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Abstract: Memristors  are  now  becoming  a  prominent  candidate  to  serve  as  the  building  blocks  of  non-von  Neumann  in-
memory computing architectures. By mapping analog numerical matrices into memristor crossbar arrays, efficient multiply accu-
mulate operations can be performed in a massively parallel fashion using the physics mechanisms of Ohm’s law and Kirchhoff’s
law.  In  this  brief  review,  we  present  the  recent  progress  in  two  niche  applications:  neural  network  accelerators  and  numerical
computing units,  mainly focusing on the advances in hardware demonstrations. The former one is regarded as soft computing
since it can tolerant some degree of the device and array imperfections. The acceleration of multiple layer perceptrons, convolu-
tional  neural  networks,  generative  adversarial  networks,  and  long  short-term  memory  neural  networks  are  described.  The  lat-
ter  one  is  hard  computing  because  the  solving  of  numerical  problems  requires  high-precision  devices.  Several  breakthroughs
in memristive equation solvers  with improved computation accuracies are highlighted.  Besides,  other nonvolatile  devices with
the  capability  of  analog  computing  are  also  briefly  introduced.  Finally,  we  conclude  the  review  with  discussions  on  the  chal-
lenges and opportunities for future research toward realizing memristive analog computing machines.
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1.  Introduction

Against  the  backdrop  of  exploding  data  volumes  nowa-
days,  traditional  computing  architectures  are  facing  the  von
Neumann  bottleneck[1],  which  has  become  an  insurmount-
able  technical  obstacle  in  further  enhancing  the  perform-
ance  of  computing  systems.  Since  Moore's  Law[2] has  be-
come  difficult  to  keep  going,  the  benefits  to  memory  from
shrinking  transistor  sizes  are  not  significant,  resulting  in
memory  performance  gains  that  are  much  slower  than  pro-
cessor  speed,  the  so-called  "memory  wall"  that  hinders  per-
formance enhancement[3−6]. In terms of raging AI chip develop-
ment,  AI  relies on software algorithms and strong computing
power  in  the  cloud  to  achieve  greater  success,  and  is  cap-
able  of  performing  a  variety  of  specific  intelligent  processing
tasks.  But  encountering many challenges such as  power con-
sumption,  speed,  cost,  and  so  on,  there  is  still  a  huge  gap
from the era of the intelligent internet of everything. As a res-
ult, in-memory computing has drawn great attention[7−15].

In-memory  computing,  as  the  term  suggests,  builds  the
computation  directly  into  memory,  which  can  eliminate  the
large  amount  of  data  throughput  that  exists  between  the
memory  unit  and  the  computing  unit,  significantly  reducing
the  energy  consumption  generated  by  data  migration  and
data  access.  In-memory  computing  shows  great  potential  for
energy  saving  and  computing  acceleration  and  is  expected
to achieve high-density, low-power, massively parallel comput-

ing  systems.  Meanwhile,  this  kind  of  emerging  technology  is
still  facing  key  challenges  such  as  hardware  resource  reuse,
computing-in-memory unit design, and analog computing im-
plementation.

As  it  stands,  the  technical  paths  for  in-memory  comput-
ing can be categorized in two ways by taking the memory as
the  core.  One  is  to  design  circuits  and  architecture  based  on
traditional  memory,  which  is  usually  recognized  as  near-
memory  computing[16, 17],  such  as  IBM's  TrueNorth  chip[18],
Cambrian's  DaDianNao  chip[19],  Intel’s  Loihi  chip[20],  Tsinghua
University's  Tianjic  chip[21],  and  so  on.  These  emerging  in-
memory  computing  chips  are  all  based  on  traditional  SRAM
or  DRAM  but  show  great  improvement  in  energy  efficiency
and  computing  power.  Strictly,  the  computing  of  traditional
volatile  memories  is  not  physically  performed in  the memory
cell. Another hugely promising scheme, on the other hand, re-
quires the adoption of emerging non-volatile memories, includ-
ing  memristors[22],  phase  change  memories[23],  ferroelectric
memories[24],  and  spintronic  devices[25],  etc.  The  non-volatile
property  of  these  emerging  memories  can  naturally  integ-
rate  the  computation  into  memory,  translating  it  into  a
weighted  summation.  Except  digital  in-memory  logic  imple-
mentation,  these emerging devices are able to store multiple
bits of analog volume in principle, which has a natural advant-
age in hardware implementation of in-memory analog comput-
ing.  The  parallel  multiply  accumulate  (MAC)  capability  of
memory arrays  can greatly  improve the computing efficiency
of in-memory computing.

As  an  important  member  of  the  emerging  non-volatile
memory,  the  memristor  is  a  simple  metal–insulator–metal
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(MIM)  sandwich  structure  that  can  achieve  resistance  switch-
ing  (from  a  high  resistance  state  (HRS)  to  a  low  resistance
state (LRS))  under external  voltage biases.  Therefore,  memris-
tors  were  widely  used  as  resistive  random  access  memory
(RRAM,  HRS  for  logic  “0”,  and  LRS  for  logic  “1”)  in  the  early
stage  of  research.  In  this  short  review,  we  do  not  discuss  the
developments of high-performance memristors through mech-
anism characterization,  material,  and device engineering that
have been intensively  studied;  readers  are  referred to  several
comprehensive  reviews[26−28].  In  total,  memristors  have  been
evaluated  in  various  material  systems,  such  as  metal  oxides,
chalcogenides, perovskites, organic materials, low-dimension-
al  materials,  and  other  emerging  materials,  which  have  all
shown great potential in the mechanism and/or properties to
improve  device  performances.  Memristors  already  have
strong  competitiveness  in  terms  of  scalability  (2-nm  feature
size[29]),  operating  speed  (85  ps[30]),  and  integration  density
(8-layer 3D vertical integration[31]), etc. Since 2011, analog con-
ductance  characteristics  of  memristors  were  experimentally
demonstrated to realize synaptic plasticity, the basic biologic-
al  rule  behind  the  learning  and  memory  in  the  brain[32].  Un-
der  externally  applied  voltage  excitation,  the  conductive  fila-
ments  of  the  memristor,  composed  of  oxygen  vacancies  or
metal  atoms,  can  be  gradually  grown  or  dissolved,  allowing
the memristive conductance to exhibit  analog continuous in-
creasing  or  decreasing  in  a  dynamic  range,  rather  than  bin-
ary switching behaviors,  which is similar to the long-term po-
tentiation  (LTP)  or  long-term  depression  (LTD)  characteristics
of the synapses in the brain.  Since then,  memristors have be-
come  one  of  the  strong  candidates  of  emerging  analog
devices for neuromorphic and in-memory computing.

For the application of in-memory computing, analog mem-
ristors  have  been  researched  explosively  and  are  prospected
to  be  provided  with  such  following  properties:  (1)  an  analog
memristor  essentially  represents  an  analog  quantity,  which
plausibly emulates biological synaptic weights, such as the im-
plementation of LTP, LTD, and spike-timing-dependent plasti-
city  (STDP)  functions;  (2)  memristors  have  obvious  perform-
ance  advantages  in  non-volatility,  simple  structure,  low
power  consumption,  and  high  switching  speed;  (3)  memris-
tors  are  scalable  and  can  be  expanded  on  a  large  scale  in
terms  of  high-density  integration,  facilitating  the  construc-
tion of more analog computing tasks.

In recent years, in-memory computing accelerators based
on  memristors  have  received  much  attention  from  both  aca-
demia  and  industry.  It  is  not  just  that  memristor-based  in-
memory  computing  accelerators  that  tightly  integrate  ana-
log  computing  and  memory  functions,  breaking  the  bottle-
neck  of  data  transfer  between  the  central  processor  and
memory  in  traditional  von  Neumann  architectures.  More  im-
portantly,  by  adding  some  functional  units  to  the  periphery
of the memristive array, the array is able to perform MAC com-
puting within a delay of almost one read operation without in-
creasing with the input dimension. Meanwhile, the MAC opera-
tion is frequently used and is one of the main energy-consum-
ing operations in various analog computing tasks, such as neur-
al  networks  and equation solvers.  The marriage of  memristor
and  analog  computing  algorithms  has  given  rise  to  a  new
research  area,  namely  “memristive  analog  computing”  or
“memristive in-memory computing”.

Notably,  research and practice on this  emerging interdis-

ciplinary  are  still  in  early  stages.  In  this  paper,  we  conduct  a
comprehensive survey of the recent research efforts on mem-
ristive analog computing. This paper is organized as follows.

(1) Section 1 reviews the background of in-memory com-
puting and the concept of the analog memristor.

(2) Section 2 introduces the basic MAC unit and its imple-
mentation in the memristive cross array.

(3)  Section  3  focuses  on  the  application  of  memristive
MAC computation in the field of neural network hardware ac-
celerators, as a representative case of analog computing.

(4)  Section  4  mainly  introduces  the  state-of-the-art  solu-
tions for numerical computing applications based on memrist-
ive MAC operations.

(5)  Section  5  discusses  other  extended  memristive  devi-
ces  and  the  progress  of  their  application  in  analog  comput-
ing.

(6) Finally, we discuss some open research challenges and
opportunities of memristive analog computing paradigm.

For this survey,  we hope it  can elicit  escalating attention,
stimulate  fruitful  discussion,  and  inspire  further  research
ideas on this rapidly evolving field.

