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Abstract
This article summarizes work at the Laser Thermal Laboratory and discusses related studies on
the laser synthesis and functionalization of semiconductor nanostructures and two-dimensional
(2D) semiconductor materials. Research has been carried out on the laser-induced crystallization
of thin films and nanostructures. The in situ transmission electron microscopy (TEM) monitoring
of the crystallization of amorphous precursors in nanodomains is discussed herein. The directed
assembly of silicon nanoparticles and the modulation of their optical properties by phase
switching is presented. The vapor–liquid–solid mechanism has been adopted as a bottom-up
approach in the synthesis of semiconducting nanowires (NWs). In contrast to furnace heating
methods, laser irradiation offers high spatial selectivity and precise control of the heating
mechanism in the time domain. These attributes enabled the investigation of NW nucleation and
the early stage of nanostructure growth. Site- and shape-selective, on-demand direct integration
of oriented NWs was accomplished. Growth of discrete silicon NWs with nanoscale location
selectivity by employing near-field laser illumination is also reported herein. Tuning the
properties of 2D transition metal dichalcogenides (TMDCs) by modulating the free carrier type,
density, and composition can offer an exciting new pathway to various practical nanoscale
electronics. In situ Raman probing of laser-induced processing of TMDC flakes was conducted
in a TEM instrument.

Keywords: laser nanofabrication, laser crystallization, nanowire growth, near field scanning
optical microscopy, transition metal dichalcogenides

(Some figures may appear in colour only in the online journal)

1. Nanoscale melting and crystallization

1.1. In situ observation experiments

Laser-based processing enables a wide variety of device
configurations comprised of thin films and nanostructures on
sensitive and even flexible substrates which are not possible
with traditional thermal annealing schemes [1]. The

crystallization of amorphous thin films is a critical fabrication
step for enhancing the performance of thin-film transistors
[2, 3] and thin-film solar cell devices [4]. Typical thin-film
materials offer cost-effective device fabrication routes but
intrinsically suffer from a low degree of crystallinity and
hence require improvements by subsequent thermal anneal-
ing. Using a furnace to increase crystallinity not only requires
a large thermal budget but also limits the adoption of inex-
pensive substrates, such as pyrex, soda-lime glass, or polymer
substrates [5]. Annealing by pulsed lasers can significantly
mitigate these issues by taking advantage of precisely loca-
lized heating [6]. Laser-induced crystallization is a promising
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tool for realizing melt-mediated growth of crystalline silicon
(Si). However, the localized heat-affected area can suffer
rapid heat loss; and the subsequent severe undercooling can
instigate numerous nucleation events. Accordingly, the crys-
tallization process can end up with a myriad of crystalline
grains, i.e. polycrystalline silicon (pc-Si). When un-melted
crystallites exist in the initial stage of crystallization, these
seeds also provide active growth sites, leading to crystal-
lization into pc-Si. However, the pc-Si grain boundaries
degrade the electronic performance. These issues have moti-
vated development of various crystallization techniques
(including superlateral growth [2], grain filter [7, 8], and
crystal-seeded growth [9]) to enlarge the grain size and reduce
the density of grain boundaries.

Researchers have reported on the synthesis of one-
dimensional (1D) nanostructures in electron microscopy
instruments by far-field optics [10, 11]. It has been demon-
strated that laser-induced nanoscale melting of amorphous
silicon (a-Si) can effectively lead to the formation of single-
crystalline nanodomains after re-solidification on single-
crystal Si substrates [12, 13]. An in situ transmission electron
microscope (TEM) monitoring technique was implemented to
observe the crystallization of a-Si during laser irradiation by
directly coupling a laser beam into a TEM using a fiber optic
probe [14, 15]. In contrast to prior in situ TEM observations
of laser-induced phase transformations [16, 17], this approach
uses a near-field technique.

Figure 1 shows a schematic of a near-field scanning
optical microscopy (NSOM) probe coupled into a TEM. The
fiber probe tip is precisely positioned to illuminate a-Si pre-
cursors prepared by focused ion beam (FIB) processing.
Figure 2 shows the results from laser-induced crystallization
of an a-Si pillar structure with a nanosecond (ns) laser where
the entire sample width is within the spot size of the laser.
Progressing from a-Si (figure 2(a)) to pc-Si (figure 2(b)) to a
final cap of single-crystal Si (sc-Si) (figures 2(c) and (d)).

