文章编号:1000-324X(2020)08-0902-07

1550 nm 激发层状 BiOCl:Er³⁺上转换发光及温度传感特性

彭跃红^{1,2},任韦舟¹,邱建备¹,韩缙¹,杨正文¹,宋志国¹

(1. 昆明理工大学 材料科学与工程学院, 昆明 650093; 2. 楚雄师范学院 物理与电子科学学院, 楚雄 675000)

摘 要:由于热耦合能级(TCLs)差的影响, 传统稀土上转换(UC)光学温度传感技术的灵敏度受到了极大限制, 探索超 灵敏温度特性上转换发光材料具有重要的理论和技术价值。本工作研究了 1550 nm 激光激发下 Er³⁺单掺 BiOCl 的上 转换发光及温度传感性能。在近红外激发下, BiOCl:Er³⁺展现出强烈的 670 nm 红光发射、弱的 525 和 542 nm 绿光发 射、微弱的 406 nm 紫光发射以及 983 nm 近红外发光。该上转换材料体系的红绿光发射表现出强烈的温度依赖性, 在 300~563 K 温度范围内, ⁴F_{9/2}/⁴S_{3/2} 非热耦合能级绝对灵敏度(*S*_A)达到 95.3×10⁻³ K⁻¹, 是 ²H_{11/2}/⁴S_{3/2} 热耦合能级的 22 倍; 同时相对灵敏度(*S*_R)达到了 1.19% K⁻¹。1550 nm 激发下 BiOCl:Er³⁺的强烈红色上转换发光和高灵敏温度传感特性在显 示及光学温度传感方面具有良好的应用前景。

关键 词: 上转换发光; 温度传感; BiOCl; 1550 nm 激发层

中图分类号: TQ174 文献标识码: A

Upconversion Luminescence and Temperature Sensing Properties of Layered BiOCI: Er³⁺ under 1550 nm Excitation

PENG Yuehong^{1,2}, REN Weizhou¹, QIU Jianbei¹, HAN Jin¹, YANG Zhengwen¹, SONG Zhiguo¹

(1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2. School of Physics and Electronical Science, Chuxiong Normal University, Chuxiong 675000, China)

Abstract: The sensitivity of optical temperature sensing based on the conventional rare-earth ion doped upconversion (UC) materials is limited by the energy gap between thermally coupled levels (TCLs) of rare-earth ions. Therefore, it is of great theoretical and technical interest to explore UC luminescent materials for optical temperature sensing with ultra-sensitive temperature characteristic. In this work, the UC luminescence properties and temperature sensing characteristics were studied for Er^{3+} single-doped BiOCl excited by 1550 nm laser. Under near-infrared (NIR) excitation, BiOCl: Er^{3+} exhibits strong red emission at 670 nm, weak green emissions at 525 and 542 nm, extremely weak violet emission at 406 nm, and near-infrared emission at 983 nm. Red and green emissions of the UC system exhibit strong temperature dependence, and in the temperature range of 300–563 K, the maximum absolute sensitivity (S_A) obtained by employing the non-thermally coupled levels (TCLs, ${}^{4}F_{9/2}/{}^{4}S_{3/2}$) is 95.3×10⁻³ K⁻¹, which is 21 times more than that obtained by employing the thermally coupled levels (TCLs, ${}^{2}H_{11/2}/{}^{4}S_{3/2}$), and the maximum relative sensitivity (S_R) is as high as 1.19% K⁻¹. The results show that the intense red UC luminescence and temperature sensing with ultra-high

收稿日期: 2019-09-06; 收到修改稿日期: 2019-11-04

基金项目: 国家自然科学基金(11874186); 云南省应用基础研究计划项目(2017FB079); 云南省中青年学术与技术带头人后 备人才项目(2015HB013); 云南省教育厅科研基金(2018JS452) National Natural Science Foundation of China (11874186); Applied Basic Research Program of Yunnan Province

⁽²⁰¹⁷FB079); Reserve Talents Project of Yunnan Province (2015HB013); Scientific Research Foundation of the Education Department of Yunnan Province (2018JS452)

作者简介: 彭跃红(1983-), 男, 博士研究生. E-mail: pyh@cxtc.edu.cn

PENG Yuehong (1983–), male, PhD candidate. E-mail: pyh@cxtc.edu.cn

通讯作者: 宋志国,教授. E-mail: songzg@kmust.edu.cn SONG Zhiguo, professor. E-mail: songzg@kmust.edu.cn

sensitivity in BiOCl: Er^{3+} under 1550 nm excitation may have potential application prospect in display and optical temperature sensing.

