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Abstract: On the one hand, accelerating convolution neural networks (CNNs) on FPGAs requires ever increasing high energy effi-
ciency in the edge computing paradigm. On the other hand, unlike normal digital algorithms, CNNs maintain their high robust-
ness  even with  limited timing errors.  By  taking advantage of  this  unique feature,  we propose to  use  dynamic  voltage and fre-
quency  scaling  (DVFS)  to  further  optimize  the  energy  efficiency  for  CNNs.  First,  we  have  developed  a  DVFS  framework  on  FP-
GAs.  Second,  we  apply  the  DVFS  to  SkyNet,  a  state-of-the-art  neural  network  targeting  on  object  detection.  Third,  we  analyze
the impact of DVFS on CNNs in terms of performance, power, energy efficiency and accuracy. Compared to the state-of-the-art,
experimental  results  show that  we have achieved 38% improvement  in  energy efficiency without  any loss  in  accuracy.  Results
also show that we can achieve 47% improvement in energy efficiency if we allow 0.11% relaxation in accuracy.
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1.  Introduction

FPGA has become a promising platform for edge comput-
ing  in  recent  years,  given  its  energy  efficiency  compared  to
GPU and flexibility compared to ASICs[1]. There are many previ-
ous works such as[2–13] that present various methods of optim-
izing architecture or design flow. However, none of them spe-
cifically  optimize  energy  efficiency.  Dynamic  voltage  and  fre-
quency  scaling  (DVFS)  has  been  extensively  applied  as  a  sys-
tem-level  methodology  to  optimize  the  system  execution.
Through  judiciously  scaling  up  or  down  the  execution
voltage  and  speed  of  the  processing  units,  DVFS  effectively
achieves  throughput  maximization,  temperature  manage-
ment, application quality maximization, and energy minimiza-
tion.  Although  the  delay  of  the  combinational  logic  will  in-
crease  as  the  voltage  decreases,  which  may  bring  a  certain
chance of error during operation, the CNN itself is robust to er-
rors[4–17].  Even  if  a  small  number  of  neurons  get  wrong  val-
ues in the process of inference, it  does not affect the final ac-
curacy.  In  this  context,  combining  CNN  and  DVFS  is  an  ideal
method  to  extrude  the  potential  of  FPGAs  to  optimize  either
performance or energy efficiency.

To  add  the  DVFS  support  to  CNN  accelerators,  a  flexible
DVFS  platform  is  needed.  Previous  works  have  focussed  on
adding the DVFS support to commercial FPGAs, but their solu-
tions  for  DVFS  have  various  limitations.  For  example,  the
DVFS module consumes too much logic resources and thus af-

fects  timing  and  power[18].  The  scaling  resolution  is  not  high
enough,  or  the  scaling  time  is  too  long[19].  To  solve  these  is-
sues,  we  develop  a  novel  DVFS  framework  with  high  resolu-
tion  and  flexibility  as  well  as  low  area  overhead  and  scaling
time to implement a DVFS system quickly.  Our main innovat-
ive technical contributions are as follows:

(1)  We  propose  a  framework  for  fine-grained  DVFS  on
state-of-the-art FPGA devices.

(2)  We combine the framework with SDSoC and then ap-
ply it to SkyNet, a lightweight CNN for object detection.

(3)  We  analyze  the  impact  of  DVFS  on  performance,
power, energy efficiency, and accuracy.

(4) We achieve 54% improvement in performance, 38% im-
provement in energy efficiency, and 106% improvement in uni-
fied energy efficiency (UEE) without any loss in accuracy com-
pared  to  the  original  SkyNet.  If  we  relax  the  requirement  on
the  accuracy,  we  can  achieve  56%  improvement  in  perform-
ance,  47%  improvement  in  energy  efficiency,  and  121%  im-
provement  in  UEE  at  the  cost  of  0.11%  decrease  in  intersec-
tion over union (IoU).

(5)  We  develop  a  DVFS  policy  basing  on  the  measured
metrics targeting on real-time applications in realistic scenari-
os.  With  this  DVFS  policy,  the  average  power  has  been  re-
duced by 30% compared to the original design.

Section  2  presents  the  related  works  on  CNN  and  DVFS.
Section  3  defines  a  power  optimization  problem  in  the  scen-
ario of edge computing. Section 4 introduces the DVFS frame-
work as well as the DVFS policy for energy efficiency optimiza-
tion.  Section  5  describes  how  to  combine  the  DVFS  frame-
work with SDSoC and the architecture of the system after ap-
plying  DVFS  to  CNN  accelerators.  Section  6  gives  the  experi-
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mental results and analyzes the impact of DVFS on the origin-
al  CNN  accelerator.  It  also  presents  the  experimental  results
of the DVFS policy. Finally, Section 7 concludes the paper.

