the TS device is shown in Fig. 1(b). The load resist-
ance  (RL)  represents  the  RRAM  synaptic  weight  connected  in
series  with  the  TS  device.  Also, CL is  the  load  capacitance  in-
cluding  parallel  capacitance  and  parasitic  capacitance  at  the
neuron  node.  Initially,  the  TS  device  is  in  the  off  state  (Roff).
When  applying  an  input  voltage  pulse  (Vin),  the  voltage
mainly drops on the TS device since Roff > RL,  and CL starts to
charge.  When Vin is  larger  than  the  threshold  voltage  of  the
TS device Vth,  it  turns to the on state (Ron),  and then CL starts
to  discharge  since  the  voltage  drop  on  the  TS  device  is  re-
duced (Ron < RL). Once the voltage drop on the TS device is be-
low  the  hold  voltage  of  TS  device Vhold,  it  switches  back  to
Roff,  ready for  the next  firing event.  In  this  way,  the TS device
switches on and off between Ron and Roff, and the neuron out-
puts  oscillation  signal.  If RL is  chosen  to  satisfy Roff > > RL > >
Ron, the ideal oscillation frequency f can be described as[13]: 

f = / [RLCL × log (Vhold − Vin
Vth − Vin

)] . (1)

Eq.  (1)  shows  a  one-to-one  correspondence  between f
and RL at  a  certain CL and Vin.  Therefore,  the  oscillation  fre-
quency can be used to represent the weight of the RRAM syn-
apse accurately.

In  this  study,  we  demonstrate  the  oscillation  neuron  us-
ing  the  Ag  NDs  TS  device  based  on  ECM  filaments.  The
devices  were  fabricated  with  a  cell  size  of  10  ×  10 μm2.  The
bottom electrode was patterned by photolithography and de-
posited by sputtering of 5 nm Ti and 50 nm Pt. An 8 nm thick
HfO2 dielectric  was  deposited  by  atomic  layer  deposition
(ALD) at 250 °C. The Ag NDs with diameters of 50 nm were pat-
terned by e-beam lithography (EBL) and deposited by sputter-
ing. A 40 nm-thick Pt was deposited as the top electrode. The
transmission electron microscope (TEM) image of the Ag NDs
TS device is shown in Fig. 2(a). Fig. 2(b) exhibits the schemat-
ic  illustration  of  the  threshold  switching  process  in  the
device.  In  the  initial  state,  there  is  no  conductive  filament  in
the  dielectric  layer,  and  the  device  is  in  the  high-resistance
state  (HRS).  When  applying  a  voltage  (Vappl)  larger  than Vth,
the electric field is locally enhanced in the areas with Ag NDs,
so  the  Ag  atoms  are  easier  to  be  ionized  as  the  ion  source
(Ag  → Ag + +  e−)  for  diffusing  toward  the  bottom  electrode,
which  leads  to  the  formation  of  metallic  filaments  and  turns
the  device  to  a  low-resistance  state  (LRS).  In  this  device,  the
Ag  filaments  are  thin  and  unstable  due  to  the  small  amount
of Ag ions. Spontaneous rupture of the filaments occurs imme-
diately  when Vappl goes  below Vhold,  which  turns  the  device
back  to  HRS.  In  this  process,  the  Ag  atoms  form  clusters  on
the  trace  of  filaments.  Owing  to  the  highly  ordered  Ag  NDs,
Ag  filaments  tend  to  form  at  the  same  positions  and  the
formed  filaments  would  have  similar  morphology,  in  differ-
ent  operation  cycles  or  different  devices. Fig.  2(c) shows  the
typical current–voltage (I–V) curve of the Ag NDs TS device un-
der voltage sweeps between 0 and 1 V. This device exhibits a
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Fig. 2. (Color online) (a) TEM image of the Ag NDs TS device. (b) Schematic illustration of the threshold switching process in the device. (c) Typic-
al current–voltage (I–V) curves for the Ag NDs TS device. (d) Cumulative probability of Vth and Vhold distributions for the Ag NDs TS device. (e) En-
durance test of the Ag NDs TS device with over 108 cycles. (f) Measured oscillation waveform of the oscillation neuron.
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low  leakage  current  less  than  1  pA  and  large  selectivity  over
108. The Vth and Vhold of Ag NDs TS device are 0.6 and 0.2 V, re-
spectively,  which  are  carefully  tuned  to  work  with  the  RRAM
synapse. In order to evaluate the uniformity of the Ag NDs TS
device, the distributions of Vth and Vhold are analyzed, and the
cumulative  probability  of Vth and Vhold is  shown  in Fig.  2(d).
The coefficient  of  variation is  defined as CV = σ/μ to evaluate
the variation, where μ and σ are the mean and standard devi-
ation,  respectively.  This  Ag  NDs  TS  device  exhibits  excellent