Key words: upconversion luminescence; temperature sensing; BiOCl; 1550 nm excitation

近年来,基于稀土上转换(UC)荧光强度比技术 的光学温度传感具有快速响应、空间分辨率高和可 用于远程测量等优点,在电化学、强电磁、生物体 内和热剧烈环境领域受到广泛关注^[1-4]。温度灵敏度 是该项技术的主要性能指标,传统的荧光强度比技 术主要基于稀土离子的热耦合能级(TCLs),如 $\mathrm{Er}^{3+:^{2}}\mathrm{H}_{11/2}/^{4}\mathrm{S}_{3/2}^{[5]}$ 、 $\mathrm{Tm}^{3+:^{3}}\mathrm{F}_{2,3}/^{3}\mathrm{H}_{4}^{[6]}$ 和 $\mathrm{Ho}^{3+:^{5}}\mathrm{F}_{3}/^{3}\mathrm{K}_{8}^{[7]}$, 其能级差(ΔE)较小(200~2000 cm⁻¹),导致温度灵敏 度偏低,这成为限制光学温度传感应用的主要障碍^[2]。

相比之下,非热耦合能级(NTCLs)的 ΔE 大于 2000 cm⁻¹, 粒子在 NTCLs 的布居并不遵守玻尔兹 曼分布,理论上其荧光强度比技术的温度灵敏度不 受限制,可以成为提高光学温度传感灵敏度的有效 途径^[2-3]。例如, Er³⁺的红光能级(⁴F_{9/2})和绿光能级 (²H_{11/2}/⁴S_{3/2})属于 NTCLs,但在一些材料体系中,其 荧光强度比也具有显著的温度响应^[2, 8-10]。Zhang 等^[8] 报道了 Y₂WO₆:Yb³⁺-Er³体系,在 303~563 K 范围内, ⁴F_{9/2} 和 ²H_{11/2} 能级的荧光强度比的最大绝对灵敏度 (*S*_A)和相对灵敏度(*S*_R)分别为 2.2×10⁻³ K⁻¹ 和 1.2% K⁻¹; Wang 等^[10]报道了在 Ba₂In₂O₅:Yb³⁺/Er³⁺体系中,⁴F_{9/2} 和 ²H_{11/2}能级的荧光强度比在 303~573 K 范围内,最 大 *S*_A 达 0.48 K⁻¹,远远高于其他文献报道的 TCLs 的 *S*_A^[5,8,11-12]。上述结果表明,NTCLs 温度传感技术 的研究有望成为提高温度灵敏度的有效方法。

目前,用于温度传感的稀土离子上转换发光主 要是使用980 nm激光作为激发源,其他光源激发的 上转换发光鲜有报道。另外,与传统稀土荧光基质 材料不同,BiOCl 是一类具有强烈各向异性的层状 结构半导体基质材料。其带隙宽度为 3.4~3.6 eV,晶 体结构由[Bi₂O₂]层和 Cl 层组成二维晶胞层;晶胞层 之间通过 Cl 原子间的范德华力连接构成层状晶 体^[13]。本课题组曾首次报道了 Er³⁺掺杂 BiOCl 独特 的光子雪崩效应及一系列新型的发光现象^[14-17]。近 年来,由于其优异的发光性质和各向异性引发的新 型发光现象,稀土掺杂 BiOCl 发光材料的研究备受 关注^[13,18-19]。Du 等^[20]曾报道了基于 980 nm 激发 BiOCl 上转换的温度传感特性。然而,到目前为止, 基于 1550 nm 激发的 Er³⁺单掺 BiOCl 的上转换及温 度传感特性却未见报道。

本工作采用固相法合成了不同 Er³⁺浓度掺杂的 BiOCl 微米晶,系统研究了其在 1550 nm 激发下的 上转换发光性质,对发展高灵敏温度传感性能的上 转换发光材料具有重要意义。