The transient temperature evolution during crystallization
has a critical influence on the resulting microstructure
[18–20]. In order to gain insight into the crystallization of a
single-crystal Si cap, a 3D transient heat transfer simulation
combined the classical homogeneous and heterogeneous

nucleation mechanisms [21], based on the finite difference
method [19, 20, 22]. Heterogeneous nucleation prevails over
the homogeneous mechanism at a relatively higher temper-
ature, not allowing deeper undercooling. Quasi-steady state
(QSS) estimates of the nucleation rate were assumed in the
simulation. More elaborate nucleation kinetics, such as
athermal [23, 24] and non-QSS [24] nucleation, may emerge
during the relatively fast cooling rate. However, several
theoretical papers confirm that the calculated cooling rate
(∼7×109 K s−1) is in the QSS regime (or moderately close
to QSS [23]). The simulations showed that the nucleation
commenced at a temperature of 1240–1330 K. The nucleation
rate dramatically increased with the degree of undercooling.
Hence, growth of single crystal happened when the recales-
cence due to the latent heat release was sufficient to quench
subsequent nucleation events.

Massively parallel lithography techniques (possibly
nanoimprint lithography or e-beam lithography) could be
configured to fabricate the base structures. Subsequent laser
crystallization steps would form nanoscale crystalline dot
arrays to serve as controlled seeds for polycrystalline or even
epitaxial film growth by chemical vapor deposition (CVD)
[25]. Such an approach could lead to polycrystalline films
with tailored grain distribution.

Experiments on the crystallization of long a-Si nano-
pillars were performed on the same TEM-based setup dis-
cussed above [26]. In this case, Si nanopillars (diameter:
300–400 nm, length: 1.7–2 μm) consisting of a-Si—silicon
oxide (∼100 nm)—crystalline Si layers were fabricated by an
FIB technique. In contrast to the previously discussed study
where a confined a-Si fully melted, the laser heat could only
affect the phase of the pillar extremity. As shown in figure 3,
the initial a-Si pillar was crystallized into pc-Si but with an
unusually large sc-Si grain at the tip. Electron diffraction
patterns confirmed single crystallinity of the large tip grain.
The confined lateral (or radial) dimension prevented addi-
tional grains from growing into columnar structures [27].
Moreover, growth of the diverging secondary grains was
preferentially frustrated by lateral confinement. The formation
of the large tip crystal is reminiscent of the argument of Im
et al [2] on the formation of large sc-Si from a-Si thin films
and also of a study by Leung et al [27]. Large-area laser
irradiation, including expanded/homogenized beam scan-
ning, could incur efficient crystallization of pillar arrays. The
resulting pillar arrays and the exposed single-crystalline sur-
face may serve as a growth template and crystalline seeds for
the controlled growth of sc-Si.

1.2. Assembly and phase switching of silicon
nanoparticles (NPs)

Patterned periodic nanostructures serve as building blocks in
electronics [28], spintronics [29], chemical catalysts [30],
plasmonic and photonic devices [31–33], and memory devi-
ces [34–36]. Various efforts have been made to write
nanostructures into well-defined configurations. Electron-
beam lithography and helium-FIB processing represent
ultrahigh resolution, top-down approaches. On the other hand,

Figure 1. Schematic of the in situ TEM optical near-field setup [14].
In this experiment, 532 nm laser irradiation is delivered through the
probe. Reprinted with permission from [14]. Copyright (2012)
American Chemical Society.
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bottom-up, self-assembly relies on fundamental chemical pro-
cesses offering a scalable nanomanufacturing path. Pattern-
guided laser [37–39] and thermal [40, 41] dewetting, as well as
liquid assembly [42, 43], can produce periodic metallic and
dielectric nanostructures combining pattern fidelity and low
cost. Advancements in structural color [44–48], optical data
storage [49, 50], and active nanophotonic devices [51–53] rely
on tuning of the patterned geometrical features. Optical field
patterning is a promising route [54–56]. The laser-induced
forward transfer (LIFT) method has been employed to print Si
resonators with tunable size [57].