uniformity  (CV <  10%)  compared  to  other  TS  devices  based
on  ECM  filaments[24].  The  endurance  test  of  the  Ag  NDs  TS
device  is  shown  in Fig.  2(e).  In  this  measurement,  the  device
is  repeatedly  turned  on  with  SET  pulses  of Vset =  1  V  and
tset =  10 μs,  and  then  relaxed  to  the  off  state,  which  is  read
with  a  small  pulse  of Vread =  0.1  V  and tread =  10 μs.  The  on-
state  current  (Ion)  is  limited  to  10 μA.  It  is  found  that  the  Ag
NDs  TS  device  exhibits  a  high  endurance  of  over  108 cycles.
To  implement  an  oscillation  neuron,  we  connect  the  Ag  NDs
TS device  in  parallel  with  a  load capacitance  (CL)  and then in
series  with a  load resistor  (RL)  following the circuit  configura-
tion in Fig. 1(b). Fig. 2(f) shows the measured oscillation wave-
form  of  the  neuron  when RL =  50  kΩ, CL =  750  pF  and Vin =
1 V. The test result shows that this oscillation neuron can out-
put  a  continuous  oscillation  signal,  when Vin, RL and CL are
fixed.  In  addition,  the  Ag  NDs  TS  oscillation  neuron  shows  a
certain time delay before its  stable oscillation,  which leads to
a higher Vout in the first peak. It  is owing to the turn-on delay
time of the TS device[24]. The higher first peak may have an ad-
verse  effect  on  the  synaptic  weight  precision  by  distorting
the  oscillation  waveform,  which  can  be  minimized  by  further
improving the TS device switching speed.

More systematic studies on the oscillation neuron charac-
teristics  are performed as shown in Fig.  3. Fig.  3(a) shows the
oscillation  waveforms  at  different  input  pulse  voltages  when
RL =  50  kΩ  and CL =  750  pF.  The  oscillation  frequencies  are
31.6, 40.2, 46.9 and 51.4 kHz for Vin = 1, 1.2, 1.4, and 1.6 V, re-
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Fig. 3. (Color online) (a) Oscillation waveforms of the oscillation neuron with different Vin when RL = 50 kΩ, CL = 750 pF. (b) The oscillation fre-
quency as a function of Vin. (c) Oscillation waveforms of the oscillation neuron with different RL when Vin = 1.2 V, CL = 750 pF. (d) The oscillation fre-
quency as a function of RL.

 

106

F
re

q
u

e
n

cy
 (

H
z)

Array size (n)

105

104

103

1 2 4 8 16 32 64 128 256

Vin = 1 V
CL = 750 pF
Vth = 0.6 V
Vhold = 0.2 V

on/off = 10

on/off = 102

on/off = 103

on/off = 105

on/off = 108

Fig.  4.  (Color  online)  The  oscillation  frequency  as  a  function  of  the
RRAM  crossbar  array  size  under  different  on/off  ratios  of  the  TS
device.

Journal of Semiconductors    doi: 10.1088/1674-4926/42/6/064101 3

 

 
Y J Li et al.: Oscillation neuron based on a low-variability threshold switching device ......

 



spectively.  It  is  found  that  the  oscillation  frequency  increases
as a function of the pulse amplitude of Vin as described in Eq.
(1),  and  shows  good  consistency  with  the  simulation  results,
as  shown  in Fig.  3(b).  Similarly, Fig.  3(c) shows  the  oscillation
waveforms  of  the  Ag  NDs  TS  devices  with  different RL values
(i.e.,  different  synaptic  weights)  when Vin =  1.2  V  and CL =
750  pF.  The  oscillation  frequencies  are  40.2,  30.5,  26.1  and
16.8  kHz  for RL =  50,  80,  100  and  150  kΩ,  respectively.  The
oscillation  frequency  decreases  as RL increases,  as  shown  in
Fig.  3(d).  The  test  results  indicate  that  this  Ag  NDs  TS  oscilla-
tion  neuron  exhibits  self-oscillation  behavior,  and  the  output
oscillation  frequency  can  be  used  to  sense  the  weight  of  the
RRAM  synapse  accurately  when  the  neuron  is  connected  to
the crossbar array.