1 实验方法

1.1 样品制备

样品 Bi_{1-x}Er_xOCl (*x*=1%, 2%, 3%, 4%, 5%, 摩尔 百分比)采用传统固相法合成。按化学计量比准确称 量 Bi₂O₃ (99.99%)、Er₂O₃ (99.99%)和 NH₄Cl (分析纯) 原料。将原料在研钵中充分研磨混合后转移至氧化 铝坩埚中, 然后放置在电阻炉中 500 ℃烧结 3 h。待 自然冷却后, 即得到 Er³⁺掺杂的 BiOCl 样品。

1.2 样品表征

采用德国 Brucker 公司生产的 D8advance 型粉 末 X 射线衍射仪(XRD)测定样品物相(辐射源为 Cu 靶, Kα 射线(λ=0.15406 nm)); 采用日本 Hitachi 公司 生产的 SU8020 型场发射扫描电子显微镜(SEM)观 察样品形貌; 采用英国 Edinburg 公司生产的 FLS980 荧光分光光度计测试荧光光谱和荧光衰减 曲线; 采用日本 Hitachi 公司生产的配有恒温加热控 制装置的 F-7000 荧光分光光度计测试变温光谱, 采 用美国 Nicolet 公司生产的 Magna-IR 750 型傅立叶 变换红外光谱仪测试傅立叶变换红外光谱(FT-IR); 采用德国 Bruker 公司生产的 A300 型电子顺磁共振 波谱仪测试电子顺磁共振(EPR)谱。

2 结果与讨论

2.1 BiOCI的晶体结构和物相分析

图 1(a)为不同 Er³⁺浓度掺杂的 BiOC1 样品的 XRD 图谱,从图中可以看到,样品所有衍射峰均对 应于 BiOC1 的标准卡片(JCPDS 06-0249),这说明合 成的样品均为四方相的 BiOC1。由于 Er³⁺的半径小 于 Bi³⁺的半径,当 Er³⁺以替代 Bi³⁺的方式进入 BiOC1 晶格时会导致晶格收缩,掺入量越多,其畸变越大, 导致衍射峰向大角度方向移动^[19-20],如图 1(b)所 示。通过 SEM 进一步表征 BiOC1:Er³⁺荧光粉的形貌 和尺寸,如图 1(c)所示,通过高温固相法制备的样 品呈典型片状结构,厚度约为 200~350 nm。形成这种 片状结构归因于 BiOC1 的晶体结构(图 1(d))。

图 1 不同浓度 Er³⁺掺杂 BiOCl 的 XRD 图谱(a), Er³⁺浓度对主衍射峰的影响(b), BiOCl:Er³⁺的 SEM 照片(c)和 BiOCl 的晶体结构模型(d)

Fig. 1 XRD patterns of BiOCl with different Er^{3+} concentrations (a), effect of Er^{3+} concentration on the main diffraction peak near $2\theta = 32^{\circ}-34.5^{\circ}$ (b), SEM image of BiOCl: Er^{3+} (c), and the structure model of BiOCl crystal (d)

[Cl-Bi-O-Bi-Cl]原子层通过 Cl 原子间弱的范德华力 沿着 *c* 轴方向堆垛在一起,而[Bi₂O₂]层之间的 Bi 和 Cl 原子通过强的共价键连接,这种强烈的各向异性 使 BiOCl 倾向形成片层结构。

2.2 上转换发光

从图 2 可以看到,在 1550 nm 激发下,BiOCI:Er³⁺ 样品显示明亮的黄色:强烈的 670 nm 红光发射、较 弱的 542 和 525 nm 绿光发射、微弱的 406 nm 紫光 发射以及 983 nm 近红外发射。发光强度在 Er^{3+} 摩 尔浓度为 4%时达到最大,之后发生浓度淬灭效应, 发光减弱。另外一方面,红绿比(I_{red}/I_{green})随 Er^{3+} 掺 杂浓度增加(<4%)改变不大(如图 2(b)所示)。这可能 是由于在 BiOCI 这种层状材料中, Er^{3+} 之间的交叉弛 豫($^{4}S_{3/2}+^{4}I_{13/2}\rightarrow ^{4}F_{9/2}+^{4}I_{11/2}$)弱所致;因此,低掺杂量 时, I_{red}/I_{green} 随 Er^{3+} 浓度增加变化不明显;当 Er^{3+} 掺 杂摩尔浓度过高(>4%)时发生浓度猝灭,交叉驰豫 增强,导致 I_{red}/I_{green} 明显增强。