2.  Multiply accumulate (MAC) operation in analog
computing

2.1.  Introduction of MAC operation

MAC operation is  an important  and expensive operation,
which  is  frequently  used  in  digital  signal  processing  and
video/graphics  applications  for  convolution,  discrete  cosine
transform,  Fourier  transform,  and  so  on[33−37].  The  MAC  per-
forms multiplication and accumulation processes, which com-
putes  the  product  of  two  numbers  and  adds  that  product  to
an  accumulator: Z = Z + A × B.  Many  basic  operations,  such
as  the  dot  product,  matrix  multiplication,  digital  filter  opera-
tions,  and even polynomial  evaluation operations,  can be de-
composed into MAC operations, as follows:  »»»»»»»»»

a a a
a a a
a a a

»»»»»»»»» ×
»»»»»»»»»»»
b b b

b b b

b b b

»»»»»»»»»»» → Reij =
t=

∑
t=

ait × btj.

(1)

The  traditional  hardware  unit  that  performs  MAC  opera-
tion  is  known  as  a  multiplier–accumulator  (MAC  unit),  which
is  a  basic  computing  block  used  extensively  in  general  digit-
al  processors.  A  basic  MAC  unit  consists  of  multiplier,  adder,
and accumulator,  as shown in Fig.  1(a),  which occupies a cer-
tain circuit area and consumes considerable power and delay.
For  read  and  write  access  to  memory  for  each  MAC  unit,  it
needs  three  memory  reads  and  one  memory  write  as  shown
in Fig. 1(b).  Taking a typical AlexNet network model as an ex-
ample,  it  supports  almost  724  million  MACs,  which  means
nearly 3000 million DRAM accesses will be required[38].  There-
fore,  any  improvement  in  the  calculation  performance  of  the
MAC  unit  could  lead  to  a  substantial  improvement  in  clock
speed,  instruction time,  and processor  performance for  hard-
ware acceleration.

2.2.  Implementation of MAC operation in memristor

array

As  a  powerful  alternative  for  improving  the  efficiency  of
data-intensive  task  processing  in  the  era  of  big  data,  the  in-
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memory  computing  hardware  solution  to  the  computational
bottleneck is essentially a manifestation of the acceleration of
MAC operations. Naturally, a memristive crossbar is highly effi-
cient  at  executing  vector-matrix  multiplication  (VMM)  in  one
step by parallel MAC operations.

As  shown  in Fig.  2,  for  a  memristive  array,  each  row  and
column  crossing  node  represents  a  memristor.  The  numeric-
al values in a matrix can be directly mapped as the analog con-
ductance on the crossbar  array.  When a  forward input  vector
V is applied in the form of voltage pulses with different pulse
amplitudes  or  widths  to  the  rows,  the  currents  collected  at
the  columns  result  from  the  MAC  operation  between  the  in-
put  voltages  and  corresponding  conductance  nodes,  follow-
ing Ohm’s law and Kirchhoff’s current law. Thus, the array im-
plements  a  one-step  calculation  of  the  VMM.  The  same  goes
for  backpropagation.  In  other  words,  the  VMM  operation
could be efficiently performed with O(1) time complexity.

Since  VMM  is  an  essential  operation  in  various  machine
learning  algorithms,  in  the  past  years  developing  memristor-
based  accelerators  has  become  one  of  the  mainstays  of
hardware  neuromorphic  computing.  As  far  back  as  2016,  Hu
et al.[39] proposed a dot-product engine (DPE) as a high dens-
ity,  high  power  efficiency  accelerator  for  approximate  VMM
utilizing  the  natural  MAC  parallelism  of  the  memristor  cross-
bar. By inventing a conversion algorithm to map arbitrary mat-
rix values appropriately to the memristor conductance in a real-
istic  crossbar  array,  the  DPE-based  neural  networks  for  pat-
tern  recognition  is  simulated  and  benchmarked  with  negli-
gible  accuracy  degradation  compared  to  software  approach
(99% recognition accuracy for the MNIST dataset). Further, ex-
perimental  validations  on  a  128  ×  64  1T1R  memristor  array
were  implemented[40, 41].  As  shown  in Fig.  3,  two  application
scenarios  were  demonstrated  on  the  memristive  chip:  a  sig-
nal  processing  application  using  the  discrete-cosine  trans-
form that converts a time-based signal into its frequency com-
ponents, and a single-layer softmax neural network for recogni-
tion of handwritten digits with acceptable accuracy and re-pro-
grammability.  Quantitatively, a >  10×  computational  effi-
ciency  was  projected,  compared  to  the  same  VMM  opera-
tions  performed  by  40  nm  CMOS  digital  technology  with  4-
bit accuracy, and a computational efficiency greater than 100
TOPs/W is possible.

Hence,  memristor  arrays  present  an  emerging  comput-
ing platform for efficient analog computing. The ability of par-
allel  MAC  operation  enables  the  general  acceleration  of  any
matrix  operations,  naturally  converting  into  the  analog  do-

main for low-power, high-speed computation. Also, the scalab-
ility and flexibility of the array architecture make it very re-pro-
grammable  and  provide  excellent  hardware  acceleration  for
different  MAC-based  applications.  It  is  worth  noting  that,  al-
though  the  applicability  of  a  memristor-based  MAC  comput-
ing  system  is  still  limited  by  reliability  problems  that  arise
from  the  immature  fabrication  techniques,  some  fault  detec-
tion  and  error  correction  methods  have  been  studied  to  in-
crease technical maturity[42−44].

3.  Neural network acceleration with memristive
MAC operations

Neural  networks  are  a  sizable  area  for  MAC-based  hard-
ware acceleration research. Widely employed in machine learn-
ing,  neural  networks  abstract  the  human  brain  neuron  net-
work from the information processing perspective, and builds
various models to form different networks according to differ-
ent  connections[45−48].  Deeper  and  more  complex  neural  net-
works  are  needed to enhance the self-learning and data  pro-
cessing capabilities,  and neural  networks are becoming more
intelligent,  such as from supervised to unsupervised learning,
from image processing to dynamic time-series information pro-
cessing,  etc.  Importantly,  MAC operation is  always one of  the
most frequent computing units in various neural network mod-
els.  In  some  published  tools  and  methods  for  the  evaluation
and  comparison  of  deep  learning  neural  network  chips,  such
as  Eyeriss’s  benchmarking[49],  Baidu  DeepBench[50],  and
Fathom[51],  MAC/s and MAC/s/w are the important indexes to
measure  the  overall  computing  performance.  Thus,  the
highly  efficient  MAC  operation  is  a  major  basis  for  the  hard-
ware  acceleration  of  neural  networks.  Setting  sights  on  the
huge  potential  of  parallel  MAC  computing  in  memristive  ar-
rays, the memristive neural networks have gotten fierce devel-
opment.

3.1.  Artificial neural network (ANN)

The  fully  connected  multi-layer  perceptron  (MLP)  is  one
of  the  most  basic  artificial  neural  networks  (ANNs),  without  a
biological justification. In addition to the input and output lay-
ers,  it  can  have  multiple  hidden  layers.  The  simplest  two-lay-
er MLP contains only one hidden layer and is capable of solv-
ing  nonlinear  function  approximation  problem,  as  shown  in
Fig. 3(a).  For memristive neural networks,  the key is the hard-
ware mapping of the weight matrices into the memristive ar-
ray, as shown in Fig. 4(b), while a large amount of MAC calcula-
tion can be executed in an efficient parallel manner for acceler-
ation. Typically,  a weight with a positive or negative value re-
quires  a  differential  connectio  of  two  memristive  devices:
W = G+ – G–,  which means two memristive arrays are needed
to load one weight matrix.

Thanks  to  the  capability  of  the  memristive  array  to  per-
form  VMM  operations  in  both  forward  and  backward  direc-
tions, it can naturally implement a on-chip error-backpropaga-
tion  (BP)  algorithm,  the  most  successful  learning  algorithm.
The  forward  pattern  information  and  the  backward  error  sig-
nal  can  both  be  encoded  as  the  corresponding  voltage  sig-
nal  input  to  the  array,  taking  the  MAC  computing  advantage
to proceed with both inference and update phases of the neur-
al network algorithm.

In  the  early  stages  of  research,  many  works  were  de-
voted  to  improving  the  performances  of  memristive  devic-
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es[29, 52−57],  exploring  the  dependence  of  network  perform-
ance on different device properties[58−62], etc. As a result, sever-
al consensuses have also been reached on memristive ANN ap-
plication:

(1) For the multi-level analog property of memristors, 5–6
bits  are  generally  required  for  basic  full-precision  multi-layer
perceptron[63−65]. However, with adoption of the algorithm op-
timization of quantization, the strict requirement weight preci-
sion is  lowered (4 bits  or  less,  except binary or  ternary neural
networks)[66−68].  Hence,  rather  than pursuing continuous  tun-
ing of the device conductance, stable and distinguishable con-

ductance states are more important for hardware implementa-
tions  of  memristive  ANN.  Moreover,  reducing  the  lower  con-
ductance  of  the  memristors  is  important  for  peripheral  cir-
cuit  design and overall  system power consumption while en-
suring a sufficient dynamic conductance window.

(2)  The  linearity  and  symmetry  of  the  bidirectional  con-
ductance  tuning  behavior  are  indeed  important,  both  in
terms  of  network  performance  and  peripheral  circuit  frien-
dliness.  Due  to  the  existence  of  device  imperfections,  such
as  read/write  noises,  uncontrollable  dynamic  conductance
range, poor retention, and low array yield, the analog conduct-
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Fig. 3. (Color online) Reprinted from Ref. [40]: (a) Demonstration of 128 × 64 1T1R memristor array. (b) Demonstration of accurate programming
of the 1T1R memristor array with ≈180 conductance levels. And two VMM applications programmed and implemented on the DPE array: (c) a sig-
nal processing application using the discrete cosine transform (DCT) which converts a time-based signal into its frequency components, (d) a neur-
al network application using a single-layer softmax neural network for recognition of handwritten digits.
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ance tuning behaviors still need to be improved for better reli-
ability.  For  memristor-based  neural  network  inference  en-
gines,  the  accurate  write-in  method  and  the  retention  prop-
erty of multi-level states become significant.