Based on experimentally  derived device data,  a  model  of
the  RRAM  crossbar  array  is  developed  to  evaluate  synaptic
weights of different array sizes. Then SIPCE simulation is used
to  investigate  the  relationship  between  the  oscillation  fre-
quency  and  the  RRAM  crossbar  array  size.  In  order  to  simpli-
fy the simulation process,  the resistance RRAM device is fixed
at an intermediate resistance state (RL = 500 kΩ), and Vin is ap-
plied  to  all  the  word  lines  (WLs)  in  parallel.  The  results  are
shown in Fig. 4. If the on/off ratio of the TS device is less than
100,  only  a  limited  range  of  the  weighted  sum  could  meet
the  criterion  for  oscillation  (Roff > RL > Ron).  It  means  that  the
oscillation  neuron  can  only  be  used  for  small  crossbar  arrays
(<  16  ×  16).  With  the  increase  of  on/off  ratio,  the  oscillation

neuron can work with a wider range of load resistance. There-
fore,  the  weighted  sum  in  a  larger  RRAM  crossbar  array  can
be  successfully  identified  by  distinguishable  oscillation  fre-
quency.  As  in  the  case  of  our  present  Ag NDs TS  device  with
on/off  ratio > 108,  it  can work with a  large RRAM crossbar  ar-
ray of size > 128 × 128.

In  order  to  investigate  the  impact  of  TS  device  variation
on  the  oscillation  neuron,  the  oscillation  frequency  distribu-
tion  with  different CV under  the  same  experimental  condi-
tions is shown in Fig. 5(a). The uniformity of the TS device de-
teriorates with the increase of CV,  which leads to a large vari-
ation of the oscillation frequency under the same load condi-
tion. Fig.  5(b) shows  the  oscillation  frequency  distribution  of
different RL with  different  TS  devices.  Compared  with  the  Ag
thin film device (CV ~  30%)[23],  the output frequency distribu-
tion  of  the  Ag  NDs  TS  neuron  (CV ~  7%)  is  more  concen-
trated. Therefore, the oscillation neuron based on the Ag NDs
TS device can achieve higher accuracy for neuromorphic com-
puting.

In  order  to  further  analyze  the  impact  of  the  TS  device’s
uniformity  on  the  artificial  neural  network,  a  multi-layer  per-
ceptron  (MLP)  of  784  ×  200  ×  10  is  simulated  to  classify  the
handwritten  digits  in  the  Modified  National  Institute  of
Standards  and  Technology  (MNIST)  dataset,  as  shown  in
Fig.  6(a)[25].  The simulation results displayed in Fig.  6(b) indic-
ate that the increase in CV leads to a dramatic degradation of
the  recognition  accuracy,  especially  when CV >  15%.  There-
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fore,  the  oscillation  neuron  based  on  the  high  uniformity  Ag
NDs  TS  device  developed  in  this  work  is  beneficial  to  reduce
the network accuracy loss.

3.  Conclusion

In  conclusion,  we  have  demonstrated  a  reliable  oscilla-
tion  neuron  using  the  low-variability  Ag  NDs  TS  device  for
high-performance  neuromorphic  computing.  This  neuron  ex-
hibits  self-oscillation  behavior  at  low  applied  voltages  down
to 1 V. A systematic study on the oscillation characteristics re-
veals  that  the  oscillation  frequency  increases  with  the  ap-
plied  voltage  and  also  the  synaptic  conductance  connected
as  the  load  resistor.  The  high  uniformity  and  large  on/off  ra-
tio of the Ag NDs TS device enable the oscillation neuron to re-
duce the neural network accuracy loss (< 1%) and make it ap-
plicable  to  a  large-scale  RRAM  crossbar  array  (>  128  ×  128).
The  developed  oscillation  neuron  hence  has  great  potential
for future neuromorphic system applications.
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