2.  Related work

2.1.  CNN

For edge applications,  there are many previous works on
optimizing  the  architecture  of  the  FPGA-based  CNN  accele-
rator.  Ma[4] presents  an  RTL-level  CNN  compiler  that  auto-
matically  generates  customized  FPGA  hardware  for  the  infer-
ence tasks  of  various  CNNs,  in  order  to  enable  high-level  fast
prototyping  of  CNNs  from  software  to  FPGA.  A  program-
mable  and  flexible  CNN  accelerator  architecture  together
with  a  data  quantization  strategy  and  compilation  tool  is
introduced  in  Ref.  [8].  The  authors  of  Ref.  [6]  present  an  effi-
cient  hardware  accelerator  design  of  deep  residual  learning
algorithms.  In  Ref.  [5],  they quantitatively  analyze and optim-
ize  the  design  objectives  of  the  CNN  accelerator  based  on
multiple  design  variables.  In  Ref.  [7],  an  architecture  named
tile-grained  pipeline  architecture  (TGPA)  for  low  latency  CNN
inference  is  proposed.  Wei[20] proposes  a  layer  conscious
memory  management  framework  for  FPGA-based  CNN  hard-
ware accelerators.

Recently,  software–hardware  co-design  has  gained  more
and more attention.  Ding[21] proposes REQ-YOLO,  a  resource-
aware,  systematic  weight  quantization  framework  for  object
detection,  considering  both  algorithm  and  hardware  re-
source aspects in object detection. Zhang[22] and Hao[23] raise
a novel and practical bi-directional co-design approach, includ-
ing a bottom–up DNN model design strategy together with a
top–down flow for  DNN accelerator  design.  It  enables  a  joint
optimization of both DNN models and their deployment con-
figurations  on  FPGAs.  Also,  Hao[23] builds  an  automatic  co-
design flow, including an Auto-DNN engine to perform a hard-
ware-oriented DNN model search,  as well  as an Auto-HLS en-
gine to generate synthesizable C code of the FPGA accelerat-
or  for  explored  DNNs.  However,  all  of  the  works  mentioned
above ignore specific energy efficiency optimization.

Nunez-Yanez[24] proposes  an  energy  proportional  frame-
work  with  adaptive  voltage  and  frequency  scaling  and  apply
it  to binary neural networks (BNN) for classification. However,
BNN  has  very  limited  precision  and  is  almost  unavailable  in
practical applications. What is more, Nunez-Yanez[24] lacks ex-
ploration  of  actual  scenes  in  an  edge  computing  context.  In
this  paper,  we  combine  our  fine-grained  DVFS  framework
with CNN based object detection accelerators to perform spe-
cific  optimization  on  energy  efficiency.  Besides,  we  define
two  kinds  of  actual  scenarios  in  edge  computing  and  per-
form  specific  optimization.  To  demonstrate  the  effectiveness
of  DVFS,  we  choose  SkyNet[25] as  a  case  study.  SkyNet  won
the championship in Design and Automation Conference-Sys-
tem  Design  Contest  2019  (DAC-SDC2019),  a  low  power  ob-
ject detection challenge in images captured by unmanned aeri-
al  vehicles  (UAVs).  SkyNet  delivers  0.716  IoU  and  25.05  FPS
on  an  Ultra96  FPGA.  The  reason  why  we  choose  SkyNet  as  a
case study is  that SkyNet represents the highest level  of  CNN
implementation  on  FPGAs  considering  performance  and  en-
ergy efficiency. We want to develop a DVFS based method to
further  tap  its  potential  and  achieve  better  improvement  in
both performance and energy efficiency.

2.2.  DVFS

DVFS  has  been  proven  to  be  a  popular  and  efficient  sys-
tem-level  methodology  to  optimize  system  execution  met-
rics, such as throughput, power, energy, temperature, reliabil-
ity,  and  QoS.  For  example,  Weissel[26] proposes  to  adjust  the
frequency in response to application behavior changes, to op-
timize  energy  efficiency  for  general-purpose  CPU  systems.
The authors  of  Ref.  [27]  empirically  reveal  that  on a  commer-
cial smart phone platform, energy consumption strongly correl-
ates its CPU frequency, and exhibits an optimal operating fre-
quency  for  energy  minimization.  Huang et  al.[28] propose  to
maximize throughput and prevent system overheating by care-
fully  interleaving  the  hot  and  cool  tasks  and  adjusting  the
task  execution  frequencies.  QoS  maximization  through  effi-
cient DVFS can be found in Refs. [29, 30]. By leveraging task ad-
aptability, the output quality can be dynamically adjusted un-
der  temperature  constraints,  and  judiciously  applying  DVFS
can maximize the quality. To enhance system reliability, the au-
thors propose to carefully tune the frequency of CPUs to con-
trol  temperature  overflow  to  minimize  the  thermal  cycling
that  stresses  chips[31].  While  the  evaluation  of  DVFS  efficacy
on those works is largely based on simulations, a realistic plat-
form  like  ours  that  enables  quick  system  synthesis  and  DVFS
algorithm evaluation is highly desirable.

There  have  been  existing  works  combining  CNN  and
DVFS  on  ASICs,  CPU,  or  GPU.  Motamedi[12] develops  a  prin-
cipled  approach  and  a  data-driven  analytical  model  with
DVFS to optimize the granularity  of  threads during CNN soft-
ware  synthesis.  Bong[32] proposes  a  low-power  CNN-based
face  recognition  system  for  user  authentication  in  smart
devices with DVFS. Santoro[33] uses a performance-power ana-
lytical  model  fitted  on  a  parameterized  implementation  of  a
CNN  accelerator  in  a  28-nm  FDSOI  technology  to  explore
large design space and to obtain the Pareto points that maxim-
ize  the  effectiveness  of  DVFS  in  the  sub-space  of  throughput
and  energy  efficiency.  Our  work  is  the  first  one  to  combine
CNN-based  object  detection  with  DVFS  on  FPGA  to  our  best
knowledge.