A laser-based method that can tune the size, number,
symmetry, and crystallinity of Si NP arrays was recently
reported [58]. Laser-induced modulated assembly utilizes
nanosecond laser pulse irradiation as a source modulating the
assembly of a prepatterned a-Si film to a periodic NP array
(figures 4(a) and (b)) The LiMA process relies on modulation
of the local laser absorption due to the near-field optical
energy coupling. Due to the near-field interaction, LiMA does
not require elaborate focusing of the laser beam and is easily
scalable. The modulation entails polarization-dependent par-
ticle sizing, fluence-dependent particle number selection, and

deliberate particle subtraction. Amorphization of crystalline
Si NPs follows via laser-induced phase switching (LiPS), due
to the fast cooling rate upon nanosecond irradiation. Phase
switching has usually been observed in compound phase
change materials, such as germanium antimony tellurium
(GeSbTe). The ensuing structural modification leads to di-
electric constant switching.

In Wang et al’s study, LiMA and LiPS could program the
Si Mie resonator combination as well as the resonance peak
position and the dielectric constant of selected resonators in
three different scales. The complex NP arrangement modu-
lated by the laser pulse energy and polarization produced
particle sizes ranging from 60 to 330 nm. The number of Mie
resonators as well as the resonance peaks and dielectric
constants of selected resonators can be programmed. Optical
metasurfaces [59], structural color, and multidimensional
optical storage devices could be fabricated using this
approach. Dielectric NPs exhibit a significant advantage over
plasmonics due to low loss and compatibility with conven-
tional semiconductor processing and manufacturing. The
present method can ultimately produce monoperiodic,
biperiodic and triperiodic patterns, directly facilitating the

Figure 3. The figure (a) shows the NSOM probe against an a-Si pillar. The figure (b) shows the crystal structure obtained upon irradiation of
laser pulses. Reproduced from [26] (2014). With permission of Springer.

Figure 2. (a) As-prepared nanoscale a-Si pillar fabricated by FIB. (b) TEM image of pc-Si observed after irradiation by several ns laser pulse
shots. (c) Bright-field TEM image of single-crystalline, nanoscale sc-Si cap achieved after the pc-Si cap shown in (b) irradiated by a single-
pulse shot of ns laser beam. Inset: electron diffraction pattern of the nanoscale sc-Si as shown in (c), zone axis is [−112]. (d) The
corresponding dark-field TEM image of the nanoscale sc-Si grain as shown in (c), using the [220] reflection to illuminate only the lone Si
grain. Reprinted with permission from [14]. Copyright (2012) American Chemical Society.
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application of Fano resonance [60, 61] and spectroscopy [62].
In a broader context, the concept of Si as ‘phase change’
material may find applications in storage and reconfigurable
metasurfaces.

2. Directed laser nanomaterial growth

2.1. Laser-aided vapor–liquid–solid (VLS) nanowire (NW)
growth

Nanoscale-synthesized materials are the key to building future
generation devices in diverse fields, including NW-based
applications in energy conversion [63, 64], energy storage
[65, 66], optoelectronics [67, 68], and biotechnology [69, 70].
To realize this promise, new techniques must be developed to
enable the precise layout and assembly of heterogeneous
components into functional ‘superblocks.’ Even though a
high level of compositional and orientational control in NW
growth has been achieved, the post-synthesis assembly steps,
even by state-of-the-art optical or optoelectronic tweezing
[71, 72], are not sufficient to allow high spatial and directional
precision. As a route towards this goal, several studies have
attempted site-selective growth of NWs [73, 74] or nanotubes
[75, 76] by local laser illumination. Laser-assisted NW
(nanotube) growth broadly falls into the category of laser
CVD which has been actively explored for a few decades [77]
as a versatile materials synthesis technique enabling the

formation of microstructures of well-defined dimensions in a
single-step maskless process [78].

The VLS crystal growth approach is utilized for the
fabrication of high aspect ratio nanoscale semiconductor
materials. In the VLS mechanism, the gold (Au) catalyst
forms a liquid alloy with Si that preferentially adsorbs onto
the catalyst surface at the eutectic temperature of 363 °C or
higher and then diffuses into the Au–Si liquid alloy droplet.
After reaching the solubility limit at the liquid–solid interface,
Si precipitates inducing NW growth. Actual growth begins
after an elapsed time, typically called the nucleation time (or
incubation time). The shortest nucleation time reported was in
the range of 15 s at 650 °C growth temperature (for an
∼30 nm diameter Au catalyst) and extended to ∼180 s at
450 °C [79]. Considering that the possible contributing fac-
tors to this elapsed time are reaction and diffusion, mediated
by phase change of the silicon species through molten catalyst
of only tens of nm in diameter, these times appear to be
too long.

