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Abstract: The explosive growth of data and information has motivated various emerging non-von Neumann computational ap-
proaches  in  the  More-than-Moore  era.  Photonics  neuromorphic  computing  has  attracted  lots  of  attention  due  to  the  fascinat-
ing advantages such as high speed, wide bandwidth, and massive parallelism. Here, we offer a review on the optical neural com-
puting  in  our  research  groups  at  the  device  and  system  levels.  The  photonics  neuron  and  photonics  synapse  plasticity  are
presented. In addition, we introduce several optical  neural computing architectures and algorithms including photonic spiking
neural  network,  photonic  convolutional  neural  network,  photonic  matrix  computation,  photonic  reservoir  computing,  and
photonic reinforcement learning. Finally, we summarize the major challenges faced by photonic neuromorphic computing, and
propose promising solutions and perspectives.
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1.  Introduction

In the past few decades, the computing capability of con-
ventional  digital  computers  based  on  complementary  metal
oxide  semiconductor  (CMOS)  transistors  has  been  increased
greatly as predicted by Gordon Moore[1]. With the rapid devel-
opment of artificial intelligence (AI) and internet of things, an
exponential growth in the amount of data has led to urgent re-
quirements  for  high  efficiency  and  ultralow  power  consump-
tion for the data-centric applications. In a standard digital com-
puter  based  on  the  von  Neumann  architecture,  the  memory
and processor are physically separated. Significant data move-
ment  between  memory  and  processor  is  costly  in  terms  of
time  and  energy  in  today’s  von  Neumann  systems.  Mean-
while, Moore’s law has been slowing down significantly in re-
cent years[2]. Thus, innovative non-von Neumann computation-
al approaches are highly desired in the More-than-Moore era.

The human brain,  which is  believed to be the most com-
plex  intelligent  system  in  the  universe,  exhibits  ultralow

power  consumption,  massive  parallelism,  robust  fault  toler-
ance,  self-adaptation,  and  self-learning  ability.  The  architec-
ture  of  the  human  brain  differs  from  that  of  a  digital  com-
puter.  Generally,  a  biological  neural  network  is  composed  of
roughly 1011 neurons and 1015 synapses,  and is normally rep-
resented  by  spiking  neural  network  (SNN)[3].  In  the  brain,  the
information  is  represented  and  transmitted  by  action  poten-
tial,  i.e.,  spike[4, 5].  The  spike  signals  transmitted  between  the
neurons connected through synapses with synaptic plasticity.
Spike  timing-dependent  plasticity  (STDP)  is  one  of  the  most
widely studied synaptic plasticity mechanism[6−8].

Inspired  by  the  network  architecture  and  principles  of
the  human  brain,  the  neuromorphic  computing  system  has
drawn tremendous attention in the next generation of comput-
ing technology.  Nowadays,  both the digital  and analog hard-
ware paradigms based on the CMOS technologies have been
fully  developed[9, 10].  In  addition,  extensive  efforts  have  also
been made to mimic  the functions of  biological  neurons and
synapses  by  various  electronic  neuromorphic  devices.  In  re-
cent  years,  remarkable  progress  has  been made from materi-
als to devices, circuits, and architectures in the field of electron-
ic  neuromorphic  computing[9−12].  However,  the  operation
speed  of  the  electronic  neuromorphic  computing  system  is
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restricted  due  to  the  bandwidth–connection  density  trade-
off[13].

As  a  complementary  approach,  the  photonics  platform
has  gained  increasing  attention  for  hardware  neuromorphic
computing,  due  to  the  fascinating  advantages  such  as  high
speed, wide bandwidth, and massive parallelism. The photon-
ics  neuromorphic  computing  shows  great  promise  in  the  ap-
plications  which  require  low  latency,  low  power  consump-
tion,  and  high  bandwidth.  Nevertheless,  the  photonics  neur-
omorphic computing is still in its infancy compared to the elec-
tronics counterpart. Nahmias et al. proposed a photonic leaky
integrate-and-fire  (LIF)  neuron  based  on  vertical-cavity  sur-
face-emitting  lasers  with  saturable  absorber  (VCSELs-SA)[14].
With  the  help  of  Yamada  model,  the  neuron-like  spiking  dy-
namics  was  reproduced  in  the  VCSEL-SA  model.  On  the  oth-
er  hand,  there  are  also  some  proposed  photonics  synapses.
For  instance,  Gholipour et  al.  developed  photonic  synapses
based  on  amorphous  gallium  lanthanum  oxysulphide  mi-
crofibers[15].  Cheng et  al.  fabricated  and  demonstrated  an
on-chip  photonic  synapse  via  phase-change  materials  com-
bined  with  integrated  silicon  nitride  waveguide[16].  Specific-
ally,  Feldmann et  al.  implemented  an  all-optical  SNN  with
self-learning capacity based on a nanophotonic chip, and suc-
cessfully  demonstrated  supervised  and  unsupervised  learn-
ing  in  the  optical  domain[17].  For  more  detail  on  the  spiking
neurons  and  synapses  based  on  photonic  devices,  please
refer to Refs. [13, 18–21].

