文章编号:1000-324X(2020)12-1333-07

DOI: 10.15541/jim20200182

共挤出法制备双层中空纤维陶瓷复合膜

刘金云,张玉亭,洪周,刘华,王圣贤,顾学红 (南京工业大学 化工学院,材料化学工程国家重点实验室,南京 210009)

摘 要:中空纤维陶瓷膜具有装填密度高, 传质阻力低, 使用寿命长等优点, 被广泛用于膜分离领域。高度非对称结构的中空纤维膜有利于同时实现高通量与高截留率, 本研究采用共挤出法制备双层中空纤维陶瓷复合膜, 内外层 纺丝液分别掺杂平均粒径为 1 μm 和 300 nm 的 α-Al₂O₃粉体。系统考察了内层纺丝液 TiO₂掺杂量、外层纺丝液 Al₂O₃/聚醚砜(PESf)质量比和煅烧温度对膜的结构与性能的影响。结果表明, 在内层纺丝液 TiO₂掺杂量为 2wt%, 外层纺丝液 Al₂O₃/PESf 质量比为 5.60, 烧结温度为 1350 ℃的最优条件下, 中空纤维膜断裂负荷为 24 N、平均孔径为 0.15 μm、去油率为 97.5%。

关 键 词: 双层中空纤维; 共挤出法; TiO₂; Al₂O₃/PESf

中图分类号: TQ174 文献标识码: A

Fabrication of Dual-layer Hollow Fiber Ceramic Composite Membranes by Co-extrusion

LIU Jinyun, ZHANG Yuting, HONG Zhou, LIU Hua, WANG Shengxian, GU Xuehong

(State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China)

Abstract: Hollow fiber ceramic membranes have been widely accepted in membrane separation due to their advantages of high packing density, low transfer resistance and long-period operation. Fabrication of highly-asymmetric hollow fiber membrane is helpful to achieve high flux as well as high rejection simultaneously. In this work, dual-layer hollow fiber ceramic composite membranes were prepared by the co-extrusion method. The inner and outer suspensions were doped with α -Al₂O₃ powders with average particle sizes of 1 µm and 300 nm respectively. Effects of TiO₂ content in inner suspension, Al₂O₃/polyether sulfone (PESf) mass ratio of outer suspension and calcination temperature on structure and properties of membrane were investigated extensively. When the TiO₂ content was 2wt% in inner suspension, the Al₂O₃/PESf mass ratio was 5.60 in outer suspension and the sintering temperature was 1350 °C, the hollow fiber membrane got the optimum performance, with fracture load of 24 N, average pore size of 0.15 µm, and oil rejection of 97.5%.

Key words: dual-layer hollow fiber; co-extrusion; TiO₂; Al₂O₃/PESf

中空纤维膜在腐蚀性流体过滤、高温高压膜反

应器、固体燃料电池等领域受到广泛关注^[1-4], 主要

收稿日期: 2020-04-07; 收到修改稿日期: 2020-06-12

基金项目: 国家自然科学基金面上项目(21776128); 江苏省"333 高层次人才培养工程"资助项目(第二层次); 江苏省自然科 学基金青年项目(BK20170132) National Natural Science Foundation of China (21776128); "333 Talent project" of Jiangsu Province; Natural Science

Foundation of Jiangsu Province (BK20170132)

作者简介: 刘金云(1994-), 女, 硕士研究生. E-mail: 1158381254@qq.com

LIU Jinyun(1994-), female, Master candidate. E-mail: 1158381254@qq.com

通讯作者: 顾学红,教授. E-mail: Xhgu@njtech.edu.cn GU Xuehong, professor. E-mail: Xhgu@njtech.edu.cn