(3) A simple crossbar array can cause many practical prob-
lems, including IR drop, leakage current, etc. These cannot be
ignored in hardware design, especially the voltage sensing er-
rors caused by IR drop.

Until  recently,  there  have  been  many  breakthroughs  in
the on-chip hardware implementation of memristive ANN. As
shown in Figs. 5(a)–5(c), Bayat et al. demonstrated a mixed-sig-
nal  integrated  hardware  chip  for  a  one-hidden  layer  per-
ceptron classifier with a passive 0T1R 20 × 20 memristive cross-
bar  array[69].  The  memristors  in  the  array  showed  relatively
low  variations  of I–V characteristics  by  counting  the  SET  and
RESET  threshold,  and I–V nonlinearity  provided  sufficient  se-
lector functionality to limit leakage currents in the crossbar cir-
cuit. Equally important, the pulse width coding method was an-
other  strategy  to  prove  accurate  read-out  and  weak  sneak
paths  in  this  work.  Off-chip  and  on-chip  training  of  memrist-
ive  ANN  were  performed  for  simple  pixel  images.  This  work
demonstrates the excellent fabrication technology of memrist-
ive  array  and  the  great  potential  of  memristive  ANN  on-chip
implementation.  It  is  worth  noting  that I–V nonlinearity  for  a
passive  memristive  array,  while  helping  to  cut  the  sneak
paths,  also  has  an  impact  on  the  accurate  linear  read  of  the
devices, which requires a trade-off.

A memristive ANN chip for  face recognition classification
was  also  presented  by  Yao et  al.[70].  As  shown  in Figs.  5(d)
and 5(e),  the chip consisted of  1024 1T1R cells  with 128 rows
and  8  columns  and  demonstrated  88.08%  learning  accuracy
for  grey-scale  face  images  from  the  Yale  Face  Database.  The
transistor  of  1T1R  cells  facilitates  hardware  implementation
by  acting  as  a  selector,  while  also  providing  an  efficient  con-
trol  line  that  allows  the  precise  tuning  of  memristors.  Com-
pared with an Intel Xeon Phi processor, apart from the high re-
cognition  accuracy,  this  memristive  ANN  chip  with  analog
weight  consumed 1000 times less  energy,  which strongly  ex-
hibited  the  potential  of  the  memristor  ANN  to  run  complex

tasks with high efficiency. However, for complex applications,
the  coding  of  input  information  becomes  an  issue  that  can-
not be ignored. The pulse width coding used in this work is ob-
viously not a good strategy and can cause serious delays and
peripheral  circuitry  burdens.  The commonly  used pulse  amp-
litude  coding,  on  the  other  hand,  imposes  stringent  require-
ments on the linear conductance range of the devices[56, 72]. Re-
cently, the same group further attempted to address two con-
siderable  challenges  posed  by  the  memristive  array:  the  IR
drop that  decreases the computing accuracy and further  lim-
its the parallelism, and the inefficiency due to the power over-
head  of  the  A/D  and  D/A  converters.  By  designing  the  sign-
weighted  2T2R  array  and  a  low-power  interface  with  resolu-
tion-adjustable  LPAR-ADC,  an  integrated  chip  with  158.8  kB
2-bit  memristors[73],  as  shown  in Fig.  5(f),  was  implemented,
which demonstrated a  fully  connected MLP model  for  MNIST
recognition  with  high  recognition  accuracy  (94.4%),  high  in-
ference speed (77 μs/image), and 78.4 TOPS/W peak energy ef-
ficiency.

Taking  the  functional  completeness  of  the  memristive
ANN  chips  into  account,  a  fully  integrated,  functional,  repro-
grammable memristor chip was proposed[74], including a pass-
ive memristor crossbar array directly integrated with all the ne-
cessary interface circuitry, digital buses, and an OpenRISC pro-
cessor.  Thanks  to  the  re-programmability  of  the  memristor
crossbar and the integrated complementary metal–oxide–semi-
conductor  (CMOS)  circuitry,  the  system  was  highly  flexible
and  could  be  programmed  to  implement  different  comput-
ing models and network structures, as shown in Fig. 6, includ-
ing  a  perceptron  network,  a  sparse  coding  algorithm,  and  a
bilayer PCA system with an unsupervised feature extraction lay-
er and a supervised classification layer, which allowed the pro-
totypes  to  be  scaled  to  larger  systems  and  potentially  offer-
ing  efficient  hardware  solutions  for  different  network  sizes
and applications.

In  total,  from  device  array  fabrication,  core  architecture
design,  peripheral  circuit  solutions,  and  overall  system  func-
tionality  improvement,  the  development  of  memristive  ANN
chips is maturing. With the summation property of neural net-
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Fig. 4. (Color online) (a) The basic structure of a fully connected artificial neural network (ANN). In a backpropagation network, the learning al-
gorithm has two phases: the forward propagation to compute outputs, and the back propagation to compute the back-propagated errors. (b)
The mapping schematic of an ANN to memristive arrays.
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works,  non-ideal  factors  such  as  the  unmitigated  intrinsic
noise  of  memristor  arrays  will  not  completely  constrain  the
development  of  memristive  ANN  chips,  which  suggests  the
adaptability  of  memristors  to  low-precision  computing  tasks.
Based  on  non-volatile  and  natural  MAC  parallel  properties  of
memristive  arrays,  the  memristive  ANN  chips  benefit  from
high integration, low power consumption, high computation-

al parallelism, and high re-programmability, which have great
promise in the field of analog computing.

3.2.  CNN/DNN

As  the  amount  of  data  information  explodes,  traditional
fully-connected ANNs exhibit their information processing lim-
itations. For example, there are 3 million parameters when pro-
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Fig. 5. (Color online) Reprinted from Ref. [69]: (a) A perceptron diagram showing portions of the crossbar circuits involved in the experiment. (b)
Graph representation of the implemented network. (c) Equivalent circuit for the first layer of the perceptron. Reprinted from Ref. [70]: (d) The mi-
crograph of a fabricated 1024-cell-1T1R array using fully CMOS compatible fabrication process. (e) The schematic of parallel read operation and
how a pattern is mapped to the input. Reprinted from Ref. [71]: (f) Die micrograph with SW-2T2R layout.
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cessing a low-quality 1000 × 1000 RGB image, which is very re-
source-intensive. The proposal of the convolutional neural net-
work  (CNN)  greatly  improves  this  problem.  The  CNN  per-
forms  two  main  features:  firstly,  it  can  effectively  reduce  a
large  amount  of  parameters,  including  simplifying  the  input
pattern and lowering the weight volume in the network mod-
el;  then,  it  can  effectively  retain  the  image  characteristics,  in
line with the principles of image processing.

CNN consists of three main parts: the convolutional layer,
the pooling layer, and the fully connected layer. The convolu-
tional layer is responsible for extracting local features in the im-
age through the filtering of the convolutional kernel; the pool-
ing  layer  is  used  to  drastically  reduce  the  parameter  mag-
nitude  (downscaling),  which  not  only  greatly  reduces  the
amount  of  computation  but  also  effectively  avoids  overfit-

ting; and the fully connected layer is similar to the part of a tra-
ditional neural network and is used to output the desired res-
ults.  A  typical  CNN  is  not  just  a  three-layer  structure  as  men-
tioned  above,  but  a  multi-layer  structure,  such  as  the  struc-
ture of LeNet-5 as shown in Fig. 7(a)[75]. By continuously deep-
ening  the  design  of  the  basic  functional  layers,  deeper  neur-
al networks such as VGG[73],  ResNet[76],  etc. can also be imple-
mented for more complex tasks.

Based  on  the  investigation  of  memristive  ANN,  memrist-
ive CNN can also be accelerated due to the parallel MAC opera-
tions,  and the effect  of  memristive devices  on CNN has simil-
ar  conclusions,  such as  ideal  linearity,  symmetry,  smaller  vari-
ation, better retention and endurance[77−80].  However, the dif-
ference is that the CNN structure is more complex. The convo-
lutional layer adopts a weight-sharing approach, and the con-
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Fig. 6. (Color online) Reprinted from Ref. [74]: (a) Integrated chip wire-bonded on a pin-grid array package. (b) Cross-section schematic of the integ-
rated chip, showing connections of the memristor array with the CMOS circuitry through extension lines and internal CMOS wiring. Inset, cross-
section of the WOx device. (c) Schematic of the mixed signal interface to the 54 × 108 crossbar array, with two write DACs, one read DAC and one
ADC for each row and column. Experimental demonstrations on the integrated memristor chip: (d) Single-layer perceptron using a 26 × 10 mem-
ristor subarray, (e) implementation of the LCA algorithm, (f) the bilayer network using a 9 × 2 subarray for the PCA layer and a 3 × 2 subarray for
the classification layer.
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nections between neurons are not fully connected, which can-
not  be mapped directly  on a  2D memristive  array.  This  is  the
primary problem that needs to be solved for the implementa-
tion  of  memristive  CNN.  Further,  the  characteristics  of  the
device have different effects on the convolution layer and the
fully  connected  layer.  Generally,  the  convolutional  layer  has
higher  requirements  for  the  characteristics  of  the  device,  in-
cluding device variation and weight precision[67, 81−83].  Due to
the cascading effect, the errors generated in the previous lay-
er will  always accumulate,  causing greater disturbance to the
subsequent  layer.  Therefore,  it  is  further  proved  that  for
memristive CNN, the precise mapping and implementation of
convolutional layers is one of the most important parts.