为研究 1550 nm 激发下 Er³⁺掺杂 BiOCl 的上转 换发光机制,给出样品的发光强度与激光功率对数 图(图 3(a))。发光强度与功率的关系近似表示为^[21]:

$$I \propto P^n$$
 (1)

其中*I*表示发光强度,*P*表示激发功率,*n*表示发射一个光子所吸收的近红外光子数。从图 3(a)中拟合曲

线可知,低功率下,绿光和红光近似三光子过程;随着功率增加,由于能级饱和效应,绿光发射的 n 值分别从 2.7 和 3.0 变到 1.9,红光发射的 n 值从 2.2 变到 1.6。由于 406 nm 发射相对较弱,没有提供其 对数曲线。高功率下 n 值偏离理论值,这是由于随 着功率增加,⁴I_{13/2} 中间态能级的 Er^{3+} 向上能级的上 转换过程相对于向下能级的线性衰减占主导作用,导致 ⁴I_{13/2}能级达到饱和,从而引起上转换发光强度 对泵浦功率的依赖关系偏离 $I \propto P^n$,此时,n不再代 表要发射一个相应的上转换光子而需要的激光光子 数,而是随泵浦功率的增加而下降^[21-23]。

根据以上关系,可以推测 1550 nm 激发下 BiOCl: Er^{3+} 的上转换发光机制,如图 3(b)所示。1550 nm 激发下,处于基态的粒子分别通过连续的三光子和 四光子吸收布居到绿光发射 ${}^{2}H_{11/2}/{}^{4}S_{3/2}$ 态和紫光发 射 ${}^{2}H_{9/2}$ 态。而红光发射 ${}^{4}F_{9/2}$ 态由 ${}^{4}I_{11/2}$ 上的粒子通 过激发态吸收布居,其中 ${}^{4}I_{11/2}$ 中间态通过处在 ${}^{4}I_{9/2}$ 粒子无辐射弛豫布居。结果,产生强烈的红光 (${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$)、弱的绿光(${}^{2}H_{11/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$)和紫光 (${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$)发射。另外,观察到 983 nm 近红外发 射(${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$)。

2.3 温度传感性能

图 4(a)是1550 nm 激发下 BiOCl:4mol%Er³⁺的归

Insets in (a) are the enlarged spectra in the violet region and photograph of BiOCl:4mol%Er³⁺

图 3 上转换发射与功率的关系(a)和 Er³⁺的能级图以及 1550 nm 激发下 BiOCl:Er³⁺可能的上转换机制(b) Fig. 3 Dependence of the UC emission on power (a), energy-level diagram of Er^{3+} and possible up-conversion mechanism of BiOCl:Er³⁺ under 1550 nm excitation (b) Solid lines show absorption and emission, while dashed lines represent nonradiative relaxation

一化变温光谱。图 4(b)为红绿光发射的相对强度随 温度的变化关系(3个发射带在 300 K 时的积分强度 看作 1)。红绿光发射强度随温度升高都呈减小趋势, 表现出典型的热猝灭行为; 670 nm 发射随温度的变 化规律和 525 nm 的相似。这表明 4F9/2/4S3/2 与 2H11/2/4S3/2 一样可用于温度传感。另外, Ired/Igreen 随温度升高单 调增加(图 4(c))。表明发光颜色变化可以成为温度的 一种有效指示; 且两个发射峰相差 128 nm, 信号甄 别度比 TCLs 高, 更有利于在实际中的应用。

图 5 为非热耦合能级和热耦合能级的荧光强度 比随温度的变化规律。对于拟合非热耦合能级温度 传感的荧光强度比数据,目前主要采用指数形式^[9]、 多项式^[10]和线性函数^[8]三种方式; 而对于热耦合能 级荧光强度比的温度响应,由于其服从玻尔兹曼分 布,须采用指数形式拟合。不管哪种拟合方式,都能 很好拟合非热耦合能级的荧光强度比数据。相比而 言,采用指数拟合和多项式拟合得到的结果非常相 近;而直线拟合得到的绝对灵敏度为一个常数,是 一个平均值。从图 4(b)可以看出, 670 和 525 nm 发

射的温度响应趋势一致,为了更好地与热耦合能级 的温度灵敏度比较,采用指数形式拟合 I670/I542 数 据。如图 5(a)所示, 670 和 542 nm 的荧光强度比可 以按照指数形式拟合[16]:

 $I_{670} / I_{542} = 188.52 \exp(-1070.58 / T)$ (2)其中, I670 和 I542 分别表示 670 和 542 nm 发射峰的积 分强度,T为绝对温度。从图中可以看出,I670/I542表 现出显著的温度依赖性,随着温度升高单调增加。

图 5(b)是 525 和 542 nm 的荧光强度比随温度的 变化规律。525 和 542 nm 对应于 ${}^{2}H_{11/2}$ 和 ${}^{4}S_{3/2}$ 能级、 为热耦合能级, 其荧光强度比服从玻尔兹曼分布^[11]:

$$I_{525} / I_{542} = C \exp(-\Delta E / K_{\rm B}T)$$
(3)

其中, I₅₂₅ 表示 525 nm 发射峰的积分强度, ΔE 表示 ²H_{11/2}和⁴S_{3/2}的能级差, C为常数。按照式(3), I₅₂₅/I₅₄₂ 实验数据可以按照下式拟合:

 $I_{525} / I_{542} = 8.12 \exp(-1037.97 / T)$ (4)由式(4)得到 $^{2}H_{11/2}$ 和 $^{4}S_{3/2}$ 之间的能级差为 720 cm⁻¹, 和真实值(700~800 cm⁻¹)吻合。温度循环测量表明,

图 4 1550 nm 激发下 BiOCl:4mol%Er³⁺在不同温度的归一化上转换光谱(a), 525、542 和 670 nm 发射的相对强度和温度的关系(b),以及温度对 *I*_{red}/*I*_{green}的影响(c) Fig. 4 Normalized up-conversion emission spectra of BiOCl:4mol%Er³⁺ under 1550 nm excitation at

(a, c) I_{670}/I_{542} ; (b, d) I_{525}/I_{542}

Insets in (a) and (b) show temperature-induced switching of I670/I542 and I525/I542 (alternating between 300 and 560 K), respectively

对于两种机制, *I*₆₇₀/*I*₅₄₂和 *I*₅₂₅/*I*₅₄₂的温度检测都具有 良好的可重复性(图 5 插图)。

为了比较该体系热耦合能级和非热耦合能级的 温度灵敏度,图 5(c)和(d)描绘了其灵敏度与温度的 函数关系。S_A和 S_R可以按照下式计算^[24-25]:

$$S_{\rm A} = \mathrm{d}R \,/\,\mathrm{d}T \tag{5}$$

$$S_{\rm R} = 1 / R(dR / dT) \tag{6}$$

其中, R 表示荧光强度比。把式(2)和(4)分别代入式(5) 和(6),可得到热耦合能级和非热耦合能级的灵敏 度。如图 5(c)和(d)所示,随着温度升高,两者的 S_A 均表现出开始连续增大而后趋于饱和,而*S*_R均单调 减小。在 300~560 K 范围内,*I*₆₇₀/*I*₅₄₂ 的 *S*_A 和 *S*_R 最大 值分别为 95.3×10⁻³ K⁻¹ 和 1.19% K⁻¹; *I*₅₂₅/*I*₅₄₂ 的 *S*_A 和 *S*_R 最大值分别为 4.23×10⁻³ K⁻¹ 和 1.15% K⁻¹。相 比 *I*₅₂₅/*I*₅₄₂, 基于 *I*₆₇₀/*I*₅₄₂温度传感不仅保持了很高的 相对灵敏度,而且显著提高绝对灵敏度达 21 倍。

表1比较了文献报道的几种 Er³⁺掺杂上转换材料的温度传感特性。从表1中可以看出,1550 nm 激发的 BiOCl:Er³⁺上转换体系具有优良的非热耦合能级温度传感性能。

radie 1 Maximum temperature sensitivity for several Er doped UC materials						
UC materials	R	Temperature range/K	$S_{\rm A}/(\times 10^{-3},{\rm K}^{-1})$	$S_{\rm R}/(\%,{ m K}^{-1})$	Reference	
NaYF ₄ :Er ³⁺ /Yb ³⁺ /Li ⁺	I ₅₂₃ /I ₅₄₇	300-453	5.9	1.46	[11]	
$KMnF_3{:}Yb^{3+}/Er^{3+}$	$I_{\rm red}/I_{\rm green}$	303-390	11.3	5.7	[2]	
$YWO_6{:}0.1Yb^{3+}\!/\!0.02Er^{3+}$	I ₅₂₄ /I ₆₇₅	303–563	2.2	1.2	[8]	
$Ba_2In_2O_5:Yb^{3+}/Er^{3+}$	I_{658}/I_{549}	303–563	480		[10]	
BiOC1:Er ³⁺	I ₅₂₅ /I ₅₄₂	300–560	4.23	1.15	This work	
BiOCl:Er ³⁺	I_{670}/I_{542}	300–560	95.3	1.19	This work	