采用相转化法制备,由于非对称结构和多孔结构 使其具有低传输阻力和高通量的特点。另外它还具 有装填密度高、化学稳定性好以及耐溶剂性等突出 优势^[5-7]。

普通单层中空纤维膜往往难以兼具高通量和高 截留率,需要二次涂覆改善膜的分离性能。双层膜 可以简化二次涂覆过程, 节省膜制备时间, 因而受 到研究者的关注。Henne 等^[8]发明了共挤出法并制 备了双层中空纤维复合膜用于临床血液透析。许多 研究者围绕双层聚合物中空纤维膜在膜制备方法、 膜形貌的控制以及双层之间黏附和分层的机理等方 面开展了大量研究^[9-12],并将膜成功用于气体分离、 渗透汽化、膜蒸馏等领域^[13-15]。21世纪以来, 双层 无机中空纤维膜逐渐受到研究者的关注。2004 年, Jong 等^[16]首次制备了双层氧化铝中空纤维膜, 虽然 膜的强度较低,但内外两层结合得很好,且无分层 现象。之后, Droushiotis^[17]和 Othman^[18]等在研究微 管式固体氧化物燃料电池(MT-SOFC)时,采用共挤 出和共烧结法制备了电解液/阳极双层中空纤维,与 传统耗时的多步法相比、该方法不仅缩短了制备时 间,降低了制备成本,而且可以调控外层厚度,优 化其本身性能^[19-20]。此外, 双层陶瓷中空纤维在膜 反应器[21]、气体分离[22]和微滤[23]等领域也受到广泛 关注。

本课题组前期开发出四通道陶瓷中空纤维膜, 系统研究了中空纤维膜的结构与性能之间的构效关 系^[24-25]。与普通单通道陶瓷中空纤维膜相比,四通 道陶瓷中空纤维膜的机械强度显著提升。当调节膜 的结构缩小其孔径时,膜的通量大幅下降,影响了 膜的传质效率。本研究采用共挤出法和共烧结法制 备四通道双层中空纤维复合陶瓷膜,同时获得了较 小的孔径和较高的通量,系统考察了内层助烧剂的 掺杂量、外层 Al₂O₃/PESf 质量比和烧结温度对膜的 结构和性能的影响。

1 实验方法

1.1 实验原料

纺丝液陶瓷粉体选用 α-Al₂O₃(1 μm 和 300 nm, 国内工业级)和 TiO₂(1 μm, 锐钛矿, 国内工业级)。 溶剂为 N-甲基-2-吡咯烷酮(NMP, 纯度 99%, 国药 集团化学试剂有限公司), 粘合剂为聚醚砜(PESf, BD-5, 国内工业级), 添加剂为聚乙烯吡咯烷酮 K30 (PVP, 国药集团化学试剂有限公司), 内外凝固浴用 去离子水。

1.2 双层中空纤维陶瓷膜的制备

采用相转化与高温煅烧相结合的方法制备中空 纤维陶瓷膜:首先 NMP、PESf 和 PVP 以一定比例 充分搅拌均匀,形成聚合物溶液;然后加入陶瓷粉 体,继续搅拌 24 h 形成纺丝液,纺丝液的组成比例 如表 1 所示。纺丝液在注入不锈钢注射器之前,先 抽真空 2 h,脱去铸膜液里的气泡。然后内外层纺丝 液在注射泵的推动下分别以 35 和 8 mL/min 的速 度穿过四通道双层纺丝头,并用去离子水作为内凝 固浴在压力推动下以 40 mL/min 进入,空气间距为 10 cm。纺丝液挤出成形后在外凝固浴中静置 24 h 后取出晾干,在空气气氛中对纺丝生坯进行高温煅 烧,首先以 2 ℃/min 的升温速率升到设定温度,并保温 5 h, 最后以 2 ℃/min 的速率降至室温。

1.3 性能测试

利用扫描电子显微镜(SEM, S4800, 日立)观察 中空纤维膜的表面和断面形貌, 利用 X 射线衍射仪 (XRD, MiniFlex 600, Rigaku)分析中空纤维膜的晶 型结构。采用电子万能试验机(CMI6203, 深圳市新 三思材料检测有限公司)测试双层中空纤维膜的三 点弯曲强度, 其中跨距为 40 mm, 十字头下降速度 为 0.5 mm/min, 每根样品至少选取 5 根。采用微滤 膜孔径分析仪(PSDA-20, 南京高谦功能材料科技有 限公司)测试中空纤维膜的孔径, 通过气体泡压法 测定最大孔径、平均孔径及孔径分布。