On the hardware aspect, many DVFS supported logic and
systems have been developed. Widely adopted frequency scal-
ing  approaches  include  phase-locked-loop[34] and  delay-
locked-loop[35]. Brynjolfson and Zilic propose a clock manage-
ment  scheme  named  DPCP  on  FPGA  platforms[36].  To  pro-
duce dynamically scaled frequency, state-of-the-art FPGA plat-
forms  (Xilinx  7  Series  or  later)  adopt  a  hybrid  mixed-mode
clock  manager  (MMCM)  +  PLL  architecture.  The  authors  of
Ref.  [37] propose performance scaling on Virtex-7, where DFS
is  realized  by  employing  an  external  programmable  oscillat-
or  controlled  by  a  Picoblaze  processor.  In  addition  to  works
on  traditional  FPGAs,  there  exist  other  works  that  implement
system-level  optimization  on  ZYNQ  using  DVFS.  Beldachi[38]

raises  a  method  for  accurate  power  control  and  monitoring
on ZYNQ device,  Hosseinabady[39] investigates the viability of
physical  power  gating  FPGA  devices  that  incorporate  a
hardened  processor  in  a  different  power  domain,  but  they
only implemented several computing units such as fp32mult,
IIR,  DCT,  etc.,  rather  than  an  accelerator.  In  order  to  solve
these  problems,  in  this  paper  we  propose  a  DVFS  framework
with  high  scaling  range  and  resolution  as  well  as  low  scaling
time.  What  is  more,  we  combine  the  DVFS  framework  with
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high-level synthesis tool, SDSoC, making it possible to build a
system  with  DVFS  support  in  a  complete  software  develop-
ment flow.

3.  Problem definition

Edge  computing  refers  to  an  open  platform  that  integ-
rates network, computing, storage, and application core capab-
ilities  on  the  side  close  to  the  data  source,  providing  near-
end  services.  The  edge  computing  platform's  power  supply
conditions  are  far  less  than  the  cloud  computing  platform,
which put higher requirements on the energy efficiency ratio
of  edge  computing  devices.  For  the  object  detection  task  in
the  edge  computing  scenario,  there  are  generally  two  cases.
The first application scenario pursues the least amount of en-
ergy  required  to  process  each  frame  of  data.  For  example,  in
a home security scenario, only when the sensor detects a mov-
ing  object,  will  the  camera  take  a  picture  and  wake  up  the
edge computing platform to process the data. Otherwise, the
edge  computing  platform  can  work  in  a  sleep  state.  In  the
second application scenario, data is generated at a fixed rate,
and  the  goal  is  to  minimize  the  average  power  consumption
throughout the work period. For instance, in autonomous driv-
ing,  the  camera  produces  images  at  a  fixed  rate,  and  the
edge  computing  platform  has  to  be  running  at  all  times.  In
this  paper,  we  want  to  develop  a  DVFS  method  that  signific-
antly improve the energy efficiency of object detection on FP-
GA-based edge computing platform.

4.  DVFS framework

μ

Fig.  1 shows  the  system  architecture  of  our  DVFS  frame-
work, where DVS module is implemented by a power manage-
ment IC (PMIC) that is responsible for controlling and monitor-
ing the switching regulators. The switching regulators are con-
nected to  different  components  on the FPGA,  such as  PS,  PL,
IO  ports,  and  BRAM.  The  DFS  module  is  a  clock  generator
that  generates  clock  signals  for  the  accelerators  on  the  pro-
grammable  logic.  Our  platform provides  the  capability  of  dy-
namic  frequency  and  voltage  scaling  with  high  resolution,
wide  range,  and  low  scaling  time.  Users  can  scale  frequency
from 20 to 400 MHz at  a step size of  1 MHz in 3 s  and scale
voltage from 650 to 850 mV at the step size of 10 mV in 2 ms.
Besides, power monitoring APIs for various power rails on FP-
GA  are  also  provided  in  our  framework.  The  proposed  DVS
framework  is  coarse-grained  because  modern  FPGAs  do  not
support multiple voltages in different domains. The power sup-
ply  of  all  the  slices  is  connected  together.  Therefore  it  is  im-
possible to implement the module-level  DVS method on cur-

rent  FPGA  devices  up  till  now.  In  this  section,  we  will  intro-
duce  how  the  DVS  and  DFS  are  implemented  in  hardware
and then discuss how to access them in Linux OS. The frame-
work  supports  a  series  of  Zynq  7000  and  Zynq  UltraScale+
series  FPGA  boards  including  ZC702,  ZC706,  ZCU102,  etc.  at
the moment. To be specific, we use ZCU104 as an example in
this paper.