The laser-assisted growth mechanism of silicon nanowires
(SiNWs) has been investigated via the heating of deposited
catalysts [80]. Figure 5 shows vertical growth of SiNWs on a
homoepitaxial c-Si film. The heterogeneity in length that is
controlled by the laser duration is notable. Conductive heat
transfer analysis shows that the induced, nearly steady, temp-
erature in the time regime of seconds exhibits a linear rela-
tionship with respect to the laser power applied. The NW
growth follows typical Arrhenius behavior with an activation
energy of ∼66.8 (kcal mol−1). Laser-assisted multielement

Figure 4. (a) Schematics of the LIMA nanoparticle assembly process flow and SEM images of assembled nanoparticle arrays. (b) LiMA results
using different laser processing parameters. (c) LiPS of Si nanoparticle crystallinity and its effect on color appearance. A second pulse changed
the color of a preassembled nanoparticle canvas through from ‘green’ to ‘red’ through amorphization of crystalline Si. The scale bars are 300 nm
for (a) (iii)–(iv) and (b) (iv)–(iv) and 5 μm for (c) (ii). Reprinted with permission from [58]. Copyright (2018) American Chemical Society.
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(and hence multibandgap) semiconductor NW direct growth
has been demonstrated on a single platform [81]. The reaction
size can be tailored depending on the specific target application
by regulating the laser power or by temporally/spatially
modulating the laser irradiation. Arbitrary patterning of single
element or compound NWs can be achieved on demand simply
by switching the precursor gases.

A critical difference is identified in the growth time
resolution as the furnace growth was ∼15 s. The relatively
lower activation energy in laser-assisted growth is partly
attributed to the difference in time resolution. However,
localized CVD or growth by confined laser spot is advanta-
geous in driving three-dimensional gas transport over a
smaller reaction zone (CVD gas delivery and exchange of
reaction byproducts such as hydrogen) versus 1D transport in
wider reaction area cases [82]. Due to competing solid–liquid
and vapor–liquid interfacial energy effects, the catalyst size
affects SiNW growth kinetics and, therefore, the diameter and
growth rate. In contrast to conventional furnace experiments
that are of limited temporal resolution, regulating the duration
of the laser illumination can precisely control the laser-driven
NW growth [83]. Energy filtered transmission electron
microscopy-based chemical mapping was employed to
investigate the commencement of the laser-driven nucleation
process (figure 6). In the regime of rapid and sustained
growth, nucleation occurs in the time range of 10–100 ms
depending on the catalyst diameter and growth temperature.
The precise measurements of nucleation times elucidate the
early stage behavior of catalyzed growth and reveal that
the activation energy for the NW nucleation diminishes as the

catalyst size is reduced. In a more general point of view, the
laser heating methodology provides useful clues to a wide
range of phenomena spanning from synthesis to phase change
of nanomaterials.

The highly controlled spatial and temporal laser irradia-
tion distribution enabled growth of discrete semiconductor
NWs having precisely tunable dimensions on heteroepitaxial
substrates [84]. Figure 7 shows VLS growth of vertical ger-
manium nanowires (GeNWs) with deliberately varying
shapes on a single Si(111) substrate by controlling the laser
power (i.e. growth temperature) and illumination time. The
irregular cross-sectional shape obtained at high temperatures
was due to the anisotropy induced by the crystallographic
orientation. Despite the lack of buffer layers to mitigate the
lattice mismatch, the quality of the interface between the
nanowire root and the substrate is excellent.