在 0.1 MPa 压差作用下测试膜的纯水渗透通量 (J), 计算公式如下:

$$J = \frac{V}{A \cdot t} \tag{1}$$

其中, *V*为纯水透过总量, m³; *A*为有效表面积, m²; *t*为过滤时间, h。

通过阿基米德排水法测定陶瓷中空纤维膜的孔 隙率,计算公式如下:

$$q = \frac{G_2 - G_1}{G_2 - G_3} \times 100\%$$
 (2)

表 1 双层中空纤维膜纺丝液组成/wt% Table 1 Suspension composition of dual-layer hollow fiber membrane/wt%

Suspension composition	Inner layer	Outer layer
Solvent (NMP)	33.34	37.81
Al ₂ O ₃ (1 μm)	55.35	-
Al ₂ O ₃ (300 nm)	_	49.15
Polymer (PESf)	9.77	11.34
Additive (PVP)	1.54	1.70

其中, q 为中空纤维陶瓷膜的孔隙率, %; G₁为样品 在空气中完全干燥的质量, g; G₂为吸水饱和样品在 空气中的质量, g; G₃为吸水饱和样品在水中的重 量, g。

通过膜烧结前后直径的变化计算膜的径向收缩 率 η, 公式如下:

$$\eta = \frac{D_{\rm P} - D_{\rm S}}{D_{\rm P}} \times 100\% \tag{3}$$

其中, D_P为生坯直径, μm; D_S为烧结后直径, μm。

实验室自制水包油乳液体系(豆油和去离子水), 油浓度为200 mg/L,油滴粒径分布在0.06~10.00 μm 之间。通过自制错流膜分离装置进行油水分离,使 用总有机碳分析仪(TOC, Shimadzu ASI-5000)检测 进料和渗透物中的 TOC 值。膜的去油率 *R*_{TOC} 计算 公式如下:

$$R_{\rm TOC} = \frac{C_{\rm F} - C_{\rm P}}{C_{\rm F}} \times 100\% \tag{4}$$

其中, C_P为进料液 TOC 值, mg/L; C_F为渗透液 TOC 值, mg/L。

2 结果与讨论

2.1 单层与双层中空纤维陶瓷膜比较

首先选用 1 µm 和 300 nm 的 Al₂O₃ 粉体分别制 备两种单层中空纤维膜和 1 µm/300 nm 双层中空纤 维膜,膜的烧结温度为 1350 ℃。如图 1 所示,双层 中空纤维膜生坯的外径是 4.67 mm,烧结后外径减 小为 4 mm,径向收缩率为 14.3%。其中双层膜生坯 的外层厚度约为 100 µm (图 1(a, b)),高温烧结后外 层厚度收缩至 60 µm (图 1(d))。与 1 µm 单层中空纤 维膜相比(图 1(e, f)),双层中空纤维膜的外径更大, 断面具有明显的双层结构,内外两层结合紧密,且 无明显分层现象。由表面形貌看出,单层膜表面粗 糙度较高,孔径分布不均(图1(h)),双层膜则由于外 层 Al₂O₃颗粒较小,膜表面更加光滑平整(图 1(g)), 孔径也都小于 0.24 μm,适合用于微滤或者作为复 合膜分离层的载体。

表 2 为单层与双层中空纤维膜的性能对比, 如 表所示,粉体粒径越小,纤维膜的径向收缩率越大。 当粉体粒径为1μm时, 膜的径向收缩率最小, 孔隙 率和平均孔径最大,因此膜的纯水通量最高,同时 油截留率最低。由于粉体间隙较大,相互熔融烧结 程度较低,因此膜的断裂负荷最低。与之相比,双层 膜由于外层粉体粒径较小, 膜层较为致密, 膜的平 均孔径和纯水通量有所降低,油截留率则提高至 97%,同时膜的断裂负荷也有所增强。Chong 等^[23] 在不锈钢双层中空纤维的外层掺杂了小颗粒的钇稳 定型氧化锆(YSZ)粉体、发现膜的孔径也明显减小。 双层中空纤维膜与300 nm 单层中空纤维相比, 油截 留率略有下降,但是纯水通量显著提高了1.6倍。膜 的断裂负荷相比也较低, 表明双层中空纤维膜的机 械强度主要由内层决定,进一步通过在内层纺丝液 中掺杂1 µm TiO2粉体作为烧结助剂来提高膜的机 械强度。