表 1 Er³⁺掺杂的几种上转换材料的最大温度灵敏度 Table 1 Maximum temperature sensitivity for several Er³⁺ doped UC materials

通常情况下,由于 ${}^{4}S_{3/2}$ 和 ${}^{4}F_{9/2}$ 的能级差为 3050 cm⁻¹, 粒子在 ${}^{4}S_{3/2}$ 和 ${}^{4}F_{9/2}$ 能级很难实现热布居, 理论上难以实现非热耦合能级光学温度传感。可以 推测 1550 nm 激发下 BiOCl:Er3+优良的非热耦合能 级温度传感特性可能与 BiOCl 的层状晶体结构有 关。BiOCl 为层状结构, 层间以较弱的范德华力连 接,晶体最外层的结合力相对较弱;与此同时, Bi-O键长较长,结合能低,容易形成Bi或氧空位等 缺陷^[26-27]。因此, BiOCl 在高温制备过程中易导致样 品表面形成大量的缺陷, 而缺陷会增强 ${}^{4}S_{3/2}$ 和 ${}^{4}F_{9/2}$ 能级之间的无辐射振动弛豫过程,从而有助于实现 粒子在 ⁴S_{3/2}/⁴F_{9/2} 能级的热布局^[28]。样品的 FT-IR 和 EPR谱(图 6)证实 BiOCl:Er³⁺样品表面存在着高声子 能量基团和氧空位, 如 3450 和 1632 cm⁻¹ 的 NH₄⁺和 -OH 基团^[26]; 在磁场为 3512 G 处存在较强的氧空 位特征峰。因此,对 BiOCl:Er³⁺材料体系,非热耦合 能级温度传感特性很可能与这种层状结构容易形成 表面缺陷有关。

另外,其高灵敏非热耦合能级温度传感特性与 上转换发光性质有关。1550 nm 激发下,BiOCl:Er³⁺ 以红光发射为主,展现出很高的 I_{670}/I_{542} ,在同一温 度下远远高于 I_{525}/I_{542} ,如图 5(a)和 5(b)所示。根据 式(2)、(4)和(5), I_{670}/I_{542} 和 I_{525}/I_{542} 的 S_A 可以分别表 示为 $R \times (1070.58/T^2)$ 和 $R \times (1037.97/T^2)$,表明 R 越大, S_A 越高。因此,相比 I_{525}/I_{542} , I_{670}/I_{542} 具有更高的 S_A 。 为了进一步证明荧光强度比 R和灵敏度的关系,分 析掺杂浓度对灵敏度的影响。如表 2 所示,相比 BiOCl:4mol%Er³⁺样品,虽然 BiOCl:5mol%Er³⁺的非 热耦合能级 S_R 减小,然而 BiOCl:5mol%Er³⁺的 I_{red}/I_{green} 相比 BiOCl:4mol% Er^{3+} 样品显著增大(图 2(b)), 导致其 S_A 显著增加至 126.2×10⁻³ K⁻¹。因此, 1550 nm 激发下的上转换发光性质导致 BiOCl: Er^{3+} 具有高灵 敏非热耦合能级光学温度传感性能。根据上述结果, 可以预计,在未来工作中如果进一步构建红绿光能 级热耦合通道提高 S_R , 1550 nm 激发的 Er^{3+} 掺杂 BiOCl 有可能发展成为一类新型高效的光学温度传 感体系。

图 6 BiOCl:Er³⁺粉末的 FT-IR(a)和 EPR(b)图谱 Fig. 6 FT-IR (a) and EPR (b) spectra for BiOCl:Er³⁺ powders

表 2 不同浓度 Er³⁺掺杂 BiOCl 的最大温度灵敏度 Table 2 Maximum temperature sensitivity for BiOCl with different Er³⁺ concentrations