4.1.  Dynamic frequency scaling

The Zynq 7000 and Zynq UltraScale+ series  FPGA mainly
has  two  kinds  of  clock  sources,  FCLK  on  the  PS  and  MMCM
on the PL.  The FCLK has the advantage of  low area overhead
and existing driver in Linux. However, it can only provide lim-
ited  frequency  points.  Therefore,  we  choose  MMCM  as  the
clock  generator  in  our  design  since  as  it  is  armed  with  a  lar-
ger  range  and  higher  resolution.  As  shown  in Fig.  2,  the  in-
put  clock  is  firstly  multiplied  and  then  divided  by  VCO  in
MMCM. The VCO output is  further  divided to generate differ-
ent  frequencies  for  different  components.  The  output  fre-
quency can be calculated by the following equation, 

FOUT = FCLKIN ×
M

D × O
, (1)

where M, D,  and O can  be  configured  through  dynamic  scal-
ing  port  available  in  the  MMCM  blocks  and  new  frequencies
are  generated  at  run-time.  As  shown  in Fig.  3,  the  configura-
tion  information  and  the  reset  signal  are  sent  to  the  MMCM
via an AXI4-Lite interface and then saved in the register map.
MMCM retrieves the configuration from the register map and
resets to desired frequency accordingly.

M

FCLKIN ×M ÷ D ÷ O =  × F ÷ . ÷  ÷  = F

μ

Fig.  4 shows  the  driver  for  DFS.  The  clock  generator  is
mapped to a device firstly so that it  can be accessed in Linux
userspace,  then M, D,  and O are  calculated  according  to  the
target  frequency.  The clock  input  of  the  MMCM is  connected
to  the  FCLK  on  the  PS,  and  the  FCLK  is  set  to  100  MHz.  As
shown in Eq. (1), the  can be the fractional number that is a
multiple  of  0.25.  Thus  we  can  divide  the  target  frequency  by
4.0.  As  shown  in  Eq.  (1),  the  output  frequency  is

 (MHz)  and
the  resolution  is  1  MHz.  Benefit  from  high  bandwidth  and
low  latency  on-chip  bus  between  the  PS  and  the  PL,  it  takes
only 3 s for each frequency scaling operation.

4.2.  Dynamic voltage scaling

The  power  management  bus  (PMBus)  is  an  open  stand-
ard  power-management  protocol,  which  is  compatible  with
the I2C protocol  at  the physical  level.  This  flexible  and highly
versatile standard allows for communication between devices
based  on  both  analog  and  digital  technologies  and  provides
true  interoperability,  which  will  reduce  design  complexity
and  shorten  the  time  to  market  for  power  system  designers.
The-state-of-the-art FPGA boards usually adopt power regulat-
ors  and  a  PMBus-compliant  system  controller  to  supply  core
and auxiliary voltages as shown in Fig.  5.  For instance,  ZC702
and  ZC706  use  the  Texas  Instrument  (TI)  UCD92x,  ZCU100
and  ZCU102  use  the  TI  INA226,  and  ZCU104  uses  the  Infin-
eon  IRPS5401.  All  of  the  PMICs  mentioned  follow  the  same
power management protocol, thus our DVS framework is com-
patible  with  a  wide  variety  of  FPGA  boards  with  minimal
changes.  The  power  management  IC(PMIC)  gets  configura-
tion information from the FPGA through the I2C bus and con-
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trols  the  output  voltage  of  each  switching  regulator.  In  the
meantime,  the  PMIC monitors  the  voltage and the  current  of
each switching regulator and reports the information back to
the FPGA through the I2C bus.

As  shown  in Fig.  6,  there  are  two  IRPS5401s  on  the
ZCU104  board,  both  of  which  are  connected  to  PCA9548,
which is an I2C 1-to-8 bus switch external to the device. Then
PCA9548  is  connected  to  the  PS  I2C  controller  via  MIO.
IRPS5401  can  control  and  monitor  up  to  ten  voltage  rails  on
board, including VCC12 and VCCINT. The former is the power
input  of  the  whole  board and the  latter  is  the  PL  side  supply
voltage.  This  gives us the possibility  to scale the accelerator's

voltage  and  frequency  in  real-time.  Besides,  IRPS5401  can
also  monitor  the  power  consumption  of  each  power  rail  and
feedback the information through PMBus. There are two altern-
atives  to  communicate  with  the  PMIC  internally,  as  both  the
PL  and  the  PS  banks  have  access  to  the  PMIC.  The  hardware
method is to implement an AXI I2C controller in PL, while the
software  method  connects  the  MIO  pins  directly  to  the  PS.
We  chose  the  software  method  because  not  only  does  it  not
have any area overhead but it can also take advantage of the
mature I2C driver embedded in the Linux kernel.

Fig.  7 demonstrates  the  driver  for  DVS.  Since  the  PMBus
protocol  is  compatible  with  the  I2C  protocol  at  the  physical
level,  we  can  leverage  the  integrated  I2C  driver  in  Linux  to
communicate with the PMIC. The output voltage can be modi-
fied  by  writing  PMBus  commands  to  the  PMIC  in  a  fixed  or-
der  according  to  the  PMBus  protocol.  Because  of  the  low
speed  of  I2C  and  more  commands  to  transfer,  the  voltage
scaling  takes  about  2  ms  each  time.  On  the  other  hand,  the
power  consumption  can  also  be  accessed  in  Linux  in  a  simil-
ar way in which the PMIC is configured.
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Fig. 4. Pseudocode of the driver for dynamic frequency scaling.
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In  summary,  at  the  hardware  level,  the  proposed  DVFS
framework  takes  advantage  of  the  MMCM  module  on  mod-
ern FPGAs, as well as the PMBus compliant power supply sys-
tem.  In  the  software  level,  we  adapt  the  provided  memory
map and I2C drivers in Linux to control the DVFS module, mak-
ing it easier to use. We take ZCU104 as an example in this pa-
per,  however,  the  DVFS  framework  can  be  easily  ported  to
Zynq  7000  devices  or  even  non-Zynq  FPGA  devices  as  long
as  the  board  is  equipped  with  a  configurable  PMIC.  For  the
non-Zynq  FPGA  devices,  we  can  inherit  the  drivers  for  Zynq
devices  if  a  MicroBlaze,  a  RISC  Harvard  architecture  soft  pro-
cessor  provided  by  Xilinx,  is  adapted  as  the  DVFS  module
controller and running Linux on it.