Generally,  the  photonics  neurons  and  synapses  are  stud-
ied separately with different devices,  therefore leading to the
need for further developing high-performance photonics neur-
on and synaptic devices. In addition, algorithm is another key
issue that limits the progress of photonic SNN development.

Herein,  we  review  some  recent  progress  on  the  devices,
architecture,  and  algorithm  of  photonic  neural  computing  in
our research groups.  First,  we introduce the photonic neuron
at the device level. Then, we review the progress on the pho-
tonic STDP. Subsequently, we focus on several photonic neur-
al networks at the system level. Finally, we summarize the chal-
lenges  and  opportunities  faced  by  photonic  neural  comput-
ing, and propose promising solutions and perspectives.

2.  Photonic neuron

Photonic devices operating in the excitable regime are dy-
namically  analogous  to  the  biological  neurons  exhibit  spik-
ing dynamics.  While the operating speed of photonic devices
are many orders of magnitude faster than their biological coun-

terparts.  There  are  various  optical  neurons  reported  experi-
mentally and numerically in recent years[14, 22−39]. Here, we fo-
cus  on  the  lasers-based  optical  neuron.  Some  recent  pro-
gress on the optical neurons based on conventional VCSEL, VC-
SEL-SA,  as  well  as  distributed  feedback  laser  (DFB)  are  re-
viewed.

2.1.  Optical neuron based on VCSEL-SA

A  VCSEL-SA  can  be  employed  as  a  photonics  neuron  be-
cause  it  possesses  the  excitability  property  behaves  analog-
ously  to  the  LIF  neuron  model.  The  excitability  properties
and the spike latency of the VCSELs-SA are shown in Fig. 1[39].
Fig.  1(a) shows  that  the  VCSEL-SA  could  generate  excitatory
neuron-like  spike  and  realize  the  temporal  encoding.  The
spike latency, defined as the interval between the start time of sti-
mulus  pulse  and  the  timing  corresponding  to  the  maxi-
mum value of spikes generated by VCSEL-SA, varied with differ-
ent  stimuli  strengths  and  central  timings.  As  presented  in
Fig.  1(b),  when  the  stimuli  pulse  power  exceeds  a  threshold
value,  the  VCSEL-SA  can  emit  a  spike.  In  addition,  such
threshold  behavior  can  be  tuned  by  different  bias  current.
Fig.  1(c) indicated  that  the  spiking  timing  can  be  continu-
ously adjusted by different stimulus strength.

Note,  the  inhibitory  dynamics  is  also  important  for  the
neural information processing. We further revealed the inhibit-
ory dynamics based on the polarization mode competition ef-
fect  in  a  VCSEL-SA  with  two  coexisting  polarization-resolved
modes[33]. The schematic diagram of inhibitory photonic neur-
on  based  on  VCSEL-SA  is  presented  in Fig.  2(a).  The  inhibi-
tion  behavior  was  characterized  by  the  spike  amplitude  and
first spike latency. As presented in Fig. 2(b), the neuron-like in-
hibition  behavior  could  be  achieved  thanks  to  the  polariza-
tion  mode  competition.  Furthermore,  as  presented  in Fig.  3,
such  inhibition  dynamics  could  also  be  used  to  realize  the
spike-based XOR in a single step with a single VCSEL-SA[34]. Ad-
ditionally,  the  XOR  operation  was  also  achieved  successfully
with two pseudo-random return-to-zero sequences.