2.2 双层膜内层 TiO₂掺杂量的影响

图 2 为不同 TiO₂ 掺杂量下双层中空纤维膜的 XRD 图谱。如图所示,掺杂 TiO₂的双层中空纤维膜 产生了新的钛酸铝(Al₂TiO₅)峰,且峰强度随着 TiO₂掺 杂量的增加逐渐变强,同时 Al₂O₃ 峰的强度逐渐减 弱。这是因为 TiO₂(锐钛矿)在升温(>600 ℃)过程中 首先转化成 TiO₂(金红石),然后在高温下(>1280 ℃) 与 Al₂O₃发生如下反应:

图 1 双层中空纤维膜和单层中空纤维膜 SEM 照片

Fig. 1 SEM images of dual-layer hollow fiber and single-layer hollow fiber

Cross-section morphologies of (a, b) dual-layer hollow fiber precursor, (c, d) dual-layer hollow fiber, (e, f) 1 µm single-layer hollow fiber; SEM images of the surface morphology: (g) dual-layer hollow fiber, (h) 1 µm single-layer hollow fiber

Table 2	Comparison of properties between single-layer and dual-layer hollow fiber membranes
	表 2 单层与双层中空纤维膜的性能比较

Property	η /%	Fracture load/N	Pure water flux/($m^3 \cdot m^{-2} \cdot h^{-1}$)	Porosity/%	Average pore size/µm	R_{TOC} /%
Single-layer (1 µm)	13.0	9	3.52	51.57	0.70	95.4
Single-layer (300 nm)	16.9	19	0.86	48.20	0.13	98.4
Dual-layer (1 µm/300 nm)	14.3	12	2.30	50.89	0.24	97

图 2 不同 TiO₂ 掺杂量下双层中空纤维膜的 XRD 图谱 Fig. 2 XRD patterns of dual-layer hollow fiber membranes with different TiO₂ contents

α-Al₂O₃+TiO₂(rutile)=β-Al₂TiO₅ (5)
在 Al₂TiO₅ 结构中,每个 Al³⁺和 Ti⁴⁺都被六个
O²⁻包围,形成扭曲的八面体,属于板钛矿晶型,这
些八面体形式的定向双链通过共享边缘实现较弱的
结合^[26-27]。

表 3 为不同 TiO₂掺杂量下双层中空纤维膜的性能。如表所示,随着 TiO₂掺杂量的增加,膜的收缩率小幅增加,并逐渐接近 300 nm 单层纤维收缩率,表明内层掺杂 TiO₂ 有利于提高内层粒子间的熔融烧结程度。与纯 Al₂O₃ 双层膜相比,掺杂 TiO₂ 双层膜的机械强度明显提升。当 TiO₂掺杂量为 2wt%时,膜的断裂负荷最高达到 24 N。随着 TiO₂掺杂量的增加,膜的断裂负荷逐渐下降。由 XRD 结果可知,TiO₂与 Al₂O₃ 反应生成了脆性的 Al₂TiO₅,且其含量随着TiO₂掺杂量的增加而逐渐增加,导致膜的机械强度逐渐下降,这一现象与 Kalita 等^[26]的研究结果类似,他们也发现膜的机械强度随着 Al₂TiO₅ 含量的增加 而逐渐下降。另一方面,由于 TiO₂掺杂量的增加 进了粒子间的烧结程度,使内层趋于致密化,因此 膜的平均孔径、孔隙率和纯水通量都逐渐下降。