4.3.  DVFS policy

For  practical  applications  like  real-time  object  detection,
there is a constant frame rate of images obtained from a cam-
era.  In  this  context,  it  is  reasonable  to  let  the  processing
frame rate of  the accelerator being consistent with the frame
rate of the camera to save power consumption. If the peak pro-
cessing  frame  rate  of  the  accelerator  is  higher  than  that  of
the  camera,  there  are  two  strategies,  namely  "long  active,
short  idle"  and "short  active,  long idle,"  to  meet  the perform-
ance requirements. The former is to set the accelerator to low
frequency thus it takes a long time for the accelerator to pro-
cess  one  frame  and  thus  the  idle  time  is  short,  while  the  lat-
ter  is  to  set  the  accelerator  to  a  high frequency and thus  has
a shorter active time.

ET tT tS tI TA PS PI
PA PM E P t

T S I
A M

To  maximize  energy  savings,  we  can  scale  both  the
voltage and the frequency to a minimum when the accelerat-
or is idle. And this makes it impossible to analyze which solu-
tion is the optimal one in the qualitative method. To quantitat-
ively  illustrate  the  problem,  we  define , , , , , , ,

,  and ,  where  stands for  energy,  stands for  power, 
stands  for  time,  stands  for  total,  stands  for  scaling, 
stands  for  idle,  stands  for  active  and  stands  for  mean.
Their relationship is shown in the following equations: 

tT = tI + tS + tA, (2)
 

ET = tIPI + tSPS + tAPA, (3)
 

PM = ET/tT. (4)

Fig.  8 shows  the  detailed  steps  of  our  DVFS  policy.  The
two sub-figures show that the voltage, frequency,  and power

tT
FA UA

Fmin
Umin

μ
tT

PI@UA
Pmin

Umin PS
Pmin PI@UA tT

PM

consumption  vary  with  time  differently  under  different .  In
each period,  the  accelerator  first  runs  at  and  and then
scales to the minimum supported frequency  and the min-
imum  supported  voltage  to  save  static  power  once  the
computation is finished. According to our DVFS framework, fre-
quency  scaling  takes  3 s  while  voltage  scaling  takes  2  ms.
This  means that  when the  is  long enough,  both frequency
scaling  and  voltage  scaling  are  performed.  On  this  occasion,
the chip's power consumption first drops to power-idle-at-act-
ive-voltage ( )  when frequency scaling is  performed and
then gradually  decreases  to  as  the voltage gradually  de-
creases to .  The power when the voltage is scaling ( )  is
given by the average of  and .  However,  if  the  is
short,  only  the  frequency  can  be  adjusted  as  shown  in  the
right sub-figure.  Our goal is  to find a voltage/frequency com-
bination that has a minimum of  with our DVFS policy.

5.  Design flow

5.1.  System architecture

Fig. 1 shows the topology details of the system. It is imple-
mented on the latest  Zynq UltraScale+ device that integrates
processing  system  (PS)  and  programmable  logic  (PL).  The  PS
is  a  Quad-Core  A53 processor  running at  1.2  GHz.  It  provides
three  M_AXI  buses  and  six  S_AXI  buses  for  high  throughput
data transfer between the PL and the PS. What's more, the PS
is also embedded with common interfaces for various peripher-
als, such as I2C, USB, Ethernet, Display Port, etc. The I2C inter-
face is  connected to the power management IC on the FPGA
board via MIO. Two high-performance M_AXIs are enabled in
this  design,  one  of  them  is  connected  to  the  DFS  module,
and  the  other  one  is  connected  to  the  SkyNet  accelerator.
The PS is running Linux OS and is responsible for loading im-
ages  and  sends  control  signals  such  as  target  frequency  of
the  DFS  module  and  the  configuration  parameters  for  the
SkyNet accelerator.  All  the clock signals related to the SkyNet
accelerator  are under  the DFS module/clk1 domain including
the  accelerator's  clock  input  as  well  as  that  of  M_AXI_HPM1,
S_AXI_HP0,  S_AXI_HP1.  All  the  input  feature  maps  and
weights  are  transferred  through  S_AXI_HP0  and  all  the  out-
put  feature  maps  are  transferred  through  S_AXI_HP1.  The
frequency and the voltage can only be modified during the it-
eration interval of the hardware calls.