2.2.  Optical neuron based on VCSEL

The VCSELs have become promising candidates for artifi-
cial neuronal models due to the polarization switching or optic-
al injection induced nonlinear dynamics. Recently, the control-
lable  and  reproducible  excitation  and  inhibition  behaviors  at
sub-nanosecond  speeds  for  a  commercially  available  VCSEL
subject to the successive external  stimulus have been experi-
mentally and theoretically demonstrated[22, 24−30, 36].  Under an
external  injection  characterized  by  a  constant  optical  power
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Fig. 1. (Color online) (a) Temporal output of the spike encoding based on the modeling-based photonic neuron. (b) Threshold-like response and
(c) spike latency property of the modeling-based photonic neuron. © [2020] IEEE. Reprinted with permission from Ref. [39].
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level  with  sudden  perturbation  in  the  form  of  short  power
drops, the VCSEL-neuron can transmit from the injection-lock-
ing  state  into  the  unlocking  state  after  the  arrival  of  the  per-
turbation  due  to  the  broken  equilibrium  and  a  spiking  event
is triggered. Moreover, the number of fired spikes can be con-
trolled  through  adjusting  the  temporal  duration  of  incoming
perturbations,  as  shown  in Figs.  4(b1)–4(b5)[26, 28].  Also,  un-
der the external injection in the form of a constant level with
sudden power raises for increasing perturbation duration, the
spiking  regime  could  be  entirely  suppressed  during  the  per-
turbation  period,  as  shown  in Figs.  4(c1)–4(c5)[30].  Moreover,
the  communication  of  excitatory  and  inhibitory  spiking  sig-
nals at sub-nanosecond speeds between two coupled VCSEL-
neurons  have  also  been  demonstrated  experimentally  and
numerically[26−28, 30].

2.3.  Optical neuron based on DFB

The  DFB  exhibits  similar  processing  characteristics  with
the graded-potential-signaling-based neuron observed in the
nervous system, such as temporal integration and pulse facilita-
tion. A commercially available DFB was demonstrated to play
a role in three applications of neuromorphic information pro-
cessing  for  pattern  recognition,  single-wavelength  STDP  im-
plementation, and sound azimuth measurement, as shown in
Fig.  5[37].  To  further  investigate  the  spatiotemporal  pro-
cessing potential  of  DFB neurons,  a network architecture was
proposed to be equipped with N tunable weights on each in-
put  branch for  complex  pattern  recognition[38].  The schemat-
ic  of  the network  is  illustrated by Fig.  6(a).  Successful  pattern
recognition  was  demonstrated  among  the  input  sets  when

N = 3 and 4, as given in Figs. 6(b) and 6(c), respectively. Addi-
tionally,  the  network  can  learn  a  target  pattern  by  the  assist-
ance  of  the  STDP  learning  module  also  realized  by  a  DFB,
which is convenient for the potential integration.

3.  Photonic synaptic plasticity

In  brains,  synaptic  plasticity  is  believed  to  be  closely  re-
lated  to  the  learning  and  memory.  In  this  section,  we  review
the  emulation  of  the  synaptic  function  based  on  the  semi-
conductor optical amplifier (SOA) and vertical-cavity semicon-
ductor  optical  amplifier  (VCSOA).  The  photonic  STDP  is  fo-
cused on.

3.1.  Photonic STDP based on SOA

STDP  is  a  long-term  synaptic  plasticity  observed  experi-
mentally  in  biological  synapses  by  Bi  and  Poo[6].  Thanks  to
the cross-gain modulation in SOA, the implementation of optic-
al  STDP  scheme  based  on  SOA  was  demonstrated[40−43].  The
result  in Fig.  7 shows  that  the  STDP  curve  is  similar  to  that
measured  in  biological  experiments,  but  at  a  much  faster
time  scale[41].  Moreover,  the  height  and  width  of  the  meas-
ured  STDP  learning  window  decrease  as  the  SOA  current  in-
creases.