As  shown  in Fig.  7(b),  it  is  the  basic  principle  of  the  im-
age  convolution  operation.  By  sliding  the  convolution  ker-
nels  over  the  image,  the  pixel  value  of  the  image  is  multi-
plied by the value on the corresponding convolution kernels,
and then all  the multiplied values are added as the grayscale
value of the corresponding pixel point in the feature map un-
til  the  entire  convolution  process  is  done.  The  most  com-
monly  used  mapping  method  on  memristive  arrays  is  to
store the weights of the convolutional kernels in the array. Spe-
cifically,  as  shown in Fig.  7(c),  a  column of  the memristive ar-
ray is used to store a convolutional kernel, the two-dimension-
al  image  is  unrolled  as  a  one-dimensional  input  voltage  sig-
nal, and the information of the convolutional feature image is
obtained as the output current value of the array.

As shown in Fig. 8(a), Gao et al. firstly implemented convo-
lution  operation  on  a  12  ×  12  memristor  crossbar  array  in
2016[84].  Prewitt  kernels  were  used  as  a  proof-of-concept
demonstration  to  detect  horizontal  and  vertical  edges  of  the
MNIST  handwritten  digits.  Huang et  al.  have  also  attempted
to  implement  convolutional  operations  in  three-dimensional
memristive arrays with a Laplace kernel for edge detection of

images (Fig. 8(b))[85]. More recently, Huo et al. preliminary valid-
ated 3D convolution operations  on a  HfO2/TaOx-based eight-
layer 3D VRRAM to pave the way for 3D CNNs (Fig. 8(c))[86].

Although  the  preliminary  implementation  of  convolu-
tion  operation  on  2D  and  3D  memristive  arrays  has  been
achieved,  this  mapping  approach  still  has  significant  con-
cerns.  First,  the  conversion  of  a  2D  matrix  to  1D  vectors
losses the structural information of the image, which is still im-
portant in the subsequent process, and also causes very com-
plex  data  processing  in  the  back-propagation  process.
Secondly,  if  the  one-shot  MAC  operation  of  one-dimensional
image  information  is  required  for  convolution,  the  memrist-
ive  array  is  sparsely  stored  for  convolution  kernels,  and  too
many  unused  cells  could  cause  serious  sneak  path  issues.
While  compact  kernels  on  arrays  without  any  redundancy
space require more complex rearrangements of the input im-
age  and  sacrifice  significant  time  delays  and  peripheral  cir-
cuits  for  convolution  operation.  In  one  word,  the  problem  of
convolutional operation raises challenges that need to be prop-
erly addressed while training memristive CNNs.

Recently,  to  solve  the  severe  speed  mismatch  between
the memristive fully  connected layer  and convolutional  layer,
which  comes  from  the  time  consumption  during  the  sliding
process,  Yao et  al.  proposed  a  promising  way  of  replicating
the  same  group  of  weights  in  multiple  parallel  memristor  ar-
rays  to  recognize  an  input  image  efficiently  in  a  memristive
CNN  chip[87].  A  five-layer  CNN  with  three  duplicated  parallel
convolvers on the eight memristor PEs was successfully estab-
lished  in  a  fully  hardware  system,  as  shown  in Figs.  9(a) and
9(b),  which  allowed  the  processing  of  three  data  batches  at
the  same  time  for  further  acceleration.  Moreover,  a  hybrid
training  method  was  designed  to  circumvent  non-ideal
device characteristics. After ex-situ training and close-loop writ-
ing,  only  the  last  fully  connected  layer  was  trained  in  situ  to
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Fig. 7. (Color online) (a) Basic structure of LeNet-5. (b) Schematic of convolution operation in an image. (c) Typical mapping method of 2D convolu-
tion to memristive arrays.
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tune  the  device  conductance.  In  this  way,  not  only  the  exist-
ing device imperfections could be compensated, but also the
complex  on-chip  operations  of  backpropagation  process  for
convolutional  layers  were  eliminated.  Hence,  the  perform-
ance  benchmark  of  the  memristor-based  CNN  system  sho-
wed 110 times  better  energy efficiency  (11  014 GOP s−1 W−1)
and  30  times  better  performance  density  (1164  GOP  s−1

mm−2)  compared with  Tesla  V100 GPU,  which also  suffered a
rather  low  accuracy  loss  (2.92%  compared  to  software  test-
ing result) for MNIST recognition. However, in practice, transfer-
ring  the  same  weights  to  multiple  parallel  memristor  con-
volvers  calls  for  high  uniformity  of  different  memristive  ar-
rays, otherwise it would induce unavoidable and random map-
ping error to hamper the system performance. Besides, the in-
terconnection  among  memristor  PEs  could  consume  a  lot  of
peripheral circuitry.

A  more  recent  work  by  Lin et  al.  has  demonstrated  a
unique  3D  memristive  array  to  break  through  the  limitations
of 2D arrays that can only accomplish simplified interconnec-
tions[31].  As  shown  in Figs.  9(c)–9(e),  the  unique  3D  topology
is  implemented by a  non-orthogonal  alignment  between the
input  pillar  electrodes  and  output  staircase  electrodes  that
form  dense  but  localized  connections,  and  different  3D  row
banks  are  physically  isolated  from  each  other.  And  thanks  to
locally  connected  structure,  it  can  be  extended  horizontally
with  high  sensing  accuracy  and  high  voltage  delivery  effi-
ciency,  independent  of  the  array  issues  such  as  sneak  path
and  IR  drop.  By  dividing  the  convolution  kernels  into  differ-
ent row banks, pixel-wise parallel convolutions could be imple-
mented with high compactness and efficiency. The 3D design
handles  the  spatial  and  temporal  nature  of  convolution  so
that  the  feature  maps can be directly  obtained at  the  output
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Fig. 8. (Color online) Reprinted from Ref. [84]: (a) The microscopic top-view image of fabricated 12 × 12 cross-point array. (b) The implementa-
tion of the Prewitt horizontal kernel (fx) and vertical kernel (fy). Reprinted from Ref. [85]: (c) Schematic of kernel operation using the two-layered
3-D structure with positive and negative weights. Reprinted from Ref. [86]: (d) The schematic of the 3D VRRAM architecture and current flow for
one convolution operation. (e) The implementation of 3D Prewitt kernel Gx, Gy and Gz on 3D VRRAM.
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of  the  array  with  a  minimal  amount  of  post-processing.  For
complex  neural  networks,  the  row  banks  are  highly  scalable
and  independent  so  that  they  can  be  flexibly  programmed
for different output pixels, filters, or kernels from different con-
volutional layers, which offers substantial benefits in simplify-
ing  and  shortening  the  massive  and  complex  connections
between convolutional layers. Such a customized three-dimen-
sional memristor array design is a critical  avenue towards the
CNN accelerator with more complex function and higher com-
putation efficiency.

It  can  be  seen  that  to  improve  the  efficiency  of  a  mem-
ristive  CNN,  various  mapping  methods  for  memristive  arrays
are being actively explored, including multiplex and intercon-
nection of  multiple small  two-dimensional  arrays,  or  specially
designed  3D  stacking  structures.  In  addition  to  considering
the  mapping  design  of  the  memristive  array  cores,  the  peri-
pheral  circuit  implementation  of  memristive  CNN  is  another
important  concern,  which  also  determines  the  performance
and efficiency of the system to a large extent. While memrist-

ive  arrays  are  conducive  to  efficient  analog  computing,  the
consumed  ADCs  and  DACs  come  at  a  cost.  Moreover,  due  to
the  severe  resistive  drift,  the  accurate  readout  circuit  is  also
worthy of further investigation.

Chang et  al.  have  placed  their  effort  on  circuit  optimiza-
tion  for  on-chip  memristive  neural  networks.  They  proposed
an  approach  of  efficient  logic  and  MAC  operation  on  their
fabricated  1Mb  1T1R  binary  memristive  array.  As  shown  in
Figs.  10(a) and 10(b),  the  structure  of  the  fully  integrated
memristive  macro  included  a  1T1R  memristor  array,  digital
dual-mode  word  line  (WL)  drivers  (D-WLDRs),  small-offset
multi-level  current-mode  sense  amplifiers  (ML-CSAs),  and  a
mode-and-input-aware  reference  current  generator  (MIA-
RCG).  Specifically,  D-WLDRs,  which replaced DACs,  were used
to control the gates of the NMOS transistors of 1T1R cells shar-
ing  the  same  row.  Two  read-out  circuit  techniques  (ML-CSAs
and  MIA-RCG)  were  designed.  Thus,  high  area  overhead,
power  consumption,  and  long  latency  caused  by  high-preci-
sion  ADCs  could  be  eliminated;  reliable  MAC  operations  for
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Fig. 9. (Color online) Reprinted from Ref. [87]: (a) Photograph of the integrated PCB subsystem, also known as the PE board, and image of a par-
tial PE chip consisting of a 2048-memristor array and on-chip decoder circuits. (b) Sketch of the hardware system operation flow with hybrid train-
ing used to accommodate non-ideal device characteristics for parallel memristor convolvers. Reprinted from Ref. [31]: (c) Schematic of the 3D cir-
cuits composed of high-density staircase output electrodes (blue) and pillar input electrodes (red). (d) Each kernel plane can be divided into indi-
vidual row banks for a cost-effective fabrication and flexible operation. (e) Flexible row bank design enables parallel operation between pixels, fil-
ters and channels.
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the small sensing margin caused by device variability and pat-
tern-dependent  current  leakage  could  be  enhanced.  Based
on  such  circuit  optimization,  a  1-MB  memristor-based  CIM
macro  with  2-bit  inputs  and  3-bit  weights  for  CNN-based  AI
edge  processors  was  further  developed[89],  which  overcame
an area-latency-energy trade-off  for  multibit  MAC operations,
pattern  dependent  degradation  in  the  signal  margin,  and
small  read margin.  These system-level  trials  verified that high
accuracy  and high energy-efficiency could be achieved using
a fully CMOS-integrated memristive macro for CNN. However,
in  general,  the  input  information  and  weight  precision  are
much more complex, at which point the design and optimiza-
tion of peripheral  circuits  becomes a more problematic issue,
and  must  be  addressed  when  the  memristive  CNN  goes
deeper.