5.2.  SDSoC support

To  build  an  ARM  +  FPGA  system  with  DVFS  support  in
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Fig. 8. (a) Timing diagram illustrating the DVFS policy with enough time to perform DVS. (b) Timing diagram illustrating the DVFS policy without
enough time to perform DVS.
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the  traditional  design  flow,  designers  should  first  add  the
DVFS  module  in  PL,  then  prepare  the  drivers  for  controlling
DVFS  module  in  Linux.  After  the  DVFS  function  is  ready,  the
accelerators  are  added  to  the  system  and  connected  with
the  DVFS  modules,  which  is  quite  exhausting.  What  is  more,
preparing a test  bench that  is  able to cover  a  sufficient  num-
ber  of  test  cases  is  also  time-consuming.  To  solve  this  prob-
lem,  we  combine  the  DVFS  framework  with  Xilinx's  latest
tool  for  developing  ARM  +  FPGA  system  in  C/C++/OpenCL,
SDSoC,  to  further  enhance  the  efficiency  of  system  develop-
ment.

The starting point of an SDSoC-based design is an SDSoC
hardware platform, where all  the hardware components such
as  DDR  and  DVFS  modules  are  defined.  Then  the  boot  load-
ers and target operating systems are built to bring-up the hard-
ware platform. After that, the drivers for the DVS and the DFS
module are embedded in the operating system. The boot load-
ers,  target  operating  system,  and  the  drivers  together  are
called  SDSoC  software  platform,  and  the  hardware  platform
and  software  platform  together  are  called  SDSoC  platform.
With  this  platform,  users  can  develop  an  embedded  system
with  hardware  accelerators  in  a  total  software  design  flow.
The  user's  C/C++/OpenCL  code  will  be  translated  into  Veri-
log/VHDL  code  and  package  the  Verilog/VHDL  into  IPs  by
SDSoC  compiler.  After  that,  SDSoC  will  connect  the  accele-
rator  to  the  PS  and  the  DFS  module  automatically  and  then
generate  the  bitstream.  Using  this  platform,  we  can  focus  on
the  accelerator  design  rather  than  paying  attention  to  the
DVFS module.

6.  Experimental results and analysis

6.1.  Experimental setup

The  SkyNet  is  written  in  high-level  synthesis  (HLS)  C++
and then synthesized in  SDSoC 2019.1.  The Quad Cortex-A53
cores  in  ZCU104  is  running  Ubuntu18.04  modified  by  Xilinx.
We  test  the  system  using  the  sample  dataset  of  DAC-
SDC2019  that  is  composed  of  1000  images  and  correspond-
ing  ground  truth.  We  record  the  total  time  and  energy  con-
sumption for processing all the images and calculated the aver-
age  IoU  under  different  voltage  &  frequency  combinations.
We sweep the VCCINT from 680 to 840 mV at the step size of
20 mV and sweep the frequency from 200 to 400 MHz at  the
step  size  of  1  MHz. Table  1 gives  the  resource  consumption
of the original SkyNet and SkyNet with DVFS.

6.2.  Performance analysis

Fig. 9 shows the relationship between the frequency and

the  achieved  frames  per  second  (FPS).  The  figure  shows  that
the  highest  performance  of  SkyNet  in  Zynq  Ultrascale+  is  at
371 MHz with 38.3 FPS and that the achieved FPS performs a
linear relation with frequency as expected.

6.3.  Power analysis

To  better  illustrate  the  impact  of  DVFS  on  power  consu-
mption,  in this  section,  we focus on the power of  the PL that
is  supplied  by  the  VCCINT  power  rail.  Other  power  rails  in-
clude  VCCAUX  which  charges  the  clock  managers,  IOs
among  the  other  blocks  and  VCCBRAM  used  by  BRAMs.  The
power  drawn  from  these  additional  power  rails  is  consider-
ably lower than VCCINT.  Also,  the PS of  the device where the
ARM  processor  resides  is  not  included  in  the  calculations  in
that  scaling  VCCINT  does  not  affect  the  power  of  the  ARM
processor.

Fig.  10 shows  the  measured  power  in  function  of  the
clock  frequency  and  the  voltage  when  the  SkyNet  accelerat-
or operates on ZCU104. The highest frequency at which the ac-
celerator  can  operate  increases  with  the  voltage  of  the  PL.
For  instance,  if  VCCINT  is  set  to  680  mV,  the  highest  fre-
quency  of  the  accelerator  is  360  MHz,  above  which  the  sys-
tem  is  unstable.  Whether  the  calculation  result  is  correct  or
not is not considered here, and the impact of DVFS on accur-
acy will be discussed later. As expected, power has a linear rela-
tion  with  frequency  and  that  the  configurations  of  voltage
scaled reduce power significantly since voltage affects both dy-
namic  and  static  power.  The  minimum  power  measured  is
1.42 W at  200 MHz/680 mV for  the Ultrascale+ device.  There-
fore,  these  experiments  confirm  that  significant  performance
and power margins are available that can be exploited by the
DVFS framework.
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Table 1.   Resource utilization of the system.