2.3 双层膜外层 Al₂O₃/PESf 质量比的影响

双层膜的截留效果取决于外层 Al₂O₃ 的有效孔 径,外层 Al₂O₃ 的表面孔径可以通过改变外层纺丝 液中的 Al₂O₃/PESf 质量比进行调节。对双层膜进行 SEM 表征,如图 3 所示,随着外层 Al₂O₃/PESf 质量 比的增大,外表面附近的指状孔长度逐渐变短,膜 表面的孔径逐渐减小。这是因为当 Al₂O₃/PESf 质量 比增加时,外层纺丝液的粘度逐渐增加(如表4所示), 此时纺丝液中溶剂与外凝固浴的交换速率降低,因 此靠近外侧的指状孔长度逐渐缩短。Kingsbury等^[5] 认为纺丝液粘度的增加抑制了粘性指进现象,所以 指状孔长度缩短。当纺丝液 Al₂O₃/PESf 质量比为 13.3 时,指状孔集中在外层区域,且孔径很小。此外, 外层 Al₂O₃密度也随 Al₂O₃/PESf 质量比的增加而增 大,经高温烧结后,聚合物 PESf 完全脱除,因此外 层趋于致密,表面孔径逐渐减小。

表4为外层纺丝液Al₂O₃/PESf质量比对纺丝液 粘度及膜的性能影响,从表中可以看出由于外层比 内层薄,Al₂O₃/PESf质量比的变化对膜整体的断裂 负荷、孔隙率影响很小,膜的断裂负荷和孔隙率分 别在21~25 N和49.9%~53.91%范围内小幅变化。而 膜的纯水通量随Al₂O₃/PESf质量比的增加逐渐下 降。当Al₂O₃/PESf质量比从2.75提高至13.30时,纯 水通量从1.99降低至0.48 m³·m⁻²·h⁻¹,油截留率从 97.3%小幅提高至97.8%。由图3可知,这主要是因 为随着外层粒子堆积密度的增加,外层趋于致密化, 传质阻力逐渐增大,油截留率略有提高。图4为在 不同外层Al₂O₃/PESf质量比条件下双层中空纤维膜

表 3 TiO₂掺杂量对双层中空纤维膜性能的影响 Table 3 Influence of TiO₂ content on properties of dual-layer hollow fiber membranes

TiO ₂ content/wt%	η /%	Fracture load/N	Pure water flux/ $(m^3 \cdot m^{-2} \cdot h^{-1})$	Porosity/%	Average pore size/µm
0	14.3	12	2.30	50.89	0.240
2	14.9	24	1.65	48.05	0.152
5	14.9	22	1.32	49.97	0.147
10	15.2	20	1.21	46.43	0.150
15	15.3	19	1.12	45.68	0.145
20	16.3	17	0.91	43.90	0.141

图 3 不同外层纺丝液 Al₂O₃/PESf 质量比的双层中空纤维膜 SEM 照片

Fig. 3 SEM images of dual-layer hollow fiber membranes with different $Al_2O_3/PESf$ mass ratios in outer suspension (a) 2.75; (b) 4.33; (c) 5.60; (d) 7.50; (e) 13.3

表 4 外层纺丝液 Al₂O₃/PESf 质量比对双层中空纤维膜性 能的影响

Al ₂ O ₃ / PESf	Outer suspension viscosity/cP	Fracture load/N	Pure water flux/ $(m^3 \cdot m^{-2} \cdot h^{-1})$	Porosity/ %	/ Mean pore size/µm	R _{TOC} / %
2.75	7320	21	1.99	49.90	0.180	97.3
4.33	8580	22	1.10	52.26	0.175	97.5
5.60	9720	23	1.41	53.91	0.130	97.5
7.50	11020	25	1.08	53.31	0.125	97.6
13.30	58300	23	0.48	52.54	0.115	97.8

的小孔孔径分布结果,从图 4 可以看出,膜的小孔 孔径为 0.1~0.2 μm,随着外层 Al₂O₃/PESf 质量比的 增加, 孔径逐渐减小, 这与通量规律相似。当 Al₂O₃/ PESf质量比为5.60时, 孔径分布最窄, 峰强度最高, 说明此时膜的外表面孔径分布最均匀, 此时最可几 孔径为 0.13 μm。