Er ³⁺ concentration	R	$S_{\rm A}/(\times 10^{-3},{\rm K}^{-1})$	$S_{\rm R}/(\%,{ m K}^{-1})$
4mol%	$I_{670}/I_{542} = 188.52 \exp(-1070.58/T)$	95.3	1.19
5mol%	$I_{670}/I_{542} = 231.85 \exp(-994.74/T)$	126.2	1.11

3 结论

研究了 Er^{3+} 掺杂 BiOCl 在 1550 nm 激发下的 上转换发光及温度传感特性。1550 nm 激发下,样 品可以观测到 Er^{3+} 离子的 406、525、542、670 和 983 nm 发射。其中红光和绿光发射为一个三光子 过程,983 nm 发射为两光子过程。该上转换体系 还具有优良的非热耦合能级光学温度传感性能, 其 S_A 达 95.3×10⁻³ K⁻¹, 是 ${}^{2}H_{11/2}/{}^{4}S_{3/2}$ TCLs 的 22 倍,这与 1550 nm 激发下的上转换性质有关,还 可能与 BiOCl 的层状结构有关。研究结果对探索 高灵敏温度传感性能的上转换发光材料具有重要 的指导意义。

参考文献

- DONG BIN, CAO BAO-SHENG, HE YANG-YANG, et al. Temperature sensing and *in vivo* imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Advanced Materials, 2012, 24 (15): 1987–1993.
- [2] CUI XIANG-SHUI, CHENG YAO, LIN HANG, et al. Towards ultra-high sensitive colorimetric nanothermometry: constructing thermal coupling channel for electronically independent levels. Sensors and Actuators B: Chemical, 2018, 256: 498–503.
- [3] GAO YAN, HUANG FENG, LIN HANG, et al. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Advanced Functional Materials, 2016, 26(18): 3139–3145.
- [4] SILVA A F, ELAN F, FALCAO-FILHO E L, et al. Thermal sensitivity of frequency upconversion in Al₄B₂O₉: Yb³⁺/Nd³⁺ nanoparticles. Journal of Materials Chemistry C, 2017, 5(5): 1240–1246.
- [5] [JIANG SHA, ZENG PENG, LIAO LI-QING, et al. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF₄: Yb³⁺/Er³⁺ nanocrystals. *Journal of Alloys and Compounds*, 2014, **617**: 538–541.
- [6] TONG LI-LI, LI XIANG-PING, HUA RUI-NIAN, *et al.* Optical temperature sensing properties of Yb³⁺/Tm³⁺ co-doped NaLuF₄ crystals, *Current Applied Physics*, 2017, **17(7)**: 999–1004.
- [7] PANDEY A, RAI V K. Improved luminescence and temperature sensing performance of Ho³⁺-Yb³⁺-Zn²⁺: Y₂O₃ phosphor. *Dalton Trans.*, 2013, 42(30): 11005–11011.
- [8] ZHANG JIA, JI BAO-WEI, CHEN GUI-BIN, et al. Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application. *Inorganic Chemistry*, 2018, 57(9): 5038–5047.
- [9] ZHANG JIA, CHEN GUI-BIN, ZHAI ZHANG-YIN, et al. Optical temperature sensing using upconversion luminescence in rare-earth ions doped Ca₂Gd₈(SiO₄)₆O₂ phosphors. *Journal of Alloys and Compounds*, 2019, 771: 838–846.
- [10] WANG ZHI-YING, JIAO HUAN, FU ZUO-LING Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba₂In₂O₅ phosphor. *Journal of Luminescence*, 2019, **206**: 273–277.
- [11] DUBEY A, SONI A K, KUMARI A, et al. Enhanced green upconversion emission in NaYF₄: Er³⁺/Yb³⁺/Li⁺ phosphors for optical thermometry. Journal of Alloys and Compounds, 2017, 693: 194–200.
- [12] DU PENG, HUANG XIAO-YONG, YU J S. Yb³⁺ concentration

dependent upconversion luminescence and temperature sensing behavior in Yb^{3+}/Er^{3+} codoped Gd_2MoO_6 nanocrystals prepared by a facile citric-assisted Sol-Gel method. *Inorganic Chemistry Frontiers*, 2017, **4(12)**: 1987–1995.