Resource LUT LUTRAM FF BRAM DSP

SkyNet total 54639 1984 65196 209 333
Accelerator 49934 921 57101 209 333
AXI bus 4691 1062 8030 0 0
System reset 14 1 65 0 0
SkyNet DVFS
total

56902 2084 66781 209 333

Accelerator 49910 921 56095 209 333
AXI bus 5799 1161 9127 0 0
DFS module 1164 0 1492 0 0
System reset 29 2 67 0 0
Total 230400 101760 460800 312 1728
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6.4.  Energy analysis

In the previous section, we only considered the power of
the PL part to make the result look more obvious, but consider-
ing the actual  edge computing scenario,  we should also take
the  power  consumption  of  the  CPU  into  account.  For  ex-
ample,  when  the  data  arrives,  the  CPU  wakes  up  and  pro-
cesses  the  images,  and  then  the  CPU  immediately  enters  the
sleep state. Although the power of the PL side goes up as the
frequency increases, it is also considered that the time for pro-
cessing  each  picture  as  the  frequency  increases  is  also  re-
duced.  In  such  a  scenario,  the  computational  time  reduction
caused  by  the  frequency  increase  may  bring  energy  savings
in the CPU part.

Fig.  11 gives  the  relationship  between  the  total  energy
consumption  for  processing  all  the  1000  images  in  the
sample dataset  and voltage/frequency obtained by our  DVFS
framework.  As  shown  in Fig.  11,  at  each  voltage  point,  the
total  energy  consumption  goes  down  as  the  frequency  in-
creases.  The  reason  is  that  when  the  accelerator's  frequency
runs  at  a  low  frequency,  the  dynamic  power  decreases  but
the  static  power  remains.  What  is  more,  although  the  PS
side's  power  consumption  decreases  as  the  operating  fre-
quency  of  accelerator  decreases  because  the  data  through-
put  is  reduced,  the difference can be neglected compared to
the  total  power  of  the  PS.  At  the  meantime,  at  each  fre-
quency point, the energy consumption performs a linear rela-
tionship  with  voltage.  The  highest  energy  consumption  is
518.8  J  achieved  at  200  MHz/840  mV  while  the  least  energy
consumption  is  354.1  J  achieved  at  371  MHz/840  mV.  About
32%  of  energy  can  be  saved  with  our  DVFS  framework.  It
should be noted that all the data mentioned above is given un-
der strict constraint that the result should be 100% correct. In
the  next  section,  we  will  relax  the  constraint  and  discuss  the
impact of DVFS on accuracy.

6.5.  Accuracy analysis

All  the results presented so far have used the neural  net-
work  at  full  accuracy,  that  is  71.9%  IoU  on  the  whole  sample
dataset.  As  previously  mentioned,  it  is  possible  to  relax  this
constraint  and  let  errors  affect  the  user  logic.  As  shown  in
Fig.  12,  there  is  a  threshold  frequency  at  371  MHz,  above
which  there  may  be  errors  in  the  final  results  and  the  accur-
acy  will  change.  However,  the  IoU  does  not  go  from  71.9%
sharply  to  zero,  but  goes  through  four  different  stages,
namely jitter period, slow descent period, quick descent peri-

od  and  zero  period.  In  the  first  period,  the  IoU  jitter  around
71.9%  within  +1/–1%  until  382  MHz.  In  the  second  period,
the IoU goes down gradually  from 383 to 386 MHz (70.8% to
68.5%). Only until the quick descent period (387 to 388 MHz),
we  can  see  a  sharp  decrease  in  IoU.  We  regard  the  region
where  the  IoU  is  below  10%  as  the  zero  period.  This  means
that  a  further  increase  in  performance  is  possible  if  we
relax  the  IoU  requirement  to  the  jitter  period  and  quick  des-
cent period.

It is foreseeable that the threshold frequency is related to
voltage  and Fig.  13 shows  the  IoU  varies  concerning  both
voltage  and  frequency.  The  first  error  comes  at  285  MHz
when  VCCINT  is  set  to  680  mV  and  the  threshold  frequency
comes  later  in  an  approximately  linear  relationship  with  the
voltage.  What  is  more,  the  jitter  period,  slow  descent  period
and  quick  descent  period  narrow  as  the  voltage  goes  up
(285–301–304  MHz  at  680  mV  versus  371–382–386  MHz  at
840 mV).

Through the above analysis,  we can draw the conclusion
that,  CNNs  are  robust  to  errors.  Even  if  errors  are  generated
by the accelerator during operation,  it  have a very limited ef-
fect  on  the  final  result  when  the  number  of  errors  is  small.
Through  this  feature,  we  can  sacrifice  accuracy  and  perform-
ance to some extent.

6.6.  Comprehensive evaluation metric

Previous works usually compare performance, energy effi-
ciency  and  the  achieved  accuracy  respectively.  However,
these  three  metrics  are  not  completely  independent  but  can
be  transformed  into  each  other  through  various  means.  For
instance,  network  compression  and  quantization  can  be  the
method  to  balance  between  accuracy  and  performance.  Our
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Fig. 12. (Color online) IoU changes with frequency at 840 mV.
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DVFS framework is a method to trade-off between energy effi-
ciency and performance as well as accuracy. Therefore, a com-
prehensive  evaluation  metric  that  takes  performance,  energy
efficiency  and  accuracy  into  account  is  necessary  to  evaluate
a  system  design.  In  this  paper,  the  performance  is  given  by
the achieved FPS, energy efficiency is given by the energy con-
sumption for each frame and the accuracy is given by IoU. Un-
der this context, we proposed a rough metric called unified en-
ergy efficiency (UEE): 

UEE =
Performance × Accuracy

Energy
. (5)

The UEE is given by: 

UEE =
FPS × Average IoU

Total energy
. (6)

There  are  previous  works  using  frames  per  second  per
watt (FPS/W) as a metric.  However,  the watt is given by Joule
per  second  and  thus  FPS/W  equals  to  frames  per  Joule  (FPJ),
it  does  not  take  the  performance  into  account.  As  a  result,
in  this  paper,  we  adapt  energy  rather  than  power  as  the  nu-
merator.