2.4 烧结温度的影响

当膜的内层粉体为 1 μm Al₂O₃/2wt% TiO₂,外 层粉体为 300 nm Al₂O₃,且 Al₂O₃/PESf 质量比为 5.60 时,考察了烧结温度对双层膜性能的影响,如 图 5 所示,随着烧结温度的升高,外表面附近的指

Fig. 4 Influence of Al₂O₃/PESf mass ratio in outer suspension on pore size distribution of dual-layer hollow fiber membranes

图 5 不同温度烧结的双层氧化铝中空纤维膜的 SEM 照片 Fig. 5 SEM images of dual-layer hollow fiber membrane of alumina sintered at different temperatures (a) 1250 ℃, (b) 1300 ℃, (c) 1350 ℃, (d) 1400 ℃

Table 5Influence of sintering temperature on the properties of dual-layer hollow fiber membranes						
Temperature/°C	Fracture load/N	Pure water flux/ $(m^3 \cdot m^{-2} \cdot h^{-1})$	Porosity/%	Average pore size/µm	R_{TOC} /%	
1250	11	3.23	61.97	0.235	96.7	
1300	15	2.34	55.62	0.199	97.4	
1350	24	1.20	48.88	0.150	97.5	
1400	37	0.26	40.33	0.126	98.3	

表 5 不同烧结温度对双层中空纤维性能的影响

表 6 不同中空纤维陶瓷膜性能比较 Table 6 Comparison in properties of different hollow fiber ceramic membranes

Membranes	Sintering temperature/℃	Average pore size/µm	Pure water flux/ $(m^3 \cdot m^{-2} \cdot h^{-1})$	Bending strength/MPa	Fracture load/N	Ref.
Single-Channel Al ₂ O ₃ hollow fiber	1455	0.10	0.664	88.2	-	[28]
Single-Channel Al ₂ O ₃ hollow fiber	1500	0.75	1.280	85.8	-	[29]
4-Channel Al ₂ O ₃ hollow fiber	1500	1.20	2.710	-	22	[25]
7-Channel Al ₂ O ₃ hollow fiber	1350	0.183	1.070	-	14	[30]
7-Channel YSZ/Al ₂ O ₃ hollow fiber	1400	230.00	1.640	-	14	[31]
4-Channel 1 $\mu m/300$ nm Al_2O_3 hollow fiber	1350	0.15	1.260	-	24	This work

状孔长度逐渐缩短,颗粒之间的颈部连结现象逐渐 明显,膜表面趋于致密。

表 5 为烧结温度对膜的断裂负荷和纯水通量, 以及孔隙率和平均孔径性能的影响。随着烧结温度 的升高, 粒子之间连结更加紧密, 孔隙率逐渐降 低,平均孔径减小,纯水通量也随之减小,而截留 率逐渐升高。当烧结温度从 1250 ℃升高至 1400 ℃ 时,孔隙率从 61.97%下降至 40.33%,平均孔径从 0.235 µm 减小至 0.126 µm, 纯水通量从 3.23 降低至 0.26 m³·m⁻²·h⁻¹, 截留率从 96.7%提高到 98.3%。同 时烧结温度的升高有利于提高膜的断裂负荷, 当烧 结温度为 1400 ℃时, 膜的断裂负荷高达 37 N。值 得注意的是, 当烧结温度为 1350 ℃时, Al₂O₃-TiO₂/ Al₂O₃ 双层膜的平均孔径为 0.15 μm, 纯水通量为 1.20 m³·m⁻²·h⁻¹; 采用 300 nm Al₂O₃ 制得的单层膜平 均孔径约为0.13 µm时, 纯水通量仅为0.86 m³·m⁻²·h⁻¹, 表明双层膜在截留率相当的情况下,纯水通量优势更 加显著、并且膜的断裂负荷也能满足实际应用要求。

从表 6 可以看出,本文采用共挤出法制备的双 层中空纤维膜不仅具有较高的渗透通量,而且具有 较大的断裂负荷,能够满足实际应用的机械强度要 求。更重要的是,与其它多通道中空纤维氧化铝膜 相比,双层膜的平均孔径较小,具有很好的油水分 离效果。膜的烧结温度也较低,有利于降低生产能 耗和成本。