3.2.  Photonic STDP based on VCSOA

Note that, for the photonic STDP based on SOA, the opera-
tion current of SOA is relatively high, i.e., several tens of or hun-
dreds  of  mA.  When  operating  below  threshold,  the  VCSEL
can also be regarded as VCSOA. The photonic STDP based on
the  VCSOA  was  proposed  and  demonstrated  experimentally
and  numerically[44].  The  schematic  diagram  is  illustrated  in
Fig.  8(a).  In  our  experiment,  the  VCSOA  was  biased  at
1.42 mA, the optical pulse power (width) was 70 μW (100 ps).
The  energy  consumption  for  biasing  the  VCSOA  and  trigger-
ing  the  STDP  function  could  be  estimated  as  several  femto-
joules per spike, which is much lower than the microelectron-
ic  counterparts[45, 46].  The  experimental  measurements  are
shown  in Fig.  8(b).  When  two  optical  pulses  with  different
time interval  were injected into the VCSOA,  the lagged pulse
experienced  different  gain  due  to  the  carrier  depletion
caused by the leading pulses. With the increase of time inter-
val,  the  output  power  of  the  lagged  pulse  increased  gradu-
ally. The numerical results are presented in Figs. 8(c) and 8(d),
which  agree  well  with  the  experimental  measurements.
Fig.  8(e) shows  that  the  STDP  curve  can  be  achieved  in VC-
SOA  with  low  bias  current.  The  calculated  STDP  window  was
about  1  ns,  indicating  that  the  STDP  operation  rate  was
nearly 1 GHz, which is higher than the conventional electron-
ics[45, 46].  Furthermore,  such  photonic  STDP  curve  can  also  be
achieved in real-time with a single VCSEL with dual-polarized
pulsed optical injection[47].

4.  Photonic neural computing

In this section, we review the progress on the optical neur-
al  computing  at  the  system  level.  We  consider  several  net-
work  architectures  and  algorithms  including  photonic  SNN,
photonic  convolutional  neural  network  (CNN),  photonic  mat-
rix  computation,  photonic  reservoir  computing  (RC),  and
photonic reinforcement learning.

4.1.  Photonic SNN

To  design  the  algorithm  for  a  photonic  SNN,  we  pro-
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posed  a  novel  framework  of  a  fully  VCSEL-based  all-optical
SNN and developed a self-consistent unified neuron-synapse-
learning  model  that  allows  a  complete  learning-to-inference

workflow[35, 39].  The  unsupervised  learning  was  implemented
in  a  photonic  SNN consisting of  VCSELs-SA[35].  The  input  pat-
tern is encoded into spikes at different timings by different VC-
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Fig. 4. (Color online) (a) The experimental setup for spiking firing and inhibition of VCSEL-based neuron. © [2018] IEEE. Reprinted with permis-
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SELs-SA.  As  shown in Fig.  9,  the photonic  SNN with  photonic
STDP enables the POST neuron to spike at the first  spike tim-
ing  of  the  input  pattern  in  an  unsupervised  manner.  In  addi-
tion,  supervised  learning  was  also  realized  in  a  photonic
SNN[39, 48].  As  illustrated  in Fig.  10,  a  supervised  spike  se-
quence  learning  task  was  implemented  in  a  two-layer  fully-
connected  photonic  SNN  consisting  of  excitable  VCSELs-
SA[48].  In  this  photonic  SNN,  the  classical  remote  supervised
method  (ReSuMe)  learning  algorithm  based  on  the  photonic
STDP is adopted to train the POST to fire the desired spike se-
quence. Fig.  10(c) illustrates  the  learning  process  in  a  typical
run.  The  corresponding  spike  sequence  distance  (SSD)  as  a

function  of  the  learning  epoch  shown  in Fig.  10(e) indicates
that  the  learning  process  was  convergent.  Therefore,  the
photonic  SNN  successfully  reproduced  a  desirable  output
spike  sequence  in  response  to  a  spatiotemporal  input  spike
pattern  by  means  of  the  iteration  algorithm  to  update  syn-
aptic weights continuously.