2.2. NSOM enabled selective nanowire growth

Highly selective growth of single SiNWs was achieved by
means of an optical near-field technique [85]. Supportive,
indirect heating of the catalyst provided to the underlying
substrate via far-field laser irradiation lowered the level of
direct near-field illumination onto the catalyst and also sus-
tained the nanometer-scale heat source confinement. The
actual exposure of the direct illumination beam on the catalyst
was limited to the early stage of the growth and was followed
by heat conduction to the catalyst through the nanowire stem.
Damage-free, nanoscale spatial selectivity under the reactant
gas was possible using a dielectric atomic force microscopy
(AFM) tip. The optical near-field laser radiation was applied

Figure 5. The left scanning electron microscopy (SEM) image depicts NW growth from Si atoms produced by the dissociated silane (SiH4)
gas diffuse through the molten eutectic Au+Si catalyst towards the growing NW stem. The right picture depicts localized NW growth from
Au NPs deposited by e-beam lithography on a 2 mm crystalline c-Si film on a fused Si wafer. Tightly focused continuous wave (CW) laser
radiation at a visible wavelength ( =543 nm) addresses each catalyst separately and drives homoepitaxial Si NW growth. The laser beam
propagates through the transparent substrate to indirectly heat the catalyst. The length of the NWs is precisely regulated by the duration of the
laser illumination.
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on a single selected Au nanocatalyst in order to initiate
nucleation and then drive the subsequent SiNW growth, as
shown in figure 8(a). Figure 8(b) shows a scanning electron
microscope image of discrete SiNWs selectively grown
among randomly distributed Au nanocatalysts while the
neighboring catalysts remained intact. Far-field indirect illu-
mination was first provided onto the film, inducing no evident
reaction within the heat-affected zone. Following a temporal
delay, near-field direct illumination was superimposed onto
the far-field radiation providing the impetus for the nanowire
growth. The near-field illumination can induce an extra
temperature increase in a AuNP at the very early growth stage
when the AuNP is still under direct near-field illumination.
The directionality of the NW could be improved by placing
an electrically biased AFM tip over the catalyst during the
laser-induced growth process [86].

3. Laser processing of atomic layered films

3.1. Localized doping

Two-dimensional (2D) transition metal dichalcogenide
(TMDC) semiconductors with the general chemical formula
of MX2 (M=Mo, W; X=S, Se, Te) have attracted much
interest due to their finite direct band gaps, rich excitonic
dynamics, and valley polarization (valleytronics) associated
with the broken inversion symmetry. These layered semi-
conductors, composed of vertically stacked layers held toge-
ther by van der Waals interactions, are emerging as

alternatives to Si-based electronics. The TMDC devices
exhibit exceptional characteristics that are particularly sui-
table for next generation optoelectronic and electronic device
applications [87–89]. They are excellent candidate materials
for transistors [90–92], photodetectors [93, 94], electro-
luminescent devices [95], and sensors [96]. Despite the
potential in electronics and optoelectronics, reliable and stable
processing methods are needed for transition to practical
applications [97]. More specifically, controlled doping of
semiconductors is vital for integration into devices. However,
previous efforts have mostly focused on doping TMDCs by
means of charge transfer from adsorbed molecules [98],
electrostatic [99] or physisorption gating [100], defect engi-
neering [101], and substitutional doping during growth [102].
Site-specific doping with precise doping level control
becomes essential, especially for nanoscale devices using
ultrathin TMDCs in order to minimize random dopant fluc-
tuation and ensure device performance reproducibility. A
versatile method was reported for widely tunable, site-specific
doping of ultrathin TMDCs (molybdenum disulfide (MoS2)
and tungsten diselenide (WSe2)) through focused laser irra-
diation in a phosphine environment [103]. A schematic dia-
gram of the laser-assisted doping process is shown in
figure 9(a).

The laser serves two major functions: (i) creation of
chalcogen vacancies in the TMDC materials and (ii) simul-
taneous dissociation of the dopant molecules. The released
dopant molecules were incorporated into the vacancy sites.
The phosphine (PH3) doping of Si has been extensively stu-
died, both experimentally and through theoretical modeling