Fig. 14 shows UEE changes with voltage and frequency re-
spectively.  As  shown in the figure,  UEE first  goes up with fre-
quency at each voltage since the accuracy remains and the per-
formance and energy efficiency increase and then goes down
sharply  as  IoU drops to zero.  For  each frequency point  under
290  MHz,  the  threshold  frequency  of  680  mV,  UEE  decreases
as voltage goes up since lower voltage has higher energy effi-
ciency, However, higher voltage provides higher threshold fre-
quency and thus can get higher performance and energy effi-
ciency. The highest UEE, 7.71, is achieved at 840 mV/379 MHz
and is beyond 7.22 achieved at 840 mV/370 MHz which is the
threshold voltage. It also shows that the DVFS can further im-
prove UEE.

6.7.  DVFS for real-time application

As mentioned in the previous section, in realistic scenari-
os,  the  needed  frame  rate  is  bounded  by  the  camera.  In  this
paper,  we  assume  that  the  frame  rate  of  the  camera  is  24
FPS,  the  standard  movie  frame  rate,  and  try  to  find  the  low-
est  average  power  solution  that  meets  this  performance  re-
quirement with our proposed DVFS policy. Fig. 15 gives the re-
lationship between idle power and voltage/frequency. As can

PImin

be seen from the figure, the idle power performs a linear rela-
tionship  between  both  the  voltage  and  the  frequency.  Thus
slowing  down  the  clock,  which  can  be  regarded  as  a  variant
of  clock  gating  technology,  can  be  an  effective  method  to
save idle power. Furthermore, scaling down the voltage com-
bined  with  clock  gating  can  save  idle  power  to  the  utmost.

 is  9.81  W,  achieved  when  the  frequency  is  scaled  to
20 MHz and the voltage is scaled to 680 mV.

PMFig.  16 shows  the  achieved  at  different  voltage/fre-
quency combinations. As shown in the figure, the minimum av-
erage  power  is  10.90  W  and  is  achieved  at  680  mV/285  MHz,
we  get  a  15%  reduce  in  power  consumption  compared  to
12.86 W of the original design.

6.8.  Comparison with other work

We  compare  the  performance,  energy  efficiency,  accur-
acy  as  well  as  UEE  with  the  original  SkyNet,  where  the  en-
ergy  efficiency  is  given  by  frames  per  Joule  (FPJ).  The  origin-
al  SkyNet  is  implemented  on  Ultra96,  we  transfer  the  design
to  ZCU104  without  any  modification.  We  choose  the  data
achieved  at  the  threshold  frequency  of  840  mV/370  MHz  as
the  first  candidate  and  that  achieved  at  840  mV/379  MHz  as
the  second  candidate.  As  shown  in Table  2,  our  work
achieves  54%  improvement  in  performance,  38%  improve-
ment  in  energy  efficiency  and  106%  improvement  in  UEE
without any degradation in accuracy compared to the origin-
al  SkyNet.  If  we  relax  the  requirement  on  accuracy,  we  can
achieve  56%  improvement  in  performance,  47%  improve-
ment  in  energy  efficiency  and  121%  improvement  in  UEE  at
the cost of 0.11% decrease in IoU.
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Fig. 14. (Color online) UEE changes with voltage and frequency respect-
ively.
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Fig. 15. (Color online) Idle power changes with voltage and frequency
respectively.
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7.  Conclusion

FPGA has been proven as a favorable platform to acceler-
ate  convolution  neural  network  (CNN)  on  the  edge-comput-
ing  paradigm  given  its  high  flexibility  and  energy  efficiency.
However,  the  energy  efficiency  of  the  FPGA  platform  can  be
further  improved  with  dynamic  voltage  and  frequency  scal-
ing  (DVFS).  Although  an  overly  aggressive  voltage  and  fre-
quency  combination  can  lead  to  errors,  the  high  robustness
of the CNN to errors makes it  possible to combine DVFS with
it.  In  this  paper,  we  first  introduce  a  framework  for  fine-
grained DVFS on the state-of-the-art FPGA device and then ap-
ply  the  framework  to  SkyNet,  a  state-of-the-art  neural  net-
work targeting on object detection. Third, we analyze the im-
pact of DVFS on performance, power, energy efficiency and ac-
curacy. We verify the possibility of sacrificing accuracy for per-
formance or  energy efficiency.  In order to evaluate the entire
system  comprehensively,  we  propose  a  new  metric,  called
unified  energy  efficiency  (UEE),  that  takes  performance,  en-
ergy  efficiency  as  well  as  accuracy  into  account.  Finally,  we
achieve  54%  improvement  in  performance,  38%  improve-
ment  in  energy  efficiency  and  106%  improvement  in  UEE
without  any  loss  in  accuracy  compared  to  the  original
SkyNet.  If  we  relax  the  requirement  on  the  accuracy,  we  can
achieve  56%  improvement  in  performance,  47%  improve-
ment  in  energy  efficiency  and  121%  improvement  in  UEE  at
the cost of 0.11% decrease in accuracy.
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