The spatiotemporal pattern classification based on super-
vised  learning  was  further  demonstrated  based  on  the  spati-
otemporal design of the photonic SNN shown in Fig. 11(a)[39].
Optical character numbers were trained and tested by the pro-
posed  SNN.  As  shown  in Fig.  11(b),  the  network  was  trained
with  a  clean  character  image,  and  then,  the  inference  was
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Fig. 5. (Color online) (a) The experimental setup for graded-potential-signaling-based neuromorphic processing applications with the optical neur-
on  based  on  DFB,  including  (b,  c)  pattern  recognition,  (d,  e)  single-wavelength  implementation  of  STDP,  and  (f,  g)  sound  azimuth
measurement[37]. Reproduced with permission. © 2020 Springer Nature.
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Fig.  6.  (Color  online)  (a)  The DFB-based spatiotemporal  pattern recognition network with STDP learning module.  The network output for  pat-
terns with (b) 3 and (c) 4 input branches, respectively. Reprinted with permission from Ref. [38]. © The Optical Society.
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tested with a set  of  noisy patterns.  The results  show that  this
all-optical  SNN  can  recognize  ten  numbers  by  a  supervised
learning  algorithm.  Besides,  the  training  convergence  can  be
optimized by using different bias current of VCSOA as presen-
ted  in Fig.  11(c).  As  illustrated  in Fig.  11(d),  the  accuracy  rate
of  the  trained  network  was  robust  to  small  noise  strength  of
the optical digital character. Δto

In  addition,  sound  azimuth  detection  was  emulated  in  a
fully  connected  photonic  SNN  consisting  of  VCSELs-SA[49].
Fig.  12(a) shows  the  schematic  diagram  of  the  proposed
photonic  SNN  which  composed  of  two  presynaptic  neurons
(PREs)  considered  as  the  ear  sensors,  and  two  postsynaptic
neurons  (POSTs).  The  difference  between  the  precise  spike
timing  of  two  POSTs  ( )  was  used  as  an  indication  of  the
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Fig. 8. (Color online) (a) Schematic diagram of photonic STDP based on VCSOA. (b) The experimental measured output pulse train correspond-
ing to  the  input  pulse  pairs  with  different  time interval.  (c)  Simulated input  pulse.  (d)  Simulated output  pulse.  (e)  The  calculated STDP curve.
Pulse 1 (Pulse 2): the optical pulse injection beam; VODL: variable optical delay line, OC: optical coupler; Circulator: optical circulator; VCSOA: ver-
tical-cavity semiconductor optical amplifier. Bias and TEC: The bias current and temperature controller for VCSOA;  in the box means a band-
pass filter. © [2018] IEEE. Reprinted with permission from Ref. [44].
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Δto
Δti

sound  azimuth.  The  dependence  of  on  the  relative  tim-
ing of  the  spikes  of  two PREs  ( )  was  revealed as  illustrated
in Fig.  12(b).  Furthermore,  the effective detection range were
identified for different weights as shown in Fig. 12(c). The res-
ults  demonstrated  that  the  proposed  photonic  SNN  used  for

sound  azimuth  detection  was  biologically  plausible,  and  has
higher resolution compared with the biological system.

Besides,  the  winner-take-all  mechanism  was  also  achie-
ved successfully in the photonic SNN consisting of VCSELs-SA
as  shown  in Figs.  13(a) and 13(b)[50].  Two  information  pro-
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Fig. 11. (Color online) (a) Architecture of the proposed all-optical SNN. (b) An example of a pattern classification task. The network is trained with
(b1) a clean character image, and then, the inference was tested with a set of (b2) noisy patterns. (c) Comparison of convergence performance
for supervised learning with different I of VCSOA. (d) Accuracy rate of the trained network as a function of the noise strength of the optical digit-
al character. © [2020] IEEE. Reprinted with permission from Ref. [39].
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Fig. 13. (Color online) (a) Schematic diagram of WTA based on VCSELs-SA. (b) The output of VCSELM,A,B-SA for WTA mechanism. (c) Schematic dia-
gram of pattern recognition based on the WTA machine. (d) The inputs and results of pattern recognition. (e) Schematic diagram of max-pool-
ing operation. (f) The results of max-pooling operation. © [2020] IEEE. Reprinted with permission from Ref. [50].
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cessing  tasks  including  pattern  recognition  and  max-pooling
operation  were  performed  as  shown  in Figs.  13(c)–13(f).  The
results hold great promise for the development of energy-effi-
cient and high-speed photonic SNN.