3 结论

采用共挤出法制备了双层中空纤维陶瓷复合膜,

其中内层选用 1 µm 的氧化铝粉体用来降低膜的传 质阻力,外层选用 300 nm 的超细氧化铝粉体用来形 成较小的孔径和光滑的膜表面。通过在内层掺杂 TiO₂ 粉体促进粒子烧结,提高膜的机械强度,改变 外层纺丝液 Al₂O₃/PESf 质量比调变膜的有效孔径。 当内层 TiO₂ 粉体的掺杂量为 2wt%时,膜的断裂负 荷最高达 24 N。当外层 Al₂O₃/PESf 质量比为 5.60 时,膜的最可几孔径最小为 0.13 µm,且膜表面光 滑。当烧结温度为 1350 ℃时,双层中空纤维膜的纯 水通量为 1.20 m³·m⁻²·h⁻¹,断裂负荷为 24 N,表明双 层中空纤维膜能够同时提供较高的通量和机械强 度,并且双层中空纤维膜的油截留率高达 97%以上, 具有广阔的应用前景。

参考文献:

- WANG S X, TIAN J Y, WANG Q, et al. Low-temperature sintered high-strength CuO doped ceramic hollow fiber membrane: preparation, characterization and catalytic activity. *Journal of Membrane Science*, 2019, 570-571: 333–342.
- [2] LEE M, WU Z T, WANG R, et al. Micro-structured alumina hollow fibre membranes- potential applications in wastewater treatment. Journal of Membrane Science, 2014, 461: 39–48.
- [3] HONG J L, MIN K K, JUNG H P. Decompression stripping of carbon dioxide from rich monoethanolamine through porous hydrophobic modified ceramic hollow fiber membrane contactor. *Separation and Purification Technology*, 2020, 236: 116304–1–8.
- [4] YANG N T, TAN X Y, MA Z F, et al. Fabrication and characterization of Ce_{0.8}Sm_{0.2}O_{1.9} microtubular dual-structured electrolyte membranes for application in solid oxide fuel cell technology. Journal of the American Ceramic Society, 2009, 92(11): 2544–2550.
- [5] KINGSBURY B F K, LI K. A morphological study of ceramic hollow fibre membranes. *Journal of Membrane Science*, 2009, 328(1/2): 134–140.

- [6] AZIZ M H A, OTHMAN M H D, HASHIM N A, et al. Fabrication and characterization of mullite ceramic hollow fiber membrane from natural occurring ball clay. *Applied Clay Science*, 2019, 177: 51–62.
- [7] HUBADILLAH S K, OTHMAN M H D, ISMAIL A F, et al. Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. *Ceramics International*, 2018, 44(9): 10498–10509.
- [8] HENNE W, DUNWEG G, SCHMITZ W, et al. Method of Producing Dialyzing Membrane. US, D01F1/08, US04164437.1979.08.14.
- [9] XIA Q C, LIU M L, CAO X L, et al. Structure design and applications of dual-layer polymeric membranes. *Journal of Membrane Science*, 2018, **562**: 85–111.
- [10] ONG Y K, CHUNG T S. Pushing the limits of high performance dual-layer hollow fiber fabricated via (IPS)-P-2 process in dehydration of ethanol. AIChE Journal, 2013, 59(8): 3006–3018.
- [11] LI D F, CHUNG T S, WANG R. Morphological aspects and structure control of dual-layer asymmetric hollow fiber membranes formed by a simultaneous co-extrusion approach. *Journal of Membrane Science*, 2004, 243(1-2): 155–175.
- [12] SETIAWAN L, SHI L, KRANTZ W B, et al. Explorations of delamination and irregular structure in poly(amide-imide)-polyethersulfone dual layer hollow fiber membranes. *Journal of Membrane Science*, 2012, **423**: 73–84.
- [13] KHAN I U, OTHMAN M H D, ISMAIL A F, et al. Status and improvement of dual-layer hollow fiber membranes via co-extrusion process for gas separation: a review. Journal of Natural Gas Science and Engineering, 2018, 52: 215–234.
- [14] SHI G M, WANG Y, CHUNG T S. Dual-layer PBI/P84 hollow fibers for pervaporation dehydration of acetone. *AIChE Journal*, 2012, **58(4)**: 1133–1145.
- [15] BONYADI S, CHUNG T S. Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes. *Journal of Membrane Science*, 2007, 306(1/2): 134–146.
- [16] JONG J D, BENES N E, KOOPS G H, et al. Towards single step production of multi-layer inorganic hollow fibers. *Journal of Membrane Science*, 2004, 239(2): 265–269.
- [17] DROUSHIOTIS N, OTHMAN M H D, DORASWAMI U, et al. Novel co-extruded electrolyte–anode hollow fibres for solid oxide fuel cells. *Electrochemistry Communications*, 2009, **11(9)**: 1799–1802.
- [18] OTHMAN M H D, WU Z T, DROUSHIOTIS N, et al. Single-step fabrication and characterisations of electrolyte/anode dual-layer