- [13] NIU SI-YING, ZHANG RUO-YU, ZHOU XIAN-JU, et al. The enhanced photocatalytic activity of Yb³⁺-Ho³⁺/Er³⁺ co-doped 3D BiOCI flower. Dyes and Pigments, 2018, 149: 462–469.
- [14] LI YONG-JIN, SONG ZHI-GUO, LI CHEN, et al. High multiphoton visible upconversion emissions of Er³⁺ singly doped BiOCl microcrystals: a photon avalanche of Er³⁺ induced by 980 nm excitation. Applied Physics Letters, 2013, **103(23)**: 231104.
- [15] LI YONG-JIN, HU RUI, ZHAGN XIANG-ZHOU, et al. Emergence of photoluminescence enhancement of Eu³⁺ doped BiOCl single-crystalline nanosheets at reduced vertical dimensions. *Nanoscale*, 2018, **10(10)**: 4865–4871.
- [16] LI YONG-JIN, SONG ZHI-GUO, YAO LU, et al. Morphology/dimensionality induced tunable upconversion luminescence of BiOCI: Yb³⁺/Er³⁺ nano/microcrystals: intense single-band red emission and underlying mechanisms. *CrystEngComm*, 2018, 20(20): 2850–2860.
- [17] LIU TONG, SONG YA-PAI, WANG SHA-SHA, et al. Two distinct simultaneous NIR looping behaviours of Er³⁺ singly doped BiOBr: The underlying nature of the Er³⁺ ion photon avalanche emission induced by a layered structure. *Journal of Alloys and Compounds*, 2019, **779:** 440–449.
- [18] WU WEI-WEI, CHEN DA-QIN, ZHOU YANG, et al. Near-singleband red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets. Journal of Alloys and Compounds, 2016, 682: 275–283.
- [19] HUANG XIAO-YONG, LI BIN, GUO HENG. Synthesis, photoluminescence, cathodoluminescence, and thermal properties of novel Tb³⁺-doped BiOCl green-emitting phosphors. *Journal of Alloys and Compounds*, 2017, 695: 2773–2780.
- [20] DU PENG, LUO LAI-HUI, YU J S. Tunable color upconverison emissions in erbium(III)-doped BiOCl microplates for simultaneous thermometry and optical heating. *Microchimica Acta*, 2017, 184(8): 2661–2669.
- [21] ZHANG GONG, SONG FENG, MING CHENG-GUO, et al. Photoluminescence properties and pump-saturation effect of Er³⁺/Yb³⁺ co-doped Y₂Ti₂O₇ nanocrystals. Journal of Luminescence, 2012, 132(3): 774–779.
- [22] LIN HAO, XU DE-KANG, LI AN-MING, et al. Enhanced red upconversion emission and its mechanism in Yb³⁺-Er³⁺ codoped α-NaLuF₄ nanoparticles. New Journal of Chemistry, 2017, 41(3): 1193–1201.
- [23] POLLNAU M, GAMELIN D R, LUTHI S R, et al. Power dependence of upconversion luminescence in lanthanide and transitionmetal-ion systems. *Physical Review B*, 2000, 61(5): 3337–3346.
- [24] PANDEY A, RAI V K, KUMAR V, et al. Upconversion based temperature sensing ability of Er³⁺-Yb³⁺ codoped SrWO₄: an optical heating phosphor. Sensors and Actuators B: Chemical, 2015, 209: 352–358.
- [25] CHEN DA-QIN, XU MIN, HUAGN PING. Core@shell upconverting nanoarchitectures for luminescent sensing of temperature. *Sensors and Actuators B: Chemical*, 2016, 231: 576–583.
- [26] LIU QUN, LI YONG-JIN, SONG ZHI-GUO, et al. Effect of Zn²⁺ dopant on photon avalanche upconversion behavior of BiOCl: Er³⁺ crystals. *Journal of Rare Earths*, 2015, **33(10)**: 1098–1103.
- [27] GUO YANG-YANG, LI JIAN-YONG, SUN JIAN. Oxygen vacancy-assistant enhancement of photoluminescence performance of Eu³⁺ and La³⁺-codoped BiOCl ultrathin nanosheets. *Journal of Luminescence*, 2019, **208**: 267–272.
- [28] YIN XIU-MEI, WANG HONG, XING MING-MING, et al. High color purity red emission of Y₂Ti₂O₇:Yb³⁺, Er³⁺ under 1550 and 980 nm excitation. *Journal of Luminescence*, 2017, **182**: 183–188.