Furthermore,  associative  learning  and  forgetting  pro-
cesses were emulated in a photonic SNN[51]. The schematic dia-
gram  of  the  photonic  associative  learning  network  is  shown
in Fig.  14(a). Fig.  14(b) shows that  both the  associative  learn-
ing and forgetting processes could be achieved thanks to the
photonic STDP rule.  The pattern recall  based on the associat-
ive  learning  was  further  demonstrated  in  the  photonic  SNN
presented in Fig. 14(c). Complete pattern and incomplete pat-
tern of number 8 are shown in Figs. 14(d1) and 14(d2), respect-
ively. Fig. 14(d3) [Fig. 14(d4)] shows the initial output (final out-

put)  of  number  8  before  [after]  associative  learning  process.
The  evolution  of  synapse  weight  corresponding  to  the  pat-
tern  recall  of  number  8  is  presented  in Fig.  14(e1).  Without
loss of generality, Figs. 14(d5, d6, d7, d8) and 14(e2) show the
pattern  recall  process  of  number  5  and  the  corresponding
weight  evolution.  Obviously,  the  incomplete  pattern  can  be
recovered  and  pattern  recall  was  realized  based  on  the  pho-
tonic associative learning network.

4.2.  Optical convolutional neural network

The  optical  implementation  of  CNN  with  fast  operation
speed and high energy efficiency is  appealing due to its  out-
standing feature extraction ability[52−54]. The high-accuracy op-
tical  convolution  unit  (OCU)  with  cascaded  acousto-optical
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Fig. 14. (Color online) (a) Schematic diagram of associative learning and forgetting processes based on VCSELs and STDP. (b) The emulation of as-
sociative learning and forgetting processes. (c) Schematic diagram of pattern recall. (d) Complete and incomplete patterns of number 8 and 5 re-
spectively, visualization initial and final outputs of number 8 and 5 respectively. (e) The change processes of synaptic weight for number 8 and
number 5. © [2020] IEEE. Reprinted with permission from Ref. [51].
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Fig. 15. (Color online) (a) The architecture of the optical convolution unit (OCU) by modulator arrays. (b) The transmission rate versus the modula-
tion voltage of the single modulator. (c) An illustration of the serialization method. (d) The convolution results of MNIST-handwritten numbers
and Fashion-MNIST data sets. Reprinted with permission from Ref. [52]. © The Optical Society.
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modulator  arrays  is  illustrated  in Figs.  15(a)–15(c)[52].  The  in-
put data and convolutional kernel were fed into the modulat-
or  arrays  to  carry  out  the  operation.  With  the  hardware  re-
using  scheme,  complicated  CNNs  can  be  conducted  by  the

units.  In Fig.  15(d),  convolution  results  on  the  digital  com-
puter and the proposed OCU are shown to support the feasi-
bility.

A more complete optical CNN implementation incorporat-
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Fig. 16. (Color online) (a) The conceptual layout of the optical patching scheme with optical delay lines and wavelength-division-demultiplexing
(WDM). (b) The experimental setup of the proposed scheme. Delayed copies of the input waveforms corresponding to (c, d) digit 2 and (e, f) 4, re-
spectively. Reprinted with permission from Ref. [53]. © The Optical Society.
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Fig. 17. (Color online) Optical matrix computation and the application for polarization processing. (a) Special-purpose processors for optical mat-
rix computing and polarization processing respectively. (b) Self-configuring example for the smart processors. © [2020] IEEE. Reprinted with per-
mission from Ref. [55].
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ing  patching  scheme  was  demonstrated  in[53].  In Figs.  16(a)
and 16(b),  the  introduction  of  optical  delay  lines  to  execute
data manipulations promises low latency and power consump-
tion.  Meanwhile,  wavelength-division-demultiplexing  (WDM)
was  used  to  improve  the  computational  capacity  by  parallel
wavelength channels. Illustrated by Figs. 16(c)–16(f), the serial-
ized input waveforms of digit 2 and 4 were successful to form
delayed  copies  as  the  experimental  demonstration  of  optical
patching.  Consequently,  the  scale  of  input  modulator  arrays
was largely cut down.

4.3.  Optical matrix computation

Matrix computations form the most widely used computa-
tional tools in science and engineering, and are the basic com-
ponents of neural networks for deep learning. While the elec-
tronic matrix computations suffer from limited bandwidth. Al-
ternatively,  the  optical  methods  offer  a  high-speed  and  low-

loss  solution.  Optical  matrix  computation  is  also  essential  in
the optical neural computing.