hollow fibres for micro-tubular solid oxide fuel cells. *Journal of Membrane Science*, 2010, **351(1/2):** 196-204.

- [19] JAMIL S M, OTHMAN M H D, RAHMAN M A, et al. Properties and performance evaluation of dual-layer ceramic hollow fiber with modified electrolyte for MT-SOFC. *Renewable Energy*, 2019, 134: 1423–1433.
- [20] GONG X, MENG X X, YANG N T, et al. Electrolyte thickness control and its effect on YSZ/Ni-YSZ dual-layer hollow fibres. *Journal of Inorganic Materials*, 2013, 28(10): 1108–1114.
- [21] WU Z T, WANG B, LI K. A novel dual-layer ceramic hollow fibre membrane reactor for methane conversion. *Journal of Membrane Science*, 2010, **352(1-2):** 63–70.
- [22] CHENG H D, WANG X B, MENG X, et al. Dual-layer BaCe_{0.8}Y_{0.2}O_{3-δ}-Ce_{0.8}Y_{0.2}O_{2-δ}/BaCe_{0.8}Y_{0.2}O_{3-δ}-Ni hollow fiber membranes for H₂ separation. Journal of Membrane Science, 2020, 601: 117801–1–9.
- [23] CHONG J Y, WANG B, LI K. High performance stainless steelceramic composite hollow fibres for microfiltration. *Journal of Membrane Science*, 2017, 541: 425–433.
- [24] SHI Z Z, ZHANG Y T, CAI C, *et al.* Preparation and characterization of α-Al₂O₃ hollow fiber membranes with four-channel configuration. *Ceramics International*, 2015, **41(1)**: 1333–1339.
- [25] CAI C, ZHANG Y T, ZHANG C, *et al.* Microstructure modulation of α-Al₂O₃ hollow fiber membranes with four-channel geometric configuration. *Asia-Pacific Journal of Chemical Engineering*, 2016, **11(6)**: 949–957.
- [26] KALITA S J, SOMANI V. Al₂TiO₅-Al₂O₃-TiO₂ nanocomposite: Structure, mechanical property and bioactivity studies. *Materials Research Bulletin*, 2010, 45(12): 1803–1810.
- [27] STANCIU L, GROZA J R, STOICA L, *et al.* Influence of powder precursors on reaction sintering of Al₂TiO₅. *Scripta Materialia*, 2004, **50**(9): 1259–1262.
- [28] LEE M, WU Z, WANG R, et al. Micro-structured alumina hollow fibre membranes-potential applications in wastewater treatment. *Journal of Membrane Science*, 2014, 461: 39-48.
- [29] ZHU L, JI J, WANG S, et al. Removal of Pb(II) from wastewater using Al₂O₃-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash. *Chemosphere*, 2018, 206: 278-284.
- [30] LEE M, WU Z, WANG B, et al. Micro-structured alumina multichannel capillary tubes and monoliths. *Journal of Membrane Sci*ence, 2015, 489: 64–72.
- [31] WANG B, LEE M, LI K. YSZ-reinforced alumina multi-channel capillary membranes for micro-filtration. *Membranes*, 2016, 6: 5.