3.3.  Other network models

Based  on  the  parallel  MAC  computing  in  an  array,  more
memristive  neural  network  models  have  been  investigated.
One  example  is  the  generative  adversarial  network  (GAN),
which is a kind of unsupervised learning by having two neur-
al  networks  play  against  each  other  to  learn  itself.  GAN  has
two subnetworks: a discriminator (D) and a generator (G), as il-

lustrated in Fig.  11(a).  Both D and G typically  are  modeled as
deep  neural  networks.  In  general,  D  is  a  classifier  that  is
trained  by  distinguishing  real  samples  from  generated  ones
and G is  optimized to produce samples  that  can fool  the dis-
criminator. On the one hand, two competing networks are sim-
ultaneously co-trained, which significantly increases the need
for  memory  and  computation  resources.  To  address  this  is-
sue, Chen et al proposed ReGAN, a memristor-based accelerat-
or  for  GAN training,  which achieved 240× performance spee-
dup compared to GPU platform averagely, with an average en-
ergy  saving  of  94×[90].  On  the  other  hand,  GAN  suffers  from
mode dropping and gradient vanishing issues, but adding con-
tinuous random noise externally to the inputs of the discrimin-
ator  is  very  important  and  helpful,  which  takes  advantage  of
the non-ideal effects of memristors. Thus, Lin et al. experiment-
ally demonstrated a GAN based on a 1 kB analog memristor ar-
ray  to  generate  a  different  pattern  of  digital  numbers[91].  The
intrinsic random noises of analog memristors were utilized as
the  input  of  the  neural  network  to  improve  the  diversity  of
the generated numbers.

Another  example  is  the  long  short-term  memory  (LSTM)
neural network, which is a special kind of recurrent neural net-
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Fig. 10. (Color online) Reprinted from Ref. [88]: (a) Structure of the proposed fully CMOS-integrated 1MB 1T1R binary memristive array and on-
chip peripheral circuits, comparing with previous macro based on memristive arrays and discrete off-chip peripheral circuit components (ADCs
and DACs) or high-precision testing equipment.  (b) MAC operations in the proposed macro. Reprinted from Ref.  [89]:  (c)  Overview of the pro-
posed CIM macro with multibit inputs and weights.
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work.  LSTM  is  proposed  to  solve  the  "gradient  disappear-
ance"  problem,  and  is  suitable  for  processing  and  predicting
events  with  relatively  long  intervals  and  delays  in  a  time
series. By connecting a fully connected network to a LSTM net-
work, a two-layer LSTM network is illustrated in Fig. 11(b). Tra-
ditional  LSTM cells  consist  of  a  memory  cell  to  store  state  in-
formation and three  gate  layers  that  control  flow of  informa-
tion within cells and network. The LSTM network with signific-
antly  increased  complexity  and  a  large  number  of  paramet-
ers  have  a  bottleneck  in  computing  power  resulting  from
both  limited  memory  capacity  and  bandwidth.  Hence,  be-
sides the implementation of the fully connected layer, memrist-
ive LSTM pays more attention to store a large number of para-
meters  and  offer  in-memory  computing  capability  for  the
LSTM  layer,  as  shown  in Fig.  11(c).  Memristive  LSTMs  have
been  demonstrated  for  gait  recognition,  text  prediction,  and
so  on[92−97].  Experimentally,  on-chip  evaluations  were  per-
formed on a  2.5M analog phase change memory (PCM) array
and  a  128  ×  64  1T1R  memristor  array,  which  have  also
proved strongly that the memristive LSTM platform would be
a promising low-power and low-latency hardware implemen-

tation.

4.  Memristor-based MAC for numerical
computing

In  previous  sections,  we  introduced  the  acceleration  of
various  neural  networks  by  using  MAC  operations  with  low
computation complexity in arrays. As shown in Fig. 12, in gen-
eral,  these neuromorphic computing and deep learning tasks
can be considered to be “soft”  computations[98],  as  they have
a  high  tolerance  for  low  precision  results  without  significant
performance degradation. In contrast, scientific computing ap-
plications,  which  also  include  a  large  number  of  MAC-intens-
ive  numerical  calculations,  have  very  stringent  requirements
for  computation  precision  and  are  thus  considered  as  “hard”
computing[10].  Numerical  computing  means  solving  accurate
numerical solutions of linear algebra, partial differential equa-
tions  (PDEs),  and  regression  problems,  etc.,  which  can  hardly
be effectively  accelerated if  there  are  severe  inter-device  and
intra-device variations and other device non-ideal factors.

To date, the accuracy of analog MAC operation in a mem-
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Fig. 11. (Color online) Reprinted from Ref. [90]: (a) Structure of a Generative Adversarial Network (GAN). Reprinted from Ref. [92]: (b) Left panel
shows the schematic of a multilayer RNN with input nodes, recurrent hidden nodes, and output nodes. Right panel is the structure of an LSTM net-
work cell. (c) Data flow of a memristive LSTM.
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ristor array is  still  relatively limited, so building an accelerator
suitable for numerical computation, as an interesting topic, re-
mains  a  great  challenge  and,  again,  an  excellent  opportunity
to  further  develop  potential  application  scenarios  for  memri-
stive  in-memory  computing.  In  view  of  this,  in  recent  years,
some  remarkable  technological  solutions  have  been  pro-
posed, achieving new breakthroughs from principle to verifica-
tion.

4.1.  Mixed-precision architecture

Typically,  to  reach  the  numerical  accuracy  usually  re-
quired  for  a  digital  computer  to  execute  the  data  analytics
and  scientific  computing.  For  the  memristor-based  MAC  pro-
cesser,  the  limitations  arising  from  the  device  non-ideal
factors must be addressed.

Le  Gallo et  al. introduced  a  mixed-precision  in-memory
computing architecture,  to  process  the  numerical  computing
tasks[8].  By  combing  the  memristor-based  MAC  unit  with  the
von Neumann machine, the mixed-precision system can bene-
fit from both the energy/area efficiency of the in-memory pro-
cessing  unit  and  the  high  precision  computing  ability  of  the
digital computer.

In  this  hybrid  system,  the  memristor  process  unit  per-
forms  the  bulk  of  MAC  operations,  as  the  digital  computer
implements  a  backward  method  to  improve  the  calculation
accuracy and provides other mathematical operations like ite-
ration (Fig. 13(a)). To illustrate the concept, the process of solv-
ing linear equations was shown.

x ∈ RN
Solving  the  linear  equations  is  to  find  an  unknown  vec-

tor  to satisfy the constraint condition: 

Ax = b, A ∈ RN×N
, b ∈ RN

. (2)

The  matrix A is  known  as  the  coefficient  matrix  and  is  a

non-singular matrix, the b is also known as a column vector.

Az = r
r = b − Ax

Az = r

An  iterative  refinement  algorithm  was  utilized  in  the
mixed  precision  architecture.  An  initial  solution  was  chosen
as  the  start  point,  and  the  solving  algorithm  iteratively  up-
dated with  a  low precision error-correction term z by  solving
the  equation  in  the  inexact  inner  solver  with  the

 used  as  the  residual.  The  solving  algorithm  ran  un-
til  the  residual  was  below  the  designed  tolerance,  and  the
krylov-subspace iterations method was used to solve the equa-
tion in the inexact inner solver  (Fig. 13(b)).

Experimentally, a prototype memristive MAC chip contain-
ing one million phase-change memory (PCM) array, which con-
sists  of  512  world  lines  and  2048  bit  lines,  was  used  to  con-
struct  the  low  precision  computing  unit.  Since  the  current  is
a  non-linear  function  in  the  PCM,  a  ‘pseudo’  Ohm’s  law  was
employed in the MAC operation: 

In ≈ α ⋅ Gn ⋅ f (Vn) . (3)

α
f

Gn

The  is  an  adjustable  parameter  and  by  approximating
the I–V characteristics  of  the  PCM  device,  the  function  can
be  obtained.  An  iterative  and  program-verify  procedure  was
adopted to program the conductance to the target value .