The  Mech-Zehnder  interferometer  (MZI)  mesh  had  been
demonstrated for optical  matrix computation[55, 56].  As shown
in Fig.  17(a),  the  optical  matrix  computing  processor  can
perform  fundamental  matrix  computations  including XB = C,
AB = X and AX = C,  where A, B, C are  known matrices,  and X
is  the  matrix  to  be  solved. Fig.  17(b) shows  an  example  to
self-configure  a  transmission  matrix.  An  optical  PageRank  al-
gorithm was further demonstrated based on the matrix com-
puting  processor.  Furthermore,  the  optical  matrix  computa-
tion  core  could  be  applied  for  polarization  processing[57, 58].
The micrograph of chip is presented in Fig. 17(a) and some ex-
perimental results are depicted in Fig. 18. The polarization pro-
cessor could implement multiple polarization processing func-
tions,  including  polarization  multiple-input-multiple-output
(MIMO)  descrambler,  polarization  controller  and  polarization
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Fig. 18. (Color online) Experimental results for photonic polarization processor chip. (a) Polarization MIMO descrambler. (b) Polarization control-
ler. (c) Polarization analyzer. Reprinted with permission from Ref. [58]. © The Optical Society.
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analyzer,  which  are  the  basic  building  blocks  of  polarization
processing. More functions could be realized by using an addi-
tional  two-dimensional  output  grating.  A  numerical  gradient
descent algorithm was employed to self-configure and self-op-
timize these functions. Recently, the 4-port general linear net-
work  has  been  applied  for  multi-channel  optical  switching,
MIMO  descramble  and  tunable  filter  by  learning  strategy[59].
Fig.  19 shows  the  typical  demonstration  of  the  three  func-
tions  respectively.  The  works  suggested  great  potential  for
chip-scale  reconfigurable  and  fully  programmable  photonic
computing  and  optical  signal  processors  with  artificial  intelli-
gent algorithm.

4.4.  Photonic reservoir computing

RC  is  a  brain-inspired  computational  paradigm  origin-
ated from recurrent neural network suitable for time series pro-
cessing[60−62].  In  the  training  process  of  RC  systems,  only  the
output  weights  are  modified,  while  the  input  and  reservoir
weights are fixed randomly. Specifically, the time-delay RC sys-
tem  based  on  a  single  nonlinear  node  with  delay  feedback
has  been  demonstrated  in  electronic,  optoelectronic,  and  all
optical  delay  systems[63−65].  In  recent  years,  we  have  also
made  some  attempts  to  the  time-delay  RC  via  photonics  ap-
proaches[66−70].

An  attempt  at  the  time-delay  RC  systems  based  on  VC-
SEL is  that  we proposed a  four-channels  RC system based on
polarization  dynamics  in  mutually  coupled  VCSELs[67].  As
shown in Fig. 20(a),  four channels RC were realized in two or-
thogonal  polarization modes of  two VCSELs.  The outputs  ob-
tained  from  the  four  channels  were  combined  into  one  out-
put  for  post-processing  as  displayed  in Fig.  20(b).  The  four-
channels  RC  could  produce  comparable  prediction  perform-
ance  but  at  a  faster  information  processing  rate  compared
with the one-channel RC as shown in Fig. 20(c).

We  also  have  some  attempts  at  the  time-delay  RC  sys-
tem based on semiconductor nanolaser (SNL),  due to the po-
tential of realizing photonic integrated RC system[69, 70]. For ex-
ample,  a high-speed neuromorphic SNL-based RC system un-
der electrical modulation was proposed[69]. The conceptual sc-
heme  of  the  SNL-based  RC  system  is  presented  in Fig.  21(a).
The  numerical  simulation  results  are  shown  in Fig.  21(b),
which show that  a  larger  Purcell  factor F and larger  spontan-
eous  emission  coupling  factor β could  extend  the  range  of
high prediction performance of SNL-based RC system.

4.5.  Photonic reinforcement learning

Reinforcement  learning  is  also  a  fundamental  learning
mechanism  inspired  by  the  brain[71].  In  reinforcement  learn-
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Fig.  19.  (Color  online)  Experimental  results  for  self-configuring  optical  signal  processor.  (a)  Multichannel  optical  switching.  (b)  Optical  MIMO
descramble. (c) Tunable optical filter. Reprinted with permission from Ref. [59]. © 2017 American Chemical Society.
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ing, an agent learns from interaction process with the environ-
ment,  aims  to  maximize  the  benefits  via  certain  learning
strategies. Decision-making is a basic component of reinforce-
ment  learning,  which  requires  the  agent  to  make  decision
quickly and accurately in an uncertain and dynamically chan-
ging environment[72]. Photonic decision making provides pos-
sibilities in applications of ultrafast processing.