Figure 6. (a)–(e) Composite chemical maps for various growth times: (a) just prior to nucleation at 8 ms, (b) just after nucleation at 10 ms, (c)
40, (d) 80, and (e) 400 for 50 nm AuNP catalysts. Laser power was fixed at 7.5 mW (calibrated growth temperature of 918 K) and a partial
pressure of SiH4 maintained at 6 Torr with a flow rate of 600 sccm. The scale bar is 50 nm. (f)–(h) SEM images showing early stage growth
behavior of SiNW: (f) just after nucleation at 10 ms, (g) 20 ms, and (h) 100 ms for 50 nm AuNP catalysts. The laser power was fixed at
7.5 mW (calibrated growth temperature of 918 K) and a partial pressure of SiH4 maintained at 6 Torr. The scale bar is 50 nm. Reprinted from
[83], with the permission of AIP Publishing.
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Figure 7. (Top) Field-emission scanning electron microscopy (FE-SEM) images at a 45° tilted angle of vertically grown GeNWs on Si(111). 
All NWs were grown on a single 4 μm thick c-Si bonded on quartz. The growth temperature ranged from 292 °C to 406 °C and the growth 
time from 1 to 20 s. The scale bar is 500 nm. (Bottom) Planar view images of vertically grown GeNWs on Si(111). The growth temperature 
ranged from 311 °C to 406 °C and the growth time from 1 to 30 s. The scale bar is 50 nm. Reprinted with permission from [84]. Copyright 
(2013) American Chemical Society.
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[104]. Despite differences between Si and TMDCs, it is rea-
sonable to adopt the substitutional doping mechanism. Con-
sidering that the dissociation temperature of TMDCs is in the
range of 1200–1400 K, a laser power slightly below this range
is enough to break the PH3 molecules whose dissociation
temperature is 685 K. Figure 9(b) shows an optical image of a
mechanically exfoliated monolayer and five-layer MoS2
flakes. The monolayer MoS2 flake in figure 9(c) was ∼0.7 nm
thick. The PL map shown in figure 9(d) was taken from the
laser-irradiated region indicated in figure 9(c). The laser
doping process did not cause detrimental structural damage to
these TMDCs at the given conditions.

Previous studies have already achieved both n- and p-type
doping by surface charge transfer mechanisms, mostly through
chemical physisorption [105]. However, physisorption doping
is unstable and decays almost completely within an hour [106]
or is retained for longer periods only if the doping environment
is maintained or protected [92]. Among the various doping
methods, substitutional doping of foreign elements is an
effective and stable doping strategy for TMDCs. Accordingly,
the laser was used to create sulfur vacancies and locally heat up
the material to crack the precursor molecules, enabling the
substitution of sulfur with phosphorus. The laser-assisted
doping was shown to be irreversible and stable, even after

Figure 9. (a) Schematic diagram of the laser-assisted doping method. (b) Optical image of as-prepared monolayer MoS2 on SiO2/Si
substrates. (c) Atomic force microscopy image of the zoomed area in (b). Its thickness is around 0.7 nm, in good agreement with the thickness
of monolayer MoS2. The circle in (c) is the laser spot area in the laser doping. (d) Photoluminescence (PL) mapping of the zoomed area in
(c) that clearly shows the PL intensity enhancement of the laser-assisted doped area. [103] John Wiley & Sons.

8

Int. J. Extrem. Manuf. 1 (2019) 012002 Topical Review

Figure 8. Highly selective growth of single SiNWs by near-field direct illumination over the AuNP, aided by supportive film heating by far-
field indirect illumination. (a) Single catalysts were selected from randomly distributed AuNPs via the AFM mapping process for growth into
a SiNW. Length control was implemented by adjusting the near-field laser irradiation power. (b) Each of two single NWs on top (1), (2) and
at bottom (3), (4) were individually grown with 1.5 and 2.0 mW in laser input power for 5 s, respectively. The corresponding axial lengths
were 503 (1), (2) and 652 nm (3), (4) on average. The scale bar is 500 nm. Reproduced from [85] (2014). With permission of Springer.



exposure in air for a month. In parallel to strong modification
of the luminescent properties, the laser-assisted doping also
drastically affected the electrical properties of the ultrathin
TMDCs. This was investigated using field-effect transistor
devices incorporating the locally doped TMDC layers as cur-
rent channels.

This approach effectively introduced electronically active
phosphorus atoms into the TMDCs. The precise level, tem-
poral, and spatial control of the doping was achieved by
varying the laser irradiation power and time, demonstrating
wide tunability and high site selectivity. Future investigation on
the choice of dopant, the dopant concentration, and the contact
engineering should be conducted. The high stability and
effectiveness of the laser-assisted doping method combined

with the site selectivity and tunability demonstrated here may
open a new avenue for functionalizing TMDCs for customized
nanodevice applications.