As  the  main  application  of  this  work  was  to  solve  the
dense  covariance  matrix  problems,  a  practical  problem  in
which  the  coefficient  matrix A is  based  on  real-world  RNA
data  was  used  to  test  the  mixed-precision  computer.  By  us-
ing  the  iterative  refinement  method  and  the  ‘pseudo’  Ohm’s
law, the mixed-precision computer is capable of solving a lin-
ear  system  with  5000  equations,  the  achievable  speedup
comes  from  reducing  the  number  of  iterations  need  to  solve
the  problems  and  result  in  overall  computational  complexity
of O(N2) for an N × N matrix, which is usually O(N3) in tradition-
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Fig. 12. (Color online) The application landscape for in-memory computing[10]. The applications are grouped into three main categories based on
the  overall  degree  of  computational  precision  that  is  required.  A  qualitative  measure  of  the  computational  complexity  and  data  accesses  in-
volved in the different applications is also shown.
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al numerical algorithms.
Moreover,  the  energy  efficiency  of  the  mixed-precision

computer  has  been  further  estimated  by  the  research  team.
The  energy  efficiency  of  a  fully  integrated  mixed-precision
computer  is  24  times  higher  than  the  state-of-the-art
CPU/GPU  to  deal  with  64-bit  precision  problems.  Their  res-
ults  also  show that  the  PCM chip  offers  up to  80  times  lower
energy consumption than the field-programmable gate  array
(FPGA)  when  dealing  with  low-precision  4-bit  MAC  opera-
tions.

As this mixed-precision computer can outperform the tra-
ditional von Neumann computer in terms of energy consump-
tion  and  processing  speed.  How  to  extend  this  architecture

and  method  of  solving  linear  equations  to  more  applications
such  as  optimization  problem,  deep  learning,  signal  pro-
cessing,  automatic  control,  etc.  in  the  future  deserves  further
in-depth study.

4.2.  Matrix slice and bit slice

The mixed-precision in-memory computing has been veri-
fied to be able to improve the MAC calculating accuracy,  but
the  scale  of  the  matrix  that  can  be  processed  by  the  MAC
unit  is  still  limited  by  the  scale  of  the  memristive  array.
Moreover,  as  the  array  size  increases,  the  impact  of  intra-
device variation and other problems such as the I-R drop will
come to the fore.

Zidan et  al.  recently  introduced  a  high-precision  general
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Ax = b

Fig. 13. (Color online) Illustration of the hybrid in-memory computing[8]. (a) A possible architecture of a mixed-precision in-memory computing sys-
tem, the high-precision unit based on von Neumann digital computer (blue part), the low precision in-memory computing unit performs analog
in-memory MAC unit by one or multiple memristor arrays (red part) and the system bus (gray part) offering the overall management between
two computing units.  (b)  Solution algorithm for  the mixed-precision system to  solve  the linear  equations ,  the  blue boxes  showing the
high-precision iteration in digital unit as the red boxes presents the MAC operation in the low precision in-memory computing unit.
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Fig.  14.  (Color online) Reprinted from Ref.  [98]:  (a)  A typically time-evolving 2-D partial  differential  system showing the change of the wave at
four different time instances. (b) The sparse matrix can be used to present the differential relations between the coarse grids and can be used to
solve PDEs in numerical computing. (c) Slice the sparse coefficient matrix into the same size patches and only the one contains the active ele-
ments that will  be performed in the numerical computing. (d) Using multiple devices array can extend the computing precision as each array
only presents the number of bits been given. (e) Mapping the elements of n-bits slices into the small memristive array as the conductance. The
MAC operation will be used to accelerate the solution algorithm and the PDEs can be solved.
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memristor  based  partial  differential  equation  (PDE)  solver,  in
which  multiply  small  memristive  arrays  were  used  to  solve
both  the  static  and  time-evolving  partial  differential  equa-
tions[98].

() = 

l

As the partial differential systems usually contain hyper di-
mensional matrices, especially for high-precision solution. For
example,  a  2-D  partial  system  that  is  divided  to  100  ×  100
coarse  grids  can  lead  to  a  coefficient  matrix  with 
elements  (Fig.  14(a)).  More  importantly,  the  coefficient
matrices  of  the  partial  systems  are  typically  sparse  matrixes
(Fig.  14(b)).  That  makes  it  difficult  and  inefficient  to  map  the
whole partial differential coefficient matrix into a single array.
Fortunately,  by  taking advantage of  sparsity,  the partial  coef-
ficient  matrix  can  be  divided  into  equally  sized  slices
(Fig.  14(c)).  Hence,  multiple  small-sized arrays  can be used to
map the slices that contain the active elements (the non-zero
elements).  Besides,  since  all  the  devices  will  be  selected  dur-
ing the MAC operation, the influence of the device non-linear-
ity  is  trivial  in  the  small  array,  and  parasitic  effects  due  to
series  resistance,  sneak  currents  and  imperfect  virtual
grounds  will  also  be  minimized.  Moreover,  using  multiple  ar-
rays can also extend the low-native precision of the memrist-
ive  devices  as  each  array  only  presents  the  given  number  of
bits  (Fig.  14(d)).  This  precision  expansion  approach  is  similar
to  the  bit-slice  techniques  used  in  the  high  precision  digital
computers.  Assuming  that  a  memristor  can  natively  support
a  number l of  resistance  levels,  the  goal  is  thus  to  perform
high  precision  arithmetic  operations  using  base-  numbers,

imitating the use of base-2 numbers in digital computers.
A  complete  hardware  platform  and  software  package

were implemented for the experimental test. Ta2O5–x memris-
tor  arrays were integrated on a printed circuit  board (PCB)  to
store  the  partial  differential  coefficient  matrix  and  execute
the  MAC  operation.  The  Python  software  package  provided
the system level operations including matrix slices, high-preci-
sion  matrix  mapping,  and  the  iteration  process  control.  The
software  package  also  presented  the  interface  between  the
hardware and end user for data input/output. To test the per-
formance of the general  solver,  a Poisson’s equation and a 2-
D  wave  equation  were  used  as  the  static  and  time-evolving
solution  examples.  Besides,  the  PDE  solver  was  inserted  into
the  workflow  of  a  plasma-hydrodynamics  simulator  to  verify
its applicability. Benefiting from the architecture-level optimiza-
tions such as the precision-extension techniques, the PDE solv-
er can perform computations achieving 64-bit accuracy.

The  introduction  of  the  matrix  and  bit  slice  technique
can also substantially improve the energy efficiency of the in-
memory MAC unit to execute sparse matrix computation. The
energy  efficiency  of  a  64-bit  fully  integrated  memristor  mat-
rix  slice  system  was  reported  to  have  achieved  950  GOPs/W,
whereas  the  energy  efficiency  of  the  state-of-art  CPU  and
GPU to process a sparse matrix with the same accuracy require-
ment  is  0.3  GOPs/W  (Intel  Xeon  Phi  7250)  and  0.45  GOPs/W
(NVIDIA Tesla V100)[98]. When executing an 8-bit sparse opera-
tion,  the  energy  efficiency  of  this  fully  integrated  system  is
60.1  TOPs/W,  while  the  energy  efficiency  of  the  Google  TPU
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Fig. 15. (Color online) Reprinted from Ref. [100]: (a) The in-memory computing circuit based on memristor MAC unit to solve the linear equation
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ive and negative elements, the coefficient matrix A will be splinted into two positive matrix B and C which follows . (d) The circuits to cal-
culate the eigenvector equation in one step. Another series of TIAs will be added to the circuit as the feedback conductance  will mapping the
known eigenvalue .
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when performing the same operation is 2.3 TOPs/W[99].
Note that the matrix slice method can only be used for sys-

tems with sparse coefficient matrix with limitation in reconfig-
urability.  Although  the  bit-slice  technique  already  shows  the
ability  to  improve  the  accuracy  of  the  analogue  MAC  opera-
tion,  to  control  multiple  crossbar  arrays  will  increase  the  sys-
tem complexity.

4.3.  One-shot operation for numerical computing

To  further  reduce  the  dependence  on  the  von  Neumann
computer  or  software  package.  Sun et.al recently  demon-
strated  a  pure  in-memory  computing  circuit  based  on  the
memristor MAC unit to process linear algebra problems. With
a  feedback  structure,  the  computing  circuit  has  the  ability  to
implement  solving  linear  equation  in  the  so-called  “one-shot
operation”  and O(1)  time  complexity  can  be  achieved[100].
With the high energy/area efficiency and high process speed,
this  one-shot  computing  circuit  can  be  used  to  solve  the
Schrödinger  equation  and  accelerate  those  classic  numerical
algorithms like the PageRank algorithm[101].

Basically,  solving linear equations usually requires a large
number of iterations in the mathematical solution algorithms.
The in-memory solver based on the numerical algorithms will
also  be  suffering  from  the  performance  degradation  due  to
the  data  transfer  between  the  digital  processing  unit  and  in-
memory processing unit during the iterative cycles. The “one-

shot”  solvers,  on  the  construct,  based  on  the  inevitability  of
coefficient  matrix A and  motivated  by  the  circuit  principles,
can eliminate the limitation of the numerical iteration.

I = GV

V = −G− ⋅ I
Ax = b

A b b = A− ⋅ x

Fig. 15(a) clearly illustrated this proposed in-memory com-
puting circuit. The array performed the MAC operation .
The  operational  amplifiers  (OAs)  were  connected  to  the
memristive  array  to  construct  the  transimpedance  amplifiers
(TIAs).  These TIAs performed the inverse operation 
(Fig. 15(b)). For linear equations  with non-singular coeffi-
cient  matrix ,  the  solution  could  be  written  as .
This  solution  form  satisfied  the  output  of  TIAs  and  became
the basis to solve linear equations in a one-shot operation.