The  photonic  reinforcement  learning  based  on  laser
chaos  with  time-delay  signature  concealment  was  demon-
strated by introducing a phase-modulated Sagnac loop in mu-
tually  delay-coupled  semiconductor  lasers  (PMSL-MC)[73],  as
shown  in Fig.  22.  The  multi-armed  bandit  problem  was
solved  in  parallel  with  the  utilization  of  dual-channel  chaotic
signals.  The  comparison  between  the  PMSL-MC  system  and

conventional  mutually-coupled  semiconductor  lasers  system
(CSL-MC) further demonstrated that the system with dual-chan-
nels  chaotic  signals  can  make  decision  in  parallel  and  con-
verge faster.

A further  parallelized scheme for  photonic  decision mak-
ing  was  experimentally  demonstrated  in  a  globally-coupled
chaotic  semiconductor  lasers  network  as  shown  in Fig.  23[74].
Triple-channel  chaotic  signals  were  applied  to  solve  an  8-
armed  bandit  problem  with  a  parallel  architecture  given  in
Fig.  23(b).  In Figs.  23(c) and 23(d),  the  results  suggested  that
the  chaotic  signals  with  better  time  delay  signature  conceal-
ment  generally  contributed  to  better  decision-making  per-
formance.  The  adaptability  of  the  strategy  to  environmen-
tal  change  was  further  demonstrated  as  in Fig.  23(e).  More-
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over,  such  a  scheme  was  also  scalable  as  demonstrated  in
Fig.  23(f),  where  both  8-armed  and  16-armed  bandit  prob-
lems were solved successfully.

5.  Conclusion and outlook

We  have  reviewed  some  representative  photonic  neural
computing  in  devices,  architectures,  and  algorithms.  To  fur-

ther  pave  the  way  of  photonics  neuromorphic  computing,
there are still  some problems that need to be addressed.  The
optical  neuron  and  synapse  are  generally  designed  separ-
ately,  which  results  in  the  different  time  scales.  The  optical
neuron  and  synapse  with  similar  time  scale  have  to  be  fur-
ther developed to meet up the requirements of on-line train-
ing.  The  design  of  photonic  neural  computing  system  on  a
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Fig. 22. (Color online) (a) Experimental setup of a dual-channels chaotic system with a phase-modulated Sagnac loop. (b) Architecture for rein-
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Fig. 23. (Color online) (a) The experimental setup of three globally coupled DFB lasers. (b) A parallel architecture for photonic decision making of
8-armed bandit problem. (c, d) CC and delay concealment as a function of attenuation. (e) The adaptability of the strategy to dynamically chan-
ging environment. (f) The scalability to 16-armed problem. Reprinted from Ref. [74]. Copyright (2020) with permission from Chinese Laser Press.
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chip  still  requires  further  exploration.  Further  attempts  have
to  be  made  to  reduce  the  area  and  increase  the  integration
level.

Note, at the present stage, we think it may be more realist-
ic  to  adopt  an ex-situ training  approach  for  the  training  pro-
cess of the photonic neural network. Nevertheless, it is prom-
ising  to  build  an  integrated  hardware  photonic  neural  net-
work for realizing the inference process. At present, the optic-
al  neuron  based  on  spiking  laser  could  be  readily  realized
with III–V compound semiconductor technology such as indi-
um  phosphide  (InP)  and  gallium  arsenide  (GaAs),  while  the
weight  array  could  be  successfully  implemented  with  silicon
waveguides or resonators. It is believed that the rapid develop-
ment  of  photonic  integrated  technologies  will  lead  to  a
bright future for the field of photonic neural computing. For in-
stance, a hybrid III–V and silicon photonics platform may be a
candidate  to  realize  an  integrated  hardware  photonic  neural
network  for  inference  task[75−84],  in  which  spiking  lasers  array
in  a  bonded  InP  layer  could  be  interconnected  via  a  silicon
layer[13, 78].
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