Irradiation with a single continuous laser beam of Gaussian
profile induces spatially nonuniform doping and, therefore,
limits the potential of laser processing of TMDCs as a well-
controlled tool for a wider range of applications. Advanced laser
configuration is, therefore, required for decoupling the funda-
mental phenomena associated with the doping mechanism: (1)
the dissociation of dopant molecules to provide dopant radicals,
and (2) the laser treatment and ensuing structural modification
on the TMDCs. These can be separately controlled via a dual
laser beam configuration combining different pulse lengths and
wavelengths. Furthermore, the dopant gas for laser doping can

Figure 10. Layout of in situ Raman assembly in the sample chamber of the TEM (middle), schematic of Raman probe (left), and TEM images
of tapered optical fiber (right). Reprinted from [115], Copyright (2017), with permission from Elsevier.

Figure 11. Bright-field TEM of MoS2 flake (a) before and (b) after pulsed laser ablation. (c) Bright-field TEM snapshot from movie of the
MoS2 flake acquired during laser processing. (d) Higher magnification view of (b) showing spherical crystallites formed as a result of the
pulsed laser processing. (e) Raman spectra of MoS2 flake acquired before (blue) and after (red) laser processing, normalized to the Eg 21 peak
and background subtracted. Reprinted from [115], Copyright (2017), with permission from Elsevier.
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be selected according to the desired p- or n-type doping effect.
This approach represents a new concept for fabricating PN
junctions on 2D materials, offering distinct advantages with
respect to reducing the process time and minimizing random
fluctuation of doping. To further expand the potential of TMDCs
towards novel optoelectronic devices, bandgap tuning by laser
alloying is a promising candidate and will be achieved by
introducing atoms of another chalcogen (S, Se, and Te). Local
replacement of Se by S atoms in TMDCs was demonstrated via
a laser-assisted chemical modification process [107]. Further-
more, laser-induced selective decoration of few- and multilayer
MoS2 has been demonstrated with silver (Ag) NPs via the
photo-excitation of the semiconductor material exposed to silver
nitrate (AgNO3) solution [108]. This route enables control of
p-type doping by varying the laser irradiation time.

3.2. In situ observation of laser processing of MoS2 layers

The unique and highly promising characteristics of TMDCs
depend on their thickness, which is typically in ultrathin
format of a few layers or monolayers. Monolayer MoS2 has a
direct bandgap of ∼1.85 eV instead of the indirect bandgap of
1.2 eV for the bulk counterpart. Thus, control of the TMDC
layer thickness in arbitrary patterns should add flexibility to
fully explore their exotic properties and push forward
potential applications. However, TMDC few or monolayer
flakes that are typically exfoliated from bulk crystals can have
high crystallinity but rely on the spatially random van der
Waals force between flakes and substrate resulting in
uncontrollable thickness and shape. A tightly focused con-
tinuous-wave laser beam was utilized to thin MoS2 down to a
single layer [109]. The semiconducting properties of the
thinned layers were found to resemble the properties of
pristine MoS2 single layers. Evidently, the laser light
absorption into the semiconducting material changes dyna-
mically during the thinning process. Moreover, the thermal
conductivity of TMDC materials varies with the number of
layers and is influenced by the backing substrate [110].
Consequently, the laser thinning represents a self-regulated
process. A photochemical variance of the laser thinning
process was presented in [111], utilizing adsorbed H2O
molecules on molybdenum (IV) telluride (MoTe2) layers from
the humidity present in the atmosphere to effect thinning
under very low laser powers. Laser excitation at ultralow laser
power in vacuum was shown to induce irreversible changes in
the optical properties of TMDC materials [112]. An in situ
study of void formation upon CW laser irradiation, with the
assistance of temporal Raman evolution, yielded an empirical
formula relating void size to laser power and exposure time
[113]. Ultrafast laser-based thinning of MoS2 through a two-
photon absorption process was reported [114]. The interaction
of laser radiation with TMDC material involves complex
nanoscale physicochemical phenomena and, therefore, calls
for further investigation. An in situ Raman instrument
extending the capability of the TEM apparatus described in
section 1.1 was utilized to quantitatively probe the laser
thinning process of a MoS2 flake (figures 10 and 11). Further
studies are needed to understand the precise mechanism of the

laser interaction and modification of these exotic materials
and push their applications, including in optoelectronics,
flexible electronics, and sensors.
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