Ax = b
b

I

G x
V

Thus,  to  solve  the  linear  equations  in  this  pro-
posed in-memory computing circuit, the target vector  is con-
verted to the current vector  and be used as the input of the
circuit.  And  the  coefficient  matrix  A  is  mapped  to  the  device
conductance  matrix .  The  solution  vector  is  represented
by  the  output  voltage  vector  under  the  action  of  Ohm’s
law and Kirchhoff current law.

A
A = B − C I

As  device  conductance  can  only  map  positive  elements,
to solve equations with both positive and negative elements,
another  memristive  array  was  connected  to  the  circuit  with
the  inverting  amplifiers  (Fig.  15(c)).  The  coefficient  matrix A
was splinted into two positive matrices, B and C. The matrix 
was implemented by . The circuit input  was also con-
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Fig. 16. (Color online) Emerging analog computing based on (a) phase change memory (PCM)[108]. (b) FeFET[109]. (c) NOR flash[110].
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I = IB − ICstructed  by  and  the  linear  equations  with  negative
elements could be solved.

Ax = λx
Gλ λ

Gλ

−A ⋅
V
Gλ

= −V

Eigenvector  calculation  could  also  be  implemented  in
the  one-step  operation.  To  solve  the  eigenvector  equation

, another series of TIAs were added to the circuits with
the  feedback  resistors  (Fig.  15(d)).  The  eigenvalue  was
mapped to  the resistance value .  Based on the circuit  prin-
ciples,  the  output  of  the  eigenvector  circuit  could  be  written

as ,  which  satisfied  the  solution  of  the  eigen-

vector equation.
A  3  ×  3  Ti/HfO2/C  memristive  array  was  experimentally

used  to  construct  these  one-shot  computing  circuits.  The
real-world  data  was  also  used to  test  the  performance of  the
circuits,  a  100 ×  100 memristive  array  based on a  memristive
device model was constructed for simulation to solve the 1-D
steady-state  Fourier  equation.  This  partial  differential  equa-
tion  was  converted  to  a  linear  form  by  the  finite  difference
method.  A  1-D  time-independent  Schrödinger  equation  also
was  solved  in  the  simulation  with  the  same  scale  memristive
array  to  test  the  performance  of  the  eigenvector  solution.
Moreover,  the  eigenvector  computing  circuit  can  accelerate
the  PageRank  algorithm  with  significant  improvements  in
speed and energy efficiency  for  practical  big-data  tasks,  such
as the Havard 500 data set.

λM,min

A

λM,min

Based on the feedback amplifiers theory and the circuit dy-
namics, further analysis results showed that only if the minim-
al  eigenvalue  (or  real  part  of  eigenvalue)  of  the  coeffi-
cient  matrix  is  positive,  the  system  of  the  linear  equations
can  be  solved  by  the  circuit  in Fig.  15(a).  The  computation
time  is  free  of  the N-dependence,  rather  determined  solely
by .  The  time  complexity  of  solving  model  covariance
matrices is O(1). The computation time of the eigenvector solu-
tion  circuit  also  shows  no  dependence  on  the  matrix  size N,
and relies solely on the mismatch degree of eigenvalue imple-
mentation  in  the  circuit.  Thus,  the  time  complexity  of  the  ei-
genvector direct solver is also O(1)[102−104].

As  the  computing  time  is  free  of  the N-dependence,  the
“one-shot  solver”  can  significantly  boost  the  computing  per-
formance and realize  high energy efficiency,  especially  in  the
scene  of  processing  data-intensive  tasks.  Take  the  eigen-
vector  solution  circuit  as  an  example,  its  energy  efficiency
achieves  362  TOPs/W  when  running  the  PageRank  algorithm
for a 500 × 500 coefficient matrix. Compared to the energy effi-
ciency of 2.3 TOPS/W of the tensor processing unit  (TPU),  the
in-memory  direct  solver  provides  157  times  better  perform-
ance.

Although these “one-shot” circuits require a high-perform-
ance  device  to  improve  the  computing  accuracy,  this  work
shows  great  potential  to  process  numerical  problems  with
high process speed (O(1) time-complexity) and low energy con-
sumption.  This  circuit  is  particularly  suited  to  those  scenarios
that  require  high  process  speed  and  low  energy  consump-
tion  but  low  precision.  However,  as  the  implementation  of
the one-shot computing circuit is hardwired, the scalability of
these computing circuits should be further improved.

4.4.  Short conclusion

Although  the  approximate  solutions  are  sufficient  for
many  computing  tasks  in  the  domain  of  machine  learning,
the  numerical  computing  tasks,  especially  the  scientific  com-
puting tasks pose high requirement on high precision numeric-

al  results.  To  evaluate  the  overall  performance  of  an  in-
memory system for numerical computing, the system complex-
ity,  computational  time complexity,  computing accuracy,  and
energy/area efficiency need to be considered in a comprehens-
ive manner.

Taking  advantage  of  sparsity,  the  matrix  slice  processor
has  shown  a  good  potential  to  process  a  giant  sparse  matrix
by  using  multiply  small-scale  arrays  with  high  processing
speed and low energy consumption. Combining this with the
traditional  bit-slice  technique,  a  high  precision  solution  can
be  obtained.  This  technique  can  also  be  used  to  expand  the
application of the traditional flash memory to process numeric-
al missions[105].  However, the inaccuracy arising from the ana-
logue summation still remains as the matrix scale becomes lar-
ger.  Besides,  bit-slicing  and  matrix  slicing  operations  require
additional  peripheral  circuitry  and  thus  reduces  the  integra-
tion density of the computing system.

By combining a von Neumann machine with the memrist-
ive MAC unit, the mixed-precision in-memory computing archi-
tecture  already  overperforms  the  CPU/GPU-based  numerical
computers in terms of the energy consumption and computa-
tion  speed,  with  the  same  accuracy  level  to  process  giant
non-sparse  matrices.  The  mixed-precision  system  still  suffers
from  the  fact  that  the  data  needs  to  be  stored  both  in  the
memristor  array and the high-precision digital  unit.  Addition-
al  resources  are  needed  to  solve  the  problem.  Although
O(N2) computation time complexity can be achieved, it still de-
pends on the matrix scale.

With the fastest process speed and highest energy/area ef-
ficiency, the one-shot in-memory computing architecture is an-
other good example of the powerful capability of the memrist-
ive MAC unit, and can even outperform the quantum comput-
ing  accelerator  in  computation  complexity[106].  This  architec-
ture  can  also  satisfy  the  approximate  solution  for  machine
learning  problems  such  as  the  linear  regression  and  logic  re-
gression  problems[107].  However,  the  one-shot  computing  re-
quires  a  high  performance  memristive  device  with  precise
conductance  programming  and  high I–V linearity.  Moreover,
the  hardwired  circuits  at  this  stage  limits  the  system  reconfi-
gurability.

For further development of the memristor-based numeric-
al  computation  system,  the  first  issue  is  to  improve  the  pro-
gramming  precision  of  the  memristors.  Besides,  at  the  al-
gorithmic  level,  how  a  range  of  important  numerical  al-
gorithms such as matrix factorization can be implemented effi-
ciently in a memristive MAC unit remains a challenge. These re-
cent  breakthroughs  mainly  focused  on  the  non-singular  lin-
ear equations, we believe the solution of singular linear equa-
tions,  non-linearity  equations,  and  ordinary  differential  equa-
tions,  etc.  also  deserve  attention.  After  that,  we can envisage
the construction of a universal equation solver and even devel-
op it to a universal numerical processor.

5.  MAC operation in other nonvolatile devices

As one of the representatives of the emerging non-volat-
ile devices,  the memristor,  based on the analog property and
the  parallel  MAC  computing,  demonstrates  the  hardware  ac-
celeration  in  different  fields,  from  low-precision  neural  net-
works  to  numerical  analysis  with  high  precision  require-
ments.  Since the core idea is  to store and update nonvolatile
conductance  states  in  a  high-density  nano-array,  it  is  natur-
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ally  easy  to  think  that  other  nonvolatile  devices  could  be
used  to  perform  similar  functions,  although  based  on  differ-
ent physical mechanisms.

In  past  decades,  many  other  types  of  non-volatile  devi-
ces,  such  as  phase  change  memory  (PCM),  magnetic  tunnel-
ing  junctions,  ferroelectric  field  effect  transistors  (FeFETs),
and  floating  gate  transistors  have  been  intensively  studied
for  high-performance  memory  application.  Recently,  many
studies have proved that these devices can perform MAC oper-
ations and thus accelerate computing.

Phase  change  memory  (PCM)  works  by  the  transforma-
tions  of  the  crystalline  phase  (LRS)  and  amorphous  phase
(HRS)  of  the  chalcogenide  material  as  its  basic  principle.  The
RESET  process  of  PCM  is  relatively  abrupt  due  to  the  melting
and rapid cooling of the crystalline, and the naturally asymmet-
ric  conductance  tuning  leads  to  a  more  complex  synaptic
unit. To realize the bi-directional analog conductance modula-
tion  as  a  synaptic  device,  generally,  two  PCMs  are  seen  as
one  synaptic  unit,  while  only  the  analog  SET  process  is  used
to implement the LTP or  LTD process[111, 112].  By  this  method,
Burr et  al.  experimentally  demonstrated  a  three-layer  neural
network  based  on  164  885  PCM  synapses,  while  the  2-PCM
units  showed a  symmetric,  linear  conductance response with
a  high  dynamic  range[113].  Further,  a  ‘2PCM  +  3T1C’  unit  cell
was proposed with both more dynamic range and better  up-
date  symmetry[108],  thus  making  software-equivalent  training
accuracies for MNIST, CIFAR-10, and even CIFAR-100 by a simu-
lated MLP model (Fig. 16(a)).  However, such PCM-based func-
tional units are relatively area cost, greatly lowering the integ-
ration  density.  Furthermore,  thermal  management,  resist-
ance  drift,  and  high  RESET  current  for  PCM  have  to  be  prop-
erly solved in practical applications[114, 115].

Ferroelectric devices tune the device resistance by revers-
ibly switching between the two remnant polarized states.  Fe-
FET  is  a  three-terminal  device  and  uses  a  ferroelectric  thin
film as the gate insulator, which is highly compatible with the
CMOS process. The multi-domain polarization switching capab-
ility  of  a  polycrystalline  ferroelectric  thin  film  can  be  utilized
to modulate FeFET channel conductance,  thus the multi-con-
ductance  levels  can  be  used  in  analog  computing[64, 116, 117].
Jerry et  al.  demonstrated  a  FeFET-based  synaptic  device  us-
ing  Hf0.5Zr0.5O2 (HZO)  as  the  ferroelectric  material[109].  By  ad-
justing  the  applied  voltages,  the  LTP  and  LTD  curves  of  Fe-
FET  exhibited  excellent  linearity  and  symmetry,  as  shown  in
Fig. 16(b). Xiaoyu et al. proposed a 2T-1FeFET structure in nov-
elty.  Volatile  gate  voltage  of  FeFET  is  used  to  represent  the
least  significant  bits  for  symmetric  and  linear  update  during
the  training  phase,  and  non-volatile  polarization  states  hold
the  information  of  most  significant  bits  during  inference[118].
Although the area cost is relatively high, the in-situ training ac-
curacy can achieve ~97.3% on MNIST dataset and ~87% on CI-
FAR-10  dataset,  respectively,  approaching the  ideal  software-
based  training.  However,  FeFET  would  require  higher  write
voltage to switch the polarization of the ferroelectric layer, gen-
erally.  A  customized  design  of  split-gate  FeFET  (SG-FeFET)
with  two  separate  external  gates  was  proposed  by  Vita et
al.[119].  During  write  operation  (program/erase),  both  gates
are  turned  on  to  increase  the  area  ratio  of  ferroelectric  layer
to  insulator  layer,  resulting  in  lower  write  voltage.  Despite
these,  what  can  be  noticed  is  that  when  FeFET  needs  to  be

scaled down for high-density integration, further device engin-
eering is  needed to maintain the multilevel  conductance due
to the domain size potentially  being too limited to retain the
good analog behavior.

The  floating-gate  transistors  modulate  the  channel  cur-
rent  by  controlling  the  amount  of  charge  stored  in  the  float-
ing  gate.  The  channel  conductance  could  represent  the  ana-
log synaptic value.  NOR flash and NAND flash have been ma-
turely used in neural network hardware implementations. Rely-
ing  on  mature  memory  peripheral  circuits  and  mass  produc-
tion  ability,  some  neuromorphic  chips  based  on  flash
memory  have  been  demonstrated.  Representatively,  Lee et
al.  have  put  forward  a  novel  2T2S  (two  transistors  and  two
NAND  cell  strings)  synaptic  device  capable  of  XNOR  opera-
tion based on NAND flash memory, and implemented a high-
density  and  highly  reliable  binary  neural  network  (BNN)
without  error  correction  codes[120].  The  development  of  ex-
tremely  dense,  energy-efficient  mixed-signal  VMM  circuits
based  on  the  existing  3D-NAND  flash  memory  blocks,
without any need for their modification, has also been contrib-
uted  from  Mohammad et  al.[121].  Guo et  al.  reported  a  proto-
type  three-layer  neural  network  based  on  embedded  non-
volatile  floating-gate  cell  arrays  redesigned  from  a  commer-
cial  180nm NOR flash memory,  as  shown in Fig.  16(c)[110].  For
the  MNIST  recognition  task,  the  classification  of  one  pattern
takes < 1 μs  time and ~20 nJ  energy –  both numbers  > 103×
better  than  those  of  the  28-nm  IBM  TrueNorth  digital  chip
for  the  same  task  at  a  similar  fidelity.  Xiang et  al.  also  have
made an effort  at  NOR flash-based neuromorphic  computing
to  eliminate  the  additional  analog-to-digital/digital-to-ana-
log (AD/DA) conversion, improve the reliability of multi-bit stor-
age[122, 123].  Compared  to  memristors,  flash  memory  gains
much  fewer  benefits  on  the  cell  size,  operation  voltage,  and
program/erase endurance although the mature fabrication pro-
cess and suffers from the same scaling dilemma as a tradition-
al transistor does.

6.  Conclusions and outlook

MAC  operation  based  on  memristors  or  memristive
devices  is  now  becoming  a  prominent  subject  of  research  in
the  field  of  analog  computing.  In  this  paper,  we  have  dis-
cussed  two  niche  areas  of  applications  of  this  low  computa-
tion complexity, energy-efficient in-memory computing meth-
od based on physical laws. Memristive neural network acceler-
ators  have  been  intensively  demonstrated  for  various  net-
work  structures,  including  MLP,  CNN,  GAN,  LSTM,  etc.,  with
high tolerance to the imperfections of the memristors. In addi-
tion,  significant  progress  has  been  made  in  numerical  matrix
computing with memristive arrays, which sets a solid founda-
tion for future high-precision computation. Several representat-
ive  memristive  applications  have  been  illustrated  in Table  1
to show the superiority at efficiency.

Further  studies  are  needed  to  understand  the  physics  of
memristors  and  optimize  the  device  performance.  While  the
traditional  application  of  memristors  in  the  field  of  semicon-
ductor memory focuses on the binary resistive switching char-
acteristics,  MAC  operation  and  analog  computing  put  for-
ward  high  requirements  on  the  analog  characteristics  of  the
device. Unfortunately, the device operation relies on the phys-
ical  mechanism of  conductive filament formation and disrup-
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tion,  making  it  very  difficult  to  obtain  high-precision,  highly
uniform,  linear  and  symmetric  conductance  regulation.  Al-
though  for  neural  networks,  some  degree  of  conductance
write/read  variation  and  noise  and  other  reliability  issues
(such  as  yield,  state  drift,  and  device  failure)  could  be  toler-
ated, for numerical computation, these flaws all lead to a dra-
matic reduction in computation accuracy. Besides, the conduct-
ance  tuning  operation,  power  consumption,  scalability,  etc.
all need to be improved before the memristor can be taken a
step  forward  to  practical  applications.  For  this  purpose,  ad-
vances in both theoretical and experimental knowledge are re-
quired, which not only help with better control of the conduct-
ive  filament  evolution  and  stability  but  also  provide  guid-
ance  in  material  selection,  device  structure  optimization,  and
fabrication  process  development.  In  other  words,  a  complete
picture  of  the  resistive  switching  mechanisms  will  be  desir-
able.  First  principle  models  to  predict  and  reveal  the  nature
of filaments are essential. Experimental probes that can uncov-
er  the  real-time  dynamic  electronic  and  ionic  processes  un-
der external stimulus are also valuable to form an in-depth un-
derstanding. Beyond the fundamental device level, efforts are
required to scale it up to array and chip-scale with high yield.
The  intra-device  variation  should  be  well  controlled,  the  I-R
drop issue and other parasitic effects should be taken into ac-
count.  The  integration  with  specially  designed  peripheral  cir-
cuits  for  targeted  applications,  such  as  compact  neuron  cir-
cuits,  analog-digital  and  digital-analog  converters,  is  of
equally importance.

Meanwhile,  the  design  and  optimization  of  the  matrix
computation  algorithm  require  more  dedicated  attention  to
make them synergistic with the development of high-perform-
ance  devices.  First,  deep  learning  and  other  machine  learn-
ing  techniques  have  pushed  AI  beyond  the  human  brain  in
some  application  scenarios  like  image  and  speech  recogni-
tion,  but  the  scale  of  the  network  is  too  large  from  a  hard-
ware implementation perspective, requiring the storage of net-
work parameters far beyond the capabilities of today’s memris-
tor  technology.  As  a  result,  the  development  of  the memrist-
ive  network  compression  method,  such  as  quantization  and
distillation,  becomes  particularly  important,  especially  for
edge-end  IOT  devices  with  limited  computing  resources.
Secondly,  whether  we  can  develop  universal  equation  solv-
ers  based  on  memristor  arrays,  or  even  scientific  computing
cores,  remains  an  open  question.  It  is  certainly  easier  to  start

with some basic and important matrix computations. When it
comes  to  more  complex  and  large-scale  problems,  it  still
takes longer and more committed exploration. It will be inter-
esting  to  see  numerical  computing  processing  unit  built  by
memristors to complement or replace the high-precision CPU
or GPU in specific applications. In addition, the re-configurabil-
ity  of  the  computing  system  would  be  another  direction
worth exploring. This means the “soft” neural network accelera-
tion and the “hard” numerical computing can be performed ar-
bitrarily  in  the  same  memristor-based  in-memory  computing
system, depending on the needs and definition of the user.

Overall,  analog  computing  in  memristive  crossbar  arrays
have proven to  be  a  promising alternate  to  existing comput-
ing  paradigms.  It  is  believed  that  memristors  and  their  in-
triguing in-memory  computing capability  will  continue to  at-
tract increasing attention in the coming era of artificial intelli-
gence.  We  point  out  here  that  only  through  concerted  effort
in the device, algorithm, and architecture levels can we see ap-
plied  memristive  computing  systems  in  everyday  life  in  the
